
Profiling heliophysics data in the
pythonic cloud

Alex K. Antunes1*, Eric Winter1, Jon Duane Vandegriff1,
Brian A. Thomas2 and Jeffrey W. Bradford2

1JHU Applied Physics Laboratory, Laurel, MD, United States, 2NASA Goddard Space Flight Center,
Greenbelt, MD, United States

Analysis of long timespan heliophysics and space physics data or application of

machine learning algorithms can require access to petabyte-scale and larger

data sets and sufficient computational capacity to process such “big data”. We

provide a summary of Python support and performance statistics for the major

scientific data formats under consideration for access to heliophysics data in

cloud computing environments. The Heliophysics Data Portal lists 21 different

formats used in heliophysics and space physics; our study focuses on Python

support for themost-used formats of CDF, FITS, and NetCDF4/HDF. In terms of

package support, there is no single Python package that supports all of the

common heliophysics file types, while NetCDF/HDF5 is the most supported file

type. In terms of technical implementation within a cloud environment, we

profile file performance in Amazon Web Services (AWS). Effective use of AWS

cloud-based storage requires Python libraries designed to read their S3 storage

format. In Python, S3-aware libraries exist for CDF, FITS, andNetCDF4/HDF. The

existing libraries use different approaches to handling cloud-based data, each

with tradeoffs. With these caveats, Python pairs well with AWS’s cloud storage

within the current Python ecosystem for existing heliophysics data, and cloud

performance in Python is continually improving. We recommend anyone

considering cloud use or optimization of data formats for cloud use

specifically profile their given data set, as instrument-specific data

characteristics have a strong effect on which approach is best for cloud use.

KEYWORDS

python (programming language), AWS (amazon web service) cloud services, NetCDF
file format, HelioCloud, machine learning, cloud computing

1 Introduction

We summarize our survey and Python performance evaluation of major scientific data

formats that are under consideration for access to heliophysics data in cloud computing

environments, which provide scaleable high performance computing (HPC) capability

alongside very massive data sets. The ability to engage in science for an entire data sets

includes the ability to find and categorize thousands of events, to analyze irradiances and

field value variations over long time baselines, create forecasting and predictive models,

and to explore new science problems that span large dimensionality and long timespans,

among others. In addition, the existence of data sets from multiple satellites stored within

OPEN ACCESS

EDITED BY

Angeline G. Burrell,
United States Naval Research
Laboratory, United States

REVIEWED BY

Lei Cai,
University of Oulu, Finland
Luke Barnard,
University of Reading, United Kingdom

*CORRESPONDENCE

Alex K. Antunes,
sandy.antunes@jhuapl.edu

SPECIALTY SECTION

This article was submitted to Space
Physics,
a section of the journal
Frontiers in Astronomy and Space
Sciences

RECEIVED 29 July 2022
ACCEPTED 26 September 2022
PUBLISHED 21 October 2022

CITATION

Antunes AK, Winter E, Vandegriff JD,
Thomas BA and Bradford JW (2022),
Profiling heliophysics data in the
pythonic cloud.
Front. Astron. Space Sci. 9:1006839.
doi: 10.3389/fspas.2022.1006839

COPYRIGHT

© 2022 Antunes, Winter, Vandegriff,
Thomas and Bradford. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Astronomy and Space Sciences frontiersin.org01

TYPE Methods
PUBLISHED 21 October 2022
DOI 10.3389/fspas.2022.1006839

https://www.frontiersin.org/articles/10.3389/fspas.2022.1006839/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.1006839/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2022.1006839&domain=pdf&date_stamp=2022-10-21
mailto:sandy.antunes@jhuapl.edu
https://doi.org/10.3389/fspas.2022.1006839
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://doi.org/10.3389/fspas.2022.1006839


cloud systems allows for cross-instrument science in multiple

domains. We define the terms ‘big data’ to characterize all

categories of analysis using data sets larger than can easily be

managed on a single desktop machine, and ‘machine learning’

(ML) as a subset of big data analysis that uses machine learning

algorithms for engaging in prediction, event finding, or modeling

using entire data sets. This paper both captures the current state

of the Python landscape with respect to cloud usage, and provides

evaluation criteria and a methodology cloud users should

consider when deciding how best to make cloud use of their

data within Python.

With data sizes in heliophysics ranging from smaller terabyte

(TB, 1 TB = 1,000 gigabytes) sets such as with the SuperMAG

archive up through petabyte-sized (PB, 1 PB = 1000 TB) sets such

as with the Solar Dynamics Observatory, science analysis looking

at entire solar cycles and machine learning approaches that

require full data access increasing are using cloud-based

computing environments to store, access, and analyze big data

sets. Our analysis of Python package support will apply for any

cloud or HPC environment. In addition, we provide performance

statistics for file access specifically within the Amazon Web

Services (AWS) cloud environment.

The challenge with science problems that look at entire data

sets is the data sets are too large to fit onto a standard laptop or

desktop; transferring the data from an archive or virtual

observatory to one’s home machine takes prohibitively long;

the processing time needed to analyze big data on a single

machine is infeasible. Cloud systems are set up to handle big

data problems by 1) storing entire instrument data sets in an

easy-to-access fashion, 2) moving the compute capability to the

data, rather than requiring users to download data to their

machine, and 3) allocating multiple CPU processors for

analysis tasks so that algorithms can be run on TB or PB of

data in finite time. The AWS cloud environment uses AWS

servers in what they call their Elastic Cloud Computing (EC2)

service and allows storage of yottabytes (YB = 1000 PB) of data

on their inexpensive high-capacity Simple Storage Service (S3)

object-oriented disk storage. User access can be from user-

developed code (such as Jupyter notebooks, Python programs,

other programming development tools) and commercial

software (such as IDL) running on AWS servers using their

Elastic Cloud Computing (EC2) service.

Heliophysics data are available from many archives in a wide

variety of formats. For example, the Heliophysics Data Portal1

provides access to mission data in 21 different formats.

Fortunately, the bulk of data is primarily encapsulated in only

three common formats: CDF, FITS, and NetCDF/HDF5. We also

indicate support for Comma-Separate Variable (CSV) files when

applicable. There is currently no single dominant format, as each

instrument team chooses a format based on their development

needs. As a result, a given satellite or instrument community

tends to write their analysis tools to work with the subset of data

file types that particular team expects; developing generic tools

that work with all file types requires extra development time that

would take away from science analysis time.

Python is widely used as a language for data analysis in

heliophysics and space physics (Hassell et al., 2017; Burrell et al.,

2018). There is a movement to create tools that are filetype-

independent via the community-created PyHC packages such as

SunPy, SpacePy, HAPI, and others, and we support such efforts, but

cannot mandate that individual scientists support multiple file types

in their personal codes. Likewise, requiring data archives to provide

all their data in all three formats would result in 3x storage costs with

no proven advantage. We accept that the pragmatic state of the

landscape is any cloud analysis project can expect to have to deal

with either CDF, FITS, or NetCDF/HDF5. We therefore provide

performance statistics comparing these three file types when in use

in the AWS S3 environment, and likewise document which file types

are supported in current Python packages.

We examined the most prominent and widely-used formats

for this report. Our assumptions include that scientists tend to be

trained in (and therefore prefer) their existing workflows and

may be new to cloud methods. Barriers for cloud use include the

need to adopt new data formats, and a potential shift from

traditional instrument-provided raw data to derived data sets

which have undergone post-processing, potentially including re-

binning or resampling. Adoption of cloud requires scientists to

potentially switch from their standard files (CDF, FITS, or

NetCDF/HDF5) to cloud-optimized file formats, of which the

foremost candidate is the Zarr format. The NASA grant proposal

‘ROSES’ opportunities include a current call for preparing ML-

ready data sets that are post-processed and downsampled to

generate new big data products, therefore scientists will be

expected to adapt to cloud-specific data needs over time.

One core issue with cloud data is tool use, and whether the

big data sets created in the cloud are accessible only from within

the cloud, or if they are also accessible to the scientists’ traditional

work computer workflow. To encourage use of big data sets,

cloud architects should maintain the ability for scientists to work

with the data using tools they are already familiar with, and we

argue that user interface development for cloud environments is

as important as raw power.

In Earth Observation, similar considerations have been

reported. Lynnes et al. (2020) used the criteria of usability,

tools, standards, and cost and found ‘no one-size-fits-all’ with

long-term archives remaining in their existing stable self-

described file formats, and derived multidimensional imagery

and array data sets using Cloud-optimized GeoTIFF and Zarr

(respectively). We agree, in general, that archives should retain

their existing formats while derived ML data sets are free to

explore more heliophysics-optimal formats, particularly NetCDF

and HDF.1 https://heliophysicsdata.gsfc.nasa.gov/.

Frontiers in Astronomy and Space Sciences frontiersin.org02

Antunes et al. 10.3389/fspas.2022.1006839

https://heliophysicsdata.gsfc.nasa.gov/
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1006839


For our specific cloud environment, HelioCloud (NASA/

GSFC 2022) is an AWS-based cloud environment and big data

analysis cache created by NASA/GSFC Heliophysics to facilitate

easy access to cloud capabilities specifically for heliophysics and

space physics research while minimizing the learning curve for

scientists (who should not need to be cloud experts to use cloud

capabilities). We used it for our profiling of file formats in the

AWS cloud, and likewise our code is available via the associate

HelioCloud github code repository for easy replicability.

In providing a short encyclopedia of primary heliophysics

and space physics Python packages, we hope to inform scientists

as to which data file formats are accessible for both traditional

“home desktop” analysis and big data analysis, as well as hoping

that developers will use this information to create better cross-

package compatibility. Combined with the file performance

statistics in the cloud environment, this paper provides

current performance expectations for heliophysics traditional

and cloud use in Python so that scientists can choose the

appropriate packages and file types for engaging in traditional

analysis, big data analysis, and ML science analysis.

For our specific performance statistics for file access speeds in

a cloud environment, cloud bulk storage such as AWS S3 is

slower within the cloud-based EC2 compute environment

compared to the faster (but more expensive) AWS

conventional disk storage, called Elastic Block Storage (EBS).

Likewise AWS S3 is slower than using your local disk on your

local machine as with a traditional workflow. A check of basic

filesystem performance found that AWS S3 was 30x slower in

accessing files than what a user experiences on a reference

machine of a local MacBook Pro, and 95x slower in writing

and delete speed versus the same local system. Accepting S3 usage

is predicated on understanding that it will be slower than

conventional disk access, but allow for larger data sets to be

stored at a lower cost. With this compromise in mind, we can

look at specific file format performance comparisons.

2 Materials and methods

The materials of cloud file storage are the different file types

and the Python packages plus underlying libraries that support

those file types. We focus on the community drivers of the need

for access to big data sets, and the use of large contiguous data

sets for machine-learning (ML) research2. The performance for a

presumedML-ready data set is the base use case for the context of

our analysis, as ML problems typically involve codes that must

run on the entirely of a given data set. The community has two

approaches towards creating and using data sets for ML. The first

is to create tools to feed existing instrument data archives into

ML pipelines to perform the analysis, while the second is to create

a new derived data set by processing, calibrating, curating and

collating massive data sets and apply feature extraction, tagging,

or other analytic data reduction.

In the tools category, examples include Bobra and Mason’s

(2018) published Jupyter Notebooks that use a variety of data sets

as input. Schneider et al. (2021) created a Python toolset for

generating ML-ready data set from SOHO and SDO into either

local FITS files or an HDF5 datacube. In the curated data sets

category, Galvez et al. (2019) prepared an ML-ready data set for

all three of SDO’s instruments: AIA, HMI, and EVE. Their 6.5 TB

curated and collated set is made available via the Stanford Digital

Repository as sets of 2–6 GB tar bundles containing compressed

Numpy-readable files. Antunes et al. were awarded a 2021 NASA

ROSES Tools and Methods proposal to create an ML-ready set

for STEREO + SOHO, and a NASA grant proposal program

under their ROSES opportunities includes a 2022 call specifically

for creating ML-ready data sets.

In terms of technical implementation, AWS S3 storage

“supports” all file types, storing them as objects rather than as

files within a conventional disk system. Access can be via “copy

then use”, where files are copied from AWS S3 to local disk then

read by the program, or using libraries that can directly read

them from AWS S3 in object format, which we call “S3-aware

libraries”. In Python, S3-aware libraries exist for FITS (AstroPy),

NetCDF/HDF (netCDF4), HDF5, CDF (MAVENSDC3 libcdf or

AstroPy), and Zarr.

Likewise, the three file types are similarly well supported in

the Python package environment: both Pandas (Zaitsev et al.,

2019) and Xarray libraries have good support for NetCDF and

HDF5; Xarray supports Zarr; AstroPy supports FITS and HDF5;

SpacePy supports CDF and HDF5; SunPy4 supports FITS, CDF,

and NetCDF. We note that NetCDF and HDF5 are often

considered identical file formats, and it is not within the

scope of this paper to evaluate the compatibility between

NetCDF and HDF5 in terms of importing one from the

other’s library.

Both the CDF and NetCDF projects provide stand-alone file

conversion tools to go between the three file formats. In the CDF

ecosystem, there are supported tools for going to or from FITS,

NetCDF, and HDF5. For NetCDFs, there are tools to convert to

and from the older NetCDF3 and the current NetCDF4/

HDF5 format. Converting to HDF5 and Zarr from FITS, CDF

and NetCDF5 are problematic. Not all files can be converted, and

converting from the richer data types (e.g., HDF5, NetCDF) to

the simpler file types (FITS, CDF) is lossy.We did not look deeply

2 https://towardsdatascience.com/guide-to-file-formats-for-
machine-learning-columnar-training-inferencing-and-the-feature-
store-2e0c3d18d4f9.

3 https://github.com/MAVENSDC/cdflib.

4 https://docs.sunpy.org/en/stable/code_ref/io.html.

5 https://discourse.pangeo.io/t/netcdf-to-zarr-best-practices/1119.

Frontiers in Astronomy and Space Sciences frontiersin.org03

Antunes et al. 10.3389/fspas.2022.1006839

https://towardsdatascience.com/guide-to-file-formats-for-machine-learning-columnar-training-inferencing-and-the-feature-store-2e0c3d18d4f9
https://towardsdatascience.com/guide-to-file-formats-for-machine-learning-columnar-training-inferencing-and-the-feature-store-2e0c3d18d4f9
https://towardsdatascience.com/guide-to-file-formats-for-machine-learning-columnar-training-inferencing-and-the-feature-store-2e0c3d18d4f9
https://github.com/MAVENSDC/cdflib
https://docs.sunpy.org/en/stable/code_ref/io.html
https://discourse.pangeo.io/t/netcdf-to-zarr-best-practices/1119
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1006839


at the accuracy or fidelity of metadata for these transformations,

as that was outside the scope of our performance evaluations.

In terms of package support, there is no single Python

package that supports all the common heliophysics file types,

while NetCDF (with cross-support for HDF5) is the most-

supported file type. This necessitates that scientists be aware

that a given analysis package may or may not support the data file

type they require, which presents a barrier to both analysis and

code sharing. Assuming scientists choose a package that can read

the data format, we assert that Python currently has good support

for data access directly from AWS S3 for cloud usage. One

concern is performance, as there are three library approaches to

handling S3 data:

1) Copying from AWS S3 to local storage, then reading the file

locally for analysis: fast, easy, but inefficiently duplicates disk

storage

2) Reading from AWS S3 and storing the full data set in

memory, then carrying out the analysis: fast but can

overwhelm RAM for large/many files

3) Reading from AWS S3 directly in pieces and analyzing the

data in smaller chunks: efficient but slow due to S3 limitations

and requires your workflow be designed to operate with

chunks

Which approach is “best” is very dependent on the specific

task at hand. A pipeline processing of small data files, for

example, can easily live within memory and gain that speed

performance boost, while a machine learning algorithm that

must hold vast sets of training data simultaneously will have

to do a memory analysis dependent on the project size as well as

the capacity of the analysis hardware. Going deeper into these

tradeoffs is not within the scope of this paper.

2.1 File types

We converted between file formats using the CDF toolset to

explore file size metrics. The tools are provided by NASA and

have the straightforward names of netCDF-to-cdf, cdf-to-

netCDF, cdf-to-fits and fits-to-cdf (cdf.gsfc.nasa.gov/html/

dttools.html). This was the most robust tool set, but as it uses

CDF as its intermediate transfer function (for example, doing

FITS to NetCDF required fits-to-cdf then cdf-to-netCDF); this

may have introduced a bias towards CDF files having the

typically smaller file size for identical data.

A key concern in conversion is the preservation and

accessibility of metadata. For example, the cdflib library

returns this information for an MMS file:

CDF’: PosixPath(“mms1. cdf”), “Version”: “3.6.0”,

‘Encoding”: 6, “Majority”: “Column_major”, “rVariables” [],

“zVariables”: [“Epoch”, “mms1_fgm_b_gse_brst_l2”,

“mms1_fgm_b_gsm_brst_l2” [etc].

While the same data converted to FITS yields these header

fields:

TFIELDS = 12/number of fields in each row.

TTYPE1 = ‘Epoch ’/label for field one.

TFORM1 = ‘30A30 ’/data format of field: ASCII Character.

TUNIT1 = ‘ns ’/physical unit of field.

TTYPE2 = ‘mms1_fgm_b_gse_brst_l2’/label for field two.

TFORM2 = ‘4E ’/data format of field: 4-byte REAL.

TUNIT2 = ‘nT ’/physical unit of field.

[etc]

The core elements are there (variable names, associated

metadata) but interpretation and validation are not seamless.

Programs to validate metadata across the conversion would be

needed. In terms of accessibility, the difference in file formats

require either conversion programs within the Python ingest

routine, or a known mapping so that users of one approach

(CDF) and library (SunPy) can access the other approach (FITS)

and library (AstroPy). Similarly, engaging in analysis within one

Python library creates internal data representations (such as

SunPy maps) that are not immediately useable within a

different Python library (such as with AstroPy and its

NDData representations). There is a funded effort already

underway to unify several of the core Python heliophysics

libraries so that they can share datatypes. Table 1 lists the

current cross-file conversion capabilities available for

immediate validated bulk conversion between the file formats

we discuss.

As a cautionary note, chaining to convert a file (e.g., going

from CDF to HDF5 to Zarr) is usually one-way, and not

reversible. Conversion from CDF to Zarr is possible via

chaining, but not from Zarr to CDF6,7. In general, the

multidimensional or more complex data formats (NetCDF,

HDF, Zarr) cannot down-convert to the tabular data formats

(FITS, some CDF). We also consider that Zarr is not mature

enough yet to warrant bulk-converting data archives; if we

convert now to Zarr, we might have to re-convert later as the

specification evolves.

To dig deeper, in Table 2 we benchmark three different

mission data sets: the Magnetic Multiscale Mission (MMS) FGM

measurements (CDF-native format), Parker Solar Probe WISPR

image data (FITS-native format), and Global Ultraviolet Imager

(GUVI) Spectral data (NetCDF-native format). We converted

each data set to all three types (FITS, CDF, NetCDF) and

measured the resulting file sizes. File sizes upon conversion

were somewhat inconsistent, and we do not recommend

converting existing archives at this time.

6 https://www.unidata.ucar.edu/mailing_lists/archives/netcdf-hdf/
1992/msg00017.html.

7 https://cdf.gsfc.nasa.gov/html/dttools.html.

Frontiers in Astronomy and Space Sciences frontiersin.org04

Antunes et al. 10.3389/fspas.2022.1006839

http://cdf.gsfc.nasa.gov/html/dttools.html
http://cdf.gsfc.nasa.gov/html/dttools.html
https://www.unidata.ucar.edu/mailing_lists/archives/netcdf-hdf/1992/msg00017.html
https://www.unidata.ucar.edu/mailing_lists/archives/netcdf-hdf/1992/msg00017.html
https://cdf.gsfc.nasa.gov/html/dttools.html
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1006839


2.2 Support examples in AWS

We provide short code examples for accessing FITS, CDF

and NetCDF data within the AWS S3 environment. In all cases

we are accessing a presumed AWS S3 object that it in a bucket

(S3 directory-equivalent) named “mybucket” with a file name in

subdirectories path “mypath” named in some form of

“example.*”. These three examples show the similarities and

differences in accessing S3 data.

2.2.1 FITS
Access to FITS data is via the astropy and boto3 libraries.

import astropy. io.fits

s3c = boto3. client (‘s3′)
fobj = s3c.get_object (Bucket = ’mybucket’,Key = ’mypath/

example.fts’)

rawdata = fobj [’Body’]. read ()

bdata = io. BytesIO(rawdata).

Valid_data = astropy. io.fits.open (bdata).

Valid_header = valid_data [0]. header.

2.2.2 CDF
Access to CDF data is via the MAVENSDC cdflib and

boto3 libraries.

import cdflib

Valid_data = cdflib. CDF (‘s3://mybucket/mypath/

example.cdf).

2.2.3 NetCDF/HDF5
Access to NetCDF and HDF5 data is via the Python xarray

library8,9.

import xarray

filename = “https://s3. yourregion.amazonaws.com/

bucketname/mypath/example.h5”.

fgrab = fs. open (s3name).

Valid_data = xarray. open_data set (fgrab).

3 Results

We considered the following issues when examining each file

format:

1) Compatibility with existing user code and tools.

2) Documented support by software package and

programming lang.

3) Current usage of data format in heliophysics community.

4) Ease of conversion between formats.

5) Data file size.

6) Performance in AWS.

TABLE 1 File conversions using native tools.

To FITS CDF NetCDF3 NetCDF4 HDF4 HDF519 Zarr

From .

CDF ✓ . ✓ ✓ ✓ ✓ x

NetCDF3 x ✓ . ✓ x x x

NetCDF4 x ? ? . ✓ ✓ ✓
FITS . ✓ x x x ✓ x

HDF4 x ✓ x x . ✓ x

HDF5 x x x x x . ✓
Zarr x x x ✓ x x .

(NCZarr) x x x ✓ x x x

✓indicates compatible conversion, x indicates no stable conversion available.

TABLE 2 File Sizes when converting files.

File size FITS (M) CDF (M) NetCDF3 NetCDF4 HDF5

WISPR 7.5 2.6 2.7 M 7.5 M 7.5 M

MMS FGM 2.1 1.2 — 9.1 M —

MMS FEEPS 11 11 — (conversion errors) —

GUVI 0.36 0.32 0.28 M 0.50 M —

bold = native format for that instrument - = conversion incomplete and not testable

8 http://opendap.ccst.inpe.br/Observations/ARGO/tmp/netCDF4-0.9.
8/docs/netCDF4.dataset-class.html.

9 https://howto.eurec4a.eu/netcdf_datatypes.html.

Frontiers in Astronomy and Space Sciences frontiersin.org05

Antunes et al. 10.3389/fspas.2022.1006839

https://s3
http://opendap.ccst.inpe.br/Observations/ARGO/tmp/netCDF4-0.9.8/docs/netCDF4.dataset-class.html
http://opendap.ccst.inpe.br/Observations/ARGO/tmp/netCDF4-0.9.8/docs/netCDF4.dataset-class.html
https://howto.eurec4a.eu/netcdf_datatypes.html
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1006839


7) Support in multiple languages and support in Python.

3.1 File types

Themost common file types in heliophysics and solar physics

are currently CDF, FITS, and NetCDF/HDF5. CDF (Common

Data Format10) has large file support and allows for compression,

and has a large body of existing tools. Language bindings include

Python, C, FORTRAN, Java, Perl, C#/Visual Basic, IDL, and

Matlab. Many space physics data sets are in CDF format.

However, not all Python implementations of CDF are cloud-

aware, and it often requires an external C or Fortran library for

rapid read speeds.

The FITS (Flexible Image Transport System11) standard is

heavily used in solar physics and astronomy and has a large body

of support tools. Conversely, as an older format, it is not designed

for modern data. Its language bindings include C, FORTRAN,

Python, C++, C#,.Net, Pascal, IDL, Java, JavaScript, Perl, Tcl,

Matlab, LabVIEW, Mathematica, IGOR Pro, R, Photoshop

(plugin), golang, and Swift. In Python, most implementations

use the AstroPy fitsio library as a FITS handling, making the

read/write usage identical across use cases.

As an evolution of FITS, ASDF (Advanced Scientific Data

Format12) was proposed in 2015 (Greenfield et al., 2015) as an

evolutionary replacement for the FITS format, which is widely-

used in the astronomical community. It has language bindings in

Python, C++ (incomplete), and Julia (incomplete). Its advantages

include use of JSON, ability to stream data, and ability to be

embedded in FITS. However, it is designed as an interchange

format rather than an archival format, is not cloud-aware, and

the standard is still young and in flux. FITS has also been

implemented on top of HDF5 (Price et al., 2015).

NetCDF (Network Common Data Format13) is built on top

of the HDF5 format and includes S3 support. HDF (Hierarchical

Data Format14) is very wildly used, has a large existing body of

tools, and is highly scalable. Language bindings exist for nearly

every language. S3 support is built into NetCDF, and available for

HDF5 via a virtual file systems layer and read-only. NetCDF is

relatively stable while HDF5 is an evolving standard.

Zarr15 is a newer Python-supported cloud-native standard. It

is based on NumPy, so a large body of existing code can use it.

The Zarr standard is still evolving and is not natively used for

existing helio/space physics data sets. Its most common use is

currently as an alternative storage format specifically for

cloud data.

3.2 File performance in python

Performance of file types on AWS was very dependent on the

data type (time series, spectra, image) and instrument specifics.

Performance also varies as individual Python libraries are

improved and updated over time. For three sample cases

(MMS FGM data in NetCDF4, GUVI spectral data in CDF,

and WISPR images in FITS), we converted all three into FITS,

CDF and NetCDF. We found file sizes varied by factors of 1-5x

and S3 access times varied by 1-3x. Library support for chunking

(not needing to load an entire file when only parts of it are

needed) leads to implementation-specific speed advantages as

well, and further library development is recommended.

Within the HelioCloud setup, we compare EC2 access to

S3 access for the file types of FITS, CDF, and NetCDF using

the Python-native interpreters of AstroPy, netCDF, and cdflib. The

AstroPy FITS reader and the cdflib reader used the AWS-

supported boto3 S3 library, while NetCDF requires use of the

external fs. s3 file system library and the Xarray Python package.

We ran this test twice over a 6 month period, during which the

Python libraries had improved and produced more consistent

results. We present the current state as of the September

2022 version of the libraries. Results are generally valid to

within +/-10%, that is, for any given set of 100 runs, the

timings will vary across runs but fall within 10% of our results here.

For a given file size, FITS reads were fastest, and CDF reads were

slowest. Both FITS and CDF reads were longer as file sizes increased.

The NetCDF4 read for the smallest file size took longer than for the

two larger file sizes; as AWS S3 requires some overhead to initially

access any file, that this indicates NetCDF4 read speeds are fast and

the bottleneck is initially accessing S3. Averaged, typical FITS reads

were on order of 20 ± 17MB/s while CDF reads were on the order of

2.2 ± 1.6 MB/s and NetCDF at 24 ± 23MB/sec. These rates are also

on order of 2-3x faster than results from 6months ago (not

pictured), again an indication of library improvements. The wide

variance of read times within each file type reinforces that all data

conversions and transfers are very instrument-specific and thus

broad conclusions over a ‘best’ file format cannot be made without

specifically profiling the desired data set.

With the latest version of the libraries, we saw no strong

performance preference for accessing a given instrument in its

original native format, versus performance from the same data

transformed into the other two file formats. As Python library

support matures, this suggests that converting datasets to a file

format for performance increases is not infeasible. The limiting

factor in deciding on such conversions is whether the conversion

itself is feasible. For our chosen sets, for example, the MMS FGM

instrument was able to convert from CDF to NetCDF4, but the

MMS FEEPS instrument was not able to generate a valid

10 https://cdf.gsfc.nasa.gov/.

11 https://fits.gsfc.nasa.gov/.

12 https://asdf-standard.readthedocs.io/.

13 https://www.unidata.ucar.edu/software/netcdf/.

14 https://www.hdfgroup.org/.

15 https://zarr.readthedocs.io/en/stable/.

Frontiers in Astronomy and Space Sciences frontiersin.org06

Antunes et al. 10.3389/fspas.2022.1006839

https://cdf.gsfc.nasa.gov/
https://fits.gsfc.nasa.gov/
https://asdf-standard.readthedocs.io/
https://www.unidata.ucar.edu/software/netcdf/
https://www.hdfgroup.org/
https://zarr.readthedocs.io/en/stable/
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1006839


NetCDF4. Conversion between file formats requires that the new

format support the multidimensionality and internal data

organization and therefore we do not advise projects convert

to a new format without first performing data validation.

We plot size (in MB) versus scaled read speeds (using average

read time from 100 reads) [Figure 1] for three different instruments,

each provided for the three different file types (of differing sizes).

While the units are ‘MB’ and ‘seconds’, we recommend observing

trends rather than documenting specific performance, primarily

because in cloud environments the choice of cloud processor will

affect read speeds. Therefore absolute values will differ based on

hardware, while relative load speeds will remain proportional. In

terms of file performance, one would expect a linear trend that, as

file sizes increase, file read times also increase; this trend was

consistent for FITS and CDF files but NetCDF4 file read times

as noted struggled with the small GUVI data file.

FITS was the fastest format, a result that surprised us;

possibly it is because it is a flat format with little parsing

needed, but we hesitate to ascribe a cause without further

study. We recommend that library optimizations for S3-aware

reads are low-hanging fruit in terms of boosting performance,

preferential to reformatting entire data archives. Based on our

analysis, we recommend cloud-ready archives do a quick check

on their data to see if conversion yields significant (2x storage

or >2x S3 speed) gains because of how the gains or losses are very

instrument-specific. However, they should not abandon their

native formats because those were chosen to support their

existing user communities and toolsets, and need to be retained.

Additionally, ML-ready data sets should aim for accessibility

and choose a format that allows analysis both within and outside

of the Python ecosystem, with HDF5 as the strongest potential

future candidate based on the number of languages that support

it, support within existing Python libraries such as AstroPy (HDF

native) and SunPy (HDF via NetCDF4 support).

3.3 Native python support

Defining the ecosystem of Python package support is always a

work in progress, and we capture the current state of the

heliophysics-relevant core Python package external file types and

internal data types supported. There is a funded effort this year to

ensure that SunPy, AstroPy, SciPy and HAPI are able to read each

other’s formats. This and related efforts will go a long way towards

simplifying the data landscape for Python users.

1) Pandas: CSV, NetCDF4, HDF5, Feather

2) Xarray: CSV, NetCDF3, NetCDF4, HDF5, Zarr, pandas

3) AstroPy [Pandas DataFrames]: CSV, FITS, HDF5

4) SpacePy [SpaceData, Numpy-compatible]: CDF, HDF5

5) SunPy [Map, TimeSeries]: FITS, pandas, AstroPy, J2000,

ASDF, CDF, ANA, GenX

6) HelioPy: CDF, astropy, sunpy

7) SciPy: IDL, Matlab, pandas

8) PySat16: NetCDF, xarray, pandas.

We look at Python-specific library support by python data

types and python packages. For each package, we summarize the

file formats supported and indicate the data structures and basic

readers included. In notable cases we include code examples

illustrating the data reads. Note that Python natively supports

CSV for Lists and Dictionaries. The primary internal data objects

across Python heliophysics packages are:

• in AstroPy: Table

• in Numpy: ndarray

• in Pandas: DataFrame

• in SpacePy: SpaceData

• in SunPy: Maps, TimeSeries, NDCube

• in Xarray: xarray or DataFrame

3.4 Python packages

We provide per-package details on the primary Heliophysics

Python packages, including their internal data object representations

and which files they support, as well as additional relevant details.

This information is intended to support users seeking out packages

to work with specific files and data, and for developers who are

interested in investigating package interoperability.

FIGURE 1
Average read speeds (in sec) for three different datasets
(MMS,WISPR and GUVI) in each of three file formats (CDF, FITS and
NetCDF4).

16 https://github.com/pysat/pysatCDF.

Frontiers in Astronomy and Space Sciences frontiersin.org07

Antunes et al. 10.3389/fspas.2022.1006839

https://github.com/pysat/pysatCDF
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1006839


3.4.1 AstroPy (astropy.org)
The primary AstroPy data objects are Table and CCDData,

and PandasDataTable and DataFrame are supported. Supported

file formats are HDF/HDF5, CSV and FITS, as well as JSON and

others. The built-in read() and write() functions determine the

file types when reading. CCDData can be converted to a Numpy

ndarray or an NDData object. AstroPy is designed to support

astronomy as well as encouraging interoperability.

3.4.2 Cdaswd library (cdaweb.gsfc.nasa.gov
The cdaswd library supports the SpacePy data model using

the NASA CDF C library (requiring a C compiler or pre-built

binary package to install), and also supports cdaweb’s netCDF17.

3.4.3 csv (built into python)
CSV files can be read into Python with no additional library

needed.

3.4.4 Cdflib (github.com/MAVENSDC/cdflib)
A variant CDF library that does not require the NASACDFC

library, cdflib does require the Python Numpy package.

3.4.5 HAPI, hapi-server.org
The primary HAPI data objects are CSV or JSON data

formatted to the HAPI specification. Available Java and Python

HAPI server code bases support ingest and streaming of CDF, HDF,

and CSV files. The HAPI Python client program uses Numpy arrays

as its internal representation. HAPI is a time series download and

streaming format specification intended as a common data access

API for space science and space weather data.

3.4.6 HDF5 (h5py.org)
The primary HDF5 data objects are dataset (which are like

Numpy arrays) and Group (which are like a Python dictionary).

The h5py function is used to ingest files.

3.4.7 HelioPy (heliopy.org, no longer supported
as of 2022)

The primary HelioPy data object is the SunPy TimeSeries

object. HelioPy uses the Python CDFlib and can convert cdf to a

Pandas Dataframe.

3.4.8 netCDF4 (unidata.github.io/netcdf4-
python/)

The primary netCDF54 data objects are dataset andVariable.

3.4.9 NumPy, numpy.org
The primaryNumPy (sometimes written as Numpy) data object

is the ndarray. Numpy does not yet have a standard way to deal with

metadata. Numpy supports CSV files and data. Many Python

packages use ndarrays within their internal data representations.

3.4.10 Pandas (pandas.pydata.org)
The primary Pandas data objects is the DataFrame, and for

HDF there is also HDFStore. Pandas supports HDF and CSV files.

Pandas does not yet have a standard way to deal with metadata.

3.4.11 PyTables, pytables.org
The primary PyTables object is the Table, and it also supports

any NumPy data type. PyTables is built on top of the HDF5 and

NumPy libraries.

3.4.12 SciPy: scipy.org
SciPy is a package that can read IDL and Matlab data. It

requires the NumPy, SciPy, Matplotlib, IPython, SymPy, and

Pandas packages. SciPy provides algorithm and data structure

support for a variety of science domains.

3.4.13 SpacePy: spacepy.github.io
The primary SpacePy data object is SpaceData and also has

the dmarray class that is equivalent to NumPy arrays plus

attributes. Supported file formats include CDF and HDF.

SpacePy is NumPy-compatible. Future versions of SpacePy

intend to use CDF as the primary internal datatype instead of

SpaceData. SpacePy is a data anlysis, modeling and visualization

package for space science.

3.4.14 SunPy (docs.sunpy.org)
The primary SunPy data objects are Map and TimeSeries.

Supported file formats include FITS, but they recommend using

the AstroPy FITS reader as it is more robust. Internal data is primary

a wrapper around the Pandas DataFrame and NumPy ndarray.

SunPy is an open source solar data analysis environment.

3.4.15 Xarray: xarray.pydata.org
The primary Xarray data object is the xarray, and Pandas

DataFrame and NumPy ndarray are also supported. Supported

file formats include CDF, NetCDF, HDF5, CSV and Zarr.

3.4.16 PySat (github.com/pysat)
The primary PySat data object is the xarray. Supported file

formats include NetCDF3, NetCDF4 and HDF5. PySat is

intended to provide an extensible framework for data sources

from satellite instruments and constellations.

4 Discussion

Most languages suppx`ort heliophysics core datafile formats,

but are not necessarily S3-aware. The 0th-level solution of “copy

files from S3 to local storage” is always a fallback option, but we

recommend resources be put into adding and improving17 https://cdaweb.gsfc.nasa.gov/WebServices/REST/py/FAQ.html.

Frontiers in Astronomy and Space Sciences frontiersin.org08

Antunes et al. 10.3389/fspas.2022.1006839

http://astropy.org
http://cdaweb.gsfc.nasa.gov
http://github.com/MAVENSDC/cdflib
http://hapi-server.org
http://h5py.org
http://heliopy.org
http://unidata.github.io/netcdf4-python/
http://unidata.github.io/netcdf4-python/
http://numpy.org
http://pandas.pydata.org
http://pytables.org
http://scipy.org
http://spacepy.github.io
http://docs.sunpy.org
http://xarray.pydata.org
http://github.com/pysat
https://cdaweb.gsfc.nasa.gov/WebServices/REST/py/FAQ.html
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1006839


S3 capabilities in libraries as this is generally not difficult (relies

on existing external libraries and drivers) and benefits the

community. Python has strong support for the major datafile

formats both in S3 and local storage as a language, but no single

package supports all the formats. For the major three formats of

FITS, CDF, and NetCDF/HDF5, Python does support direct

S3 reads, with overall good performance statistics.

For archives looking at reformatting existing data, L1/L2 bulk file

convert should be tested, and is not usually recommended because

the file size and performance gains are frequently marginal and

occasionally detrimental. Analysis, model and ML-ready data set

creation (L3/L4 data sets) should look into HDF5 because of its

support and cross-compatibility across a variety of languages. As a

side note, we notice theML community L3/L4 data sets are currently

a mix of “tools to make ML streams” and “L4 ML-ready data sets”.

Python supports S3 for the major file/data types, but there are

idiosyncrasies across packages. In addition,Python+S3 is a dominant

cloud architecture, but we note the community wants the user

experience and UI to be more like their native tools. For specific

Cloud and ML use cases, the trade-off between S3 access methods of

“read into memory” (fast, resource-heavy) and “read chunks as

needed from S3” (slow but resource-light) means use of High

Performance Computing (HPC) tasks with S3 need to be diligent

in tracking their disk and memory architecture for their specific task.

While there is no “one size fits all” approach to using S3 for

heliophysics, there are also no impediments to using S3 and

Cloud within Python in the current state of the art of the Python

heliophysics ecosphere18.

Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found below: https://git.mysmce.com/heliocloud/

cloud-tutorials/-/blob/master/S3_all_tests.ipynb.

Author contributions

AA and EW carried out the bulk of the analysis, while JB, BT,

and JDV provided infrastructure and analysis support.

Funding

This project was supported under the NASA/Goddard Space

Flight Center award AD-79106 “Enhancing Science Analysis

with Cloud-Based Tools and Frameworks”. This work was

enabled by the NASA GSFC HelioCloud environment.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the

editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the

publisher.

References

Burrell, A. G., Halford, A., Klenzing, J., Stoneback, R. A., Morley, S. K., Annex, A.
M., et al. (2018). “Snakes on a spaceship—an overview of Python in heliophysics.”
J. Geophys. Res. Space Phys., vol. 123, no. 12, Dec. 2018. DOI.org (Crossref), doi:10.
1029/2018JA025877

Greenfield, P., Droettboom, M., and Bray, E. (2015). Asdf: A new data format for
astronomy. Astronomy Comput. 12, 240–251. Astronomy and Computing. doi:10.
1016/j.ascom.2015.06.004

Hassell, D., Gregory, J., Blower, J., Bryan, N. L, and Karl, E. T. (2017). “A
data model of the climate and forecast metadata conventions (CF-1.6) with a
software implementation (Cf-Python v2.1).” Geosci. Model Dev., vol. 10, no.
12, Dec.2017, pp. 4619–4646. DOI.org (Crossref), doi:10.5194/gmd-10-4619-
2017

Lynnes, C., Quinn, P., Durbin, C., and Shum, D. (2020). Cloud optimized data
formats. Comm. Earth Observing Satell. Meet. #4.

NASA/GSFC (2022). The HelioCloud Project [cloud environment] Available at:
https://heliocloud.org.

Price, D. C., Barsdell, B., and Greenhill, L. (2015). Hdfits: Porting the FITS data model
to HDF5. Astronomy Comput. 12, 212–220. arXiv.org. doi:10.1016/j.ascom.2015.05.001

SPDF Filenaming recommendations. Available at: https://spdf.gsfc.nasa.gov/
guidelines/filenaming_recommendations.html.

Zaitsev, I. “The best format to save pandas data.” Medium, 29 Mar. 2019,
Available at: https://towardsdatascience.com/the-best-format-to-save-pandas-
data-414dca023e0d

18 http://heliocloud.org/.

Frontiers in Astronomy and Space Sciences frontiersin.org09

Antunes et al. 10.3389/fspas.2022.1006839

https://git.mysmce.com/heliocloud/cloud-tutorials/-/blob/master/S3_all_tests.ipynb
https://git.mysmce.com/heliocloud/cloud-tutorials/-/blob/master/S3_all_tests.ipynb
https://doi.org/10.1029/2018JA025877
https://doi.org/10.1029/2018JA025877
https://doi.org/10.1016/j.ascom.2015.06.004
https://doi.org/10.1016/j.ascom.2015.06.004
https://doi.org/10.5194/gmd-10-4619-2017
https://doi.org/10.5194/gmd-10-4619-2017
https://heliocloud.org
https://doi.org/10.1016/j.ascom.2015.05.001
https://spdf.gsfc.nasa.gov/guidelines/filenaming_recommendations.html
https://spdf.gsfc.nasa.gov/guidelines/filenaming_recommendations.html
https://towardsdatascience.com/the-best-format-to-save-pandas-data-414dca023e0d
https://towardsdatascience.com/the-best-format-to-save-pandas-data-414dca023e0d
http://heliocloud.org/
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1006839

	Profiling heliophysics data in the pythonic cloud
	1 Introduction
	2 Materials and methods
	2.1 File types
	2.2 Support examples in AWS
	2.2.1 FITS
	2.2.2 CDF
	2.2.3 NetCDF/HDF5


	3 Results
	3.1 File types
	3.2 File performance in python
	3.3 Native python support
	3.4 Python packages
	3.4.1 AstroPy (astropy.org)
	3.4.2 Cdaswd library (cdaweb.gsfc.nasa.gov
	3.4.3 csv (built into python)
	3.4.4 Cdflib (github.com/MAVENSDC/cdflib)
	3.4.5 HAPI, hapi-server.org
	3.4.6 HDF5 (h5py.org)
	3.4.7 HelioPy (heliopy.org, no longer supported as of 2022)
	3.4.8 netCDF4 (unidata.github.io/netcdf4-python/)
	3.4.9 NumPy, numpy.org
	3.4.10 Pandas (pandas.pydata.org)
	3.4.11 PyTables, pytables.org
	3.4.12 SciPy: scipy.org
	3.4.13 SpacePy: spacepy.github.io
	3.4.14 SunPy (docs.sunpy.org)
	3.4.15 Xarray: xarray.pydata.org
	3.4.16 PySat (github.com/pysat)


	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


