
How to Live on Mars With a Proper
Circadian Clock?
Rujia Luo, Yutao Huang, Huan Ma and Jinhu Guo*

Key Laboratory of Gene Engineering of theMinistry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun
Yat-sen University, Guangzhou, China

Intrinsic circadian clocks generate circadian rhythms of physiology and behavior, which
provide the capabilities to adapt to cycling environmental cues that result from the self-
rotation of the Earth. Circadian misalignment leads to deleterious impacts on adaptation
and health in different organisms. The environmental cues on the interplanetary journey to
and on Mars dramatically differ from those on Earth. These differences impose numerous
adaptive challenges, including challenges for humans’ circadian clock. Thus, adaptation of
circadian rhythms to the Martian environment is a prerequisite for future landing and
dwelling on Mars. Here, we review the progress of studies associated with the influence of
the Martian environment on circadian rhythms and propose directions for further study and
potential strategies to improve the adaptation of the circadian clock for future Mars
missions.
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INTRODUCTION

Human factors determine the success or failure of a space mission (Oluwafemi et al., 2021). Manned
space exploration creates many physiological challenges for astronauts (Kandarpa et al., 2019;
Garrett-Bakelman et al., 2019). Astronauts encounter a variety of environmental factors that are
dramatically different from the Earth’s surface during the journey to and from and after dwelling on
the Moon or Mars.

After humans landed on the Moon more than half a century ago, the next objective is to land on
Mars. Mars is a red planet with a mean radius of 0.53 that of Earth and possesses the most similar
environment to Earth among the solar planets. Mars is also the most likely planet to find
extraterrestrial life and is the most habitable for humans (Levchenko et al., 2018). The average
distance between Earth andMars is 54.6 million kilometers, and a to and from journey between Earth
and Mars would last more than 500 days (Tafforin, 2015). To date, the space agencies of the US and
China have proposed plans for manned Mars exploration (Parihar et al., 2015; China Global
Television Network, 2021). To live on Mars, artificial ecosystems must be established, and other
organisms must be transported from Earth, including crops and animals, as food sources. For
instance, in the Controlled Ecological Life Support System (CELSS) experiment, volunteers in a
simulated cabin cultured crops such as zophobas, spirulina, maize, potato, sweet potato, other
vegetables, and fruits (Tong, 2018). After landing on Mars, the survival and adaptation of these
species will be critical issues.

Altered circadian rhythms in many other species have also been observed in space conditions
(Mergenhagen and Mergenhagen, 1989; Hoban-Higgins et al., 2003; Sulzman et al., 1984; Wang
et al., 2014; Guo et al., 2014). The circadian rhythms of Earthly organisms will be subject to change to
a number of environmental cues on Mars and during the journey, including light, radiation, gravity,
magnetic field, isolation, and confinement. As noted by Barger et al., “Clearly, without appropriate
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circadian rhythm and fatigue management countermeasures,
maintaining daily life on the Mars day presents a significant
challenge” (Barger et al., 2012).

CIRCADIAN RHYTHMS AND
ENTRAINMENT

Circadian rhythms of numerous physiological and behavioral
variables, e.g., locomotor activity, growth, body temperature,
photosynthesis, hormone secretion, and oxygen consumption,
have been documented across kingdoms. Circadian rhythms are
generated and controlled by endogenous circadian clocks. In
higher animals, circadian clocks constitute pacemakers as
central oscillators and peripheral oscillators (Bliss and
Heppner, 1976). In humans, suprachiasmatic nuclei (SCN) are
the pacemakers that orchestrate circadian rhythms of the
remaining peripheral tissues (Welsh et al., 2010).

At the molecular level, eukaryotic circadian clock systems
consist of positive and negative elements that form the
transcription-translational feedback loop (TTFL). Basically, in
TTFL the positive elements function as transcription factors
(TFs) binding to the promoter regions of the negative elements
to trigger the transcription of the latter; the transcribed and
translated proteins act as negative elements to repress the
capability of the positive elements as TFs (Bell-Pedersen et al.,
2005; Zhang et al., 2011) (Figure 1). The circadian clock genes
between animals, such as fruit flies and mammals, have certain

homology. In contrast, there is no significant conservation between
the clock counterparts in bacteria, fungi, plants, and animals
(Figure 1). However, the regulatory mechanisms are highly
conserved across kingdoms. In addition to TTFL, multiple
regulatory layers are involved in the regulation of circadian
clock gene expression and function, including at epigenetic,
post-transcriptional and post-translational levels (Gallego and
Virshup, 2007; Doherty and Kay, 2010; Hirano et al., 2016;
Proietto et al., 2015; Hurley et al., 2016).

In prokaryotes, Cyanobacteria Synechococcus elongatus is one
of the few species that have been found to possess an endogenous
circadian clock. In S. elongatus, the core circadian clock protein
KaiABC can dynamically interact and generate oscillations of
phosphorylation changes in the KaiC protein. In addition,
transcriptional regulation and KaiABC oscillation promote the
circadian robustness of each other reciprocally under different
growth conditions (Zwicker et al., 2010).

Circadian clocks endow the capabilities (also called fitness) to
adapt to cycling environments. Consequently, circadian
misalignment leads to comprehensive negative effects on
physiology, psychology and behavior. Organisms show the
highest adaptability to the environment when the periods of
their endogenous circadian clocks are the closest to the
environmental cycling periods (Ouyang et al., 1998; Woelfle
et al., 2004; Johnson 2005; Sharma 2003). The free running
period (FRP) of humans is approximately 24.9 h (Miles et al.,
1977). Forced desynchronization under short light-dark (LD)
cycles has also been used to measure the length of FRP, and the

FIGURE 1 | The molecular control of circadian clock systems. The negative and positive elements of circadian clock factors in representative models are depicted,
and bacteria (S. elongatus), fungi (N. crassa), plants (A. thaliana), insects (D. melanogaster), and mammals (Mus musculus) are depicted (Bell-Pedersen et al., 2005;
Doherty and Kay, 2010; Zhang et al., 2011). Environmental cues that dramatically differ from those on Earth are presented. Note that in this figure, cognition refers to
animals only and performance refers to humans only. Isolation and confinement apply to animals and humans.
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result is approximately 24.2 h (Czeisler et al., 1999; Duffy et al.,
2011). However, short LD cyclesmay add superimposed impacts on
the endogenous circadian system. In the entrainment range, a
circadian rhythm can be aligned with the period of the cycling
environmental cue. Environmental cues, including natural factors
(e.g., light, temperature, gravity, magnetic field, sound, atmospheric
pressure) and social factors (e.g., exercise, social interaction,
interspecies interaction), are termed zeitgeber (German) or time
givers (Figure 1) (Honma and Honma, 2001). The entrainment
ranges differ for different organisms and different physiological or
behavioral variables may exist in the same species (Guo et al., 2020).

Desynchronization of circadian rhythms in ambient
environments with periods beyond the entrainment ranges
causes decreased adaptation, competence, fitness, growth rate,
fertility, and shortened lifespan (López-Otín and Kroemer, 2021;
Allada and Bass, 2021; Sharma, 2003; Pittendrigh and Minis,
1972; Mormont et al., 2000). Circadian rhythm is a hallmark of
human health (López-Otín and Kroemer, 2021), and circadian
misalignment accounts for a variety of diseases, impaired mood
(e.g., depression), decreased cognition and performance (Woller
and Gonze, 2021; Ma et al., 2019; Guo et al., 2020; Bechtold et al.,
2010; Mallis and DeRoshia, 2005). A circadian rhythm with less
robust rhythmicity usually possesses a wider entrainment range.
The locomotor rhythmicity of Clock mutant mice could be
aligned with LD28 and LD32 compared to wild type, which
only adapts to the LD24 regimen (Udo et al., 2004; Erzberger
et al., 2013). However, a more robust circadian rhythm shows
higher adaptability under LD24 (Solovev et al., 2019).

DIFFERENT ENVIRONMENTAL CUES ON
MARS AND THEIR EFFECTS ON
CIRCADIAN RHYTHMS
Light Conditions and Day Length
Light is the strongest zeitgeber to entrain circadian rhythms in
most species. However, Mars and Earth have dramatically
different light conditions, e.g., light intensity, light spectrum,
and solar day-night cycling period (Mcphee and Charles,
2009). These factors make circadian adaptation more complex
to achieve and results in negative effects on humans and other
Earthly organisms to visit and live on Mars.

Light Intensity and Spectrum on Mars
Blue light at approximately 460 nm is the most effective at
entraining circadian rhythms in many organisms, e.g.,
Cyanobacteria, Neurospora crassa, Arabidopsis thaliana,
Drosophila melanogaster, and mammals, including humans. In
addition, red light modulates cyanobacteria and the plant
circadian clock (Cashmore et al., 1999; McClung, 2006; Linden
2002; Mullineaux, 2001). Regarding light intensity, only bright
white light (over 2,500 lux) appears to be a sufficiently effective
circadian zeitgeber in humans (Broadway et al., 1987). However,
the sky radiant energy density on Mars is about 43% (1.5 in
Wm−2μm−1 sr−1–10.2 in Wm−2μm−1 sr−1) of that on Earth,
which is due to the distance from the sun, dust in the air, season,
and weather (Moores et al., 2007; Whiteway et al., 2008; National

Aeronautics and Space Administration (NASA), 2020). Although
the intrinsic period of the human circadian clock is ∼25 h, under
weak lighting conditions, the rhythms of the activity–rest cycle
and melatonin could only be entrained to a period of 24 h but not
23.5 h or 24.6 h (Wright et al., 2001).

The light spectrum on Mars is also dramatically different.
With an atmosphere rich in dust particles, blue light is
preferentially absorbed, and as a result, the sky looks redder
(chromaticity of x � 0.35, y � 0.34 standard deviations of σx � 0.01
and σy � 0.02) than that on Earth by δx � 0.04 and δy � 0.01
(Maki et al., 1999; Maki et al., 2021; Selsis et al., 2008), which is
adverse for maintaining circadian rhythms in many Earth
organisms. In addition to the circadian system, light
parameters are crucial for many other physiological processes,
and light intensity, light-dark ratio, and dark length are
determinants for growth, development and reproduction
(Saunders, 1982; Bennie et al., 2016; Irwin, 2018).

Martian Day Length
The solar day length of Mars is 24 h 39min and 35 s (∼24.65 h),
which is the closest to that of Earth among the solar planets or
satellites. Repeated failure to enter this period will result in
circadian desynchrony and survival for Earthly organisms and,
consequently, disrupted sleep, impaired cognition and decision-
making, and poor performance for animals and humans. During
the Mars Pathfinder and Mars MER missions, ground mission
control personnel were required to work on aMars day schedule to
interact with the spacecraft. They found it challenging to
continuously stay on the 24.65 h period which led to increased
fatigue, sleepiness, and irritability, and decreased concentration
and energy. During the nearly 3-months Mars Pathfinder Mission,
the Sojourner Rover supporting personnel abandoned the Mars
day work schedule 1 month after the initiation (Barger et al., 2012).
These data suggest that the Martian daily cycling period is outside
the entrainment range of the human circadian system and that the
circadian rhythms and performance of the personnel living on the
Martian schedule will be impaired.

The 180-days CELSS experiment commenced in June 2016 to
explore physiological, psychological, and behavioral changes
during long-term isolation and exposure to Mars solar days
(Shi et al., 2018; Yang et al., 2021). In the four volunteers of
this experiment, the levels of total protein and globulin
decreased and the bilirubin level increased under the
isolation environment; the levels of total protein and globulin
increased on Day 75 in the Mars solar day period (Chen et al.,
2020). CELSS lasted for 180 days during which the volunteers
lived under a Mars day (24.65 h) during the period from 71 to
107 days. One of the four volunteers wrote a diary every day and
had it published (Tong, 2018). Yang et al. (2021) analyzed the
published diary using a natural language processing tool and
found a decrease in positive emotion during the Mars day period
and an increased ratio of diaries with lower positive scores than
average, although these changes were not significant. This single
case report suggests that psychological changes may occur due
to misalignment with the Mars day schedule. Comprehensive
evaluation of the changes in physiological and behavioral
rhythms under a simulated Martian daily period is necessary,
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as desynchronization between different rhythms may occur
under a non-24 h environmental period.

Microgravity and Low Gravity
Gravity is almost zero during orbital flight or on the journey to
and from Mars. The gravity on Mars is 3.711 m/s2, which is
approximately 38% of the gravity on Earth (9.807 m/s2) (Heer
et al., 2000). Microgravity has been shown to induce changes in
circadian rhythms in many tested organisms (Sulzman et al.,
1984; Hoban-Higgins et al., 2003; Wang et al., 2014; Guo et al.,
2014; Holley et al., 2003). Chlamydomonas reinhardii displayed
an increased amplitude of photoaccumulation rhythm under
microgravity (Mergenhagen and Mergenhagen, 1989). Desert
beetles showed differential locomotor periods and activity
patterns in constant light and constant dark under
microgravity or hypergravity (Hoban-Higgins et al., 2003).

For humans and animals, exposure to low gravity causes shifts in
body fluids, space motion sickness, atrophy, bone demineralization
and mass loss, immune system deregulation and disruption of
senses (Bettiol et al., 2018). Circadian rhythms, including body
temperature, sleep-wake cycle, cardiovascular variables, locomotor
activity, affected cognition and performance of astronauts, are
prone to change under microgravity (Pavy Le-Traon and
Roussel, 1993; Flynn-Evans et al., 2016; Mallis and DeRoshia,
2005; Guo et al., 2014; Ma et al., 2015; Garrett-Bakelman et al.,
2019; Zhang et al., 2021). RNA-sequencing data from the NASA
GeneLab space mission revealed that clock gene expression in
spaceflight mice revealed an expression pattern different from
the ground control, and spaceflight promoted asynchrony of
gene expression of circadian clock genes between peripheral
tissues. Genes showing altered circadian expression are
associated with jet lag, sleep disorder, cancer, lifestyle-related
diseases, and mental disorders (Fujita et al., 2020).

Microorganisms in space are prone to changes in their
metabolism, antibiotic efficacy, pathogenicity and virulence
and exhibit increased virulence, enhanced formation of
biofilms, or development of resistance to specific antibiotics
(Green et al., 2021; Gilbert et al., 2020; Huang et al., 2018;
Klaus and Howard et al., 2006; Bijlani et al., 2021). Immune
cell stimulation, Toll-like receptors and pathogen-associated
molecular patterns can be altered in microgravity, which
affects immunological crosstalk and response. As a
consequence, immune dysfunction caused by exposure to
microgravity may increase the chance of bacterial infection
(Krieger et al., 2021; Gertz et al., 2020; ElGindi et al., 2021;
Wilson et al., 2007). As the circadian clock extensively regulates
immunity, it is likely to be implicated or relayed in the alteration
of immunity in space (Scheiermann et al., 2013).

Low Magnetic Field
Organisms living on Earth are under the influence of Earth’s
magnetic field, which affects development, metabolism, and
information processing in their daily lives (Lindauer and
Martin, 1985). The magnetic field has been linked to the
circadian system, although the effects and mechanisms remain
largely vague (Lewczuk et al., 2014). Small changes in Earth’s
magnetic field result in modified circadian rhythms in fiddler

crabs and other organisms (Brown et al., 1964; Bliss and Heppner,
1976). The orientation and navigation of many organisms is
closely associated with the circadian clock, and the orientation
may differentially rely on celestial bodies, meteorological
variables, geomagnetism and intrinsic factors (Borgioli et al.,
1999). Circadian clock-dependent orientation was altered in
sparrows (Passer domesticus) under a zero magnetic field (Bliss
and Heppner, 1976). The orientation of Dugesia and Nassarius
showed circalunar rhythmicity, which could be modified by
changing the direction or strength of the magnetic field
(Brown et al., 1970; Bitz and Sargent, 1974). The
magnetoreceptor is located in the abdomen of honey bees.
Inconsistent results were reported regarding the effects of a
magnetic field on the circadian rhythm of honey bees; one
found no influence, and the other found that a strong
magnetic field led to changes in the circadian rhythms (Gould
et al., 1978; Neumann, 1988). The effects of magnetic fields on
circadian rhythms are not aligned for all organisms; for instance,
no significant effects were found in the filamentous fungus
Neurospora (Bitz and Sargent, 1974).

Melatonin is a hormone synthesized in a circadian fashion in
the pineal glands of vertebrates, including humans, that regulates
sleep, circadian rhythm, and antioxidation (Turek and Gillette,
2004). In the pied flycatcher, melatonin synthesis was significantly
repressed in a changed magnetic field (Schneider et al., 1994). The
spiking of guinea pig pineal cells was changed by altering the
magnetic field at the Earth-strength level (Semm et al., 1980),
suggesting that the magnetic field affects circadian rhythms at
physiological and tissue levels. The melatonin of a migratory bird,
the pied flycatcher, exhibits a circadian rhythm that can be
modified by an artificial magnetic field (Schneider et al., 1994).

At the molecular level, CRY1 determines magnetosensitivity,
which is dependent on light but independent of the circadian clock
(Gegear et al., 2008). A near null magnetic field (NNMF) caused
changes in circadian clock genes (LHY, PRR7, and GI) in
Arabidopsis (Agliassa and Maffei, 2019). CRY1 shows promoted
phosphorylation, which may be associated with Arabidopsis
seedling growth in a 500 μT magnetic field under pulsed light
(Hammad et al., 2020). In Drosophila, putative magnetoreceptor
(MagR)/CG8198, which is a homolog of the bacterial iron-sulfur
cluster assembly IscA1, binds with the CRY1 protein, a highly
conserved blue light-absorbing flavoprotein involved in the
positive elements of circadian circuits. This Cry/MagR complex
displays an intrinsic magnetic moment, suggesting that it is a
Drosophila putative magnetosensor (Qin et al., 2016; Wan et al.,
2021). On the other hand, an altered magnetic field elicits changed
expression of circadian clock genes. Mouse SCN slices expressing
PERIOD2:LUCIFERASE were exposed to MS consisting of a 50-
mT field, and the amplitude and period of the luciferase rhythms
were differentially affected at different circadian time points
(Kassahun et al., 2020). These data demonstrate that magnetic
fields exert influences on circadian rhythms.

Mars has a crustal magnetic field magnetized by an ancient
global dynamo field ∼4 Ga ago; however, it does not have a global
dipole magnetic field like Earth. The dipole core field at the
surface is weaker than the present core field at the surface of the
Earth (Mittelholz et al., 2018; Stevenson, 2001). These differences

Frontiers in Astronomy and Space Sciences | www.frontiersin.org January 2022 | Volume 8 | Article 7969434

Luo et al. The Circadian Rhythms on Mars

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


in the Mars magnetic field will exert influences on the circadian
rhythms of Earth emigrants.

Exposure to Exceptional Radiation
Regarding the surface radiation of Earth, species are primarily
exposed to low linear energy transfer (LET) photon radiation
(i.e., X-rays and γ-rays with LET values of <10 keV/μm). In
contrast, space radiation comprises electrons, protons (hydrogen
nuclei), neutrons, alpha particles (helium nuclei) and heavy nuclei
with very high energies (high charge and energy particles) and LET
values of >10 keV/μm (Mishra and Luderer, 2019). In
interplanetary space, the primary components of the
radiation field comprise galactic cosmic rays (GCRs) and
solar cosmic radiation. The journey to Mars is beyond the
protective magnetosphere of the Earth, and the long period
increases the exposure of astronauts to the spectrum of galactic
cosmic rays (GCRs), which are low fluence but highly energetic and
fully ionized nuclei (Hellweg and Baumstark-Khan, 2007; Parihar
et al., 2015). During interplanetary travel, astronauts will be
exposed to radiation belts containing charged particles trapped
by the planet magnetic field. The estimated cumulative dose of
radiation from a 3-years-long Mars mission is 0.4 Gy (Cucinotta
and Durante, 2006). Owing to the lack of protection by the
magnetosphere and the loss of atmosphere, the radiation is
much higher on the surface of Mars than on Earth, which
imposes many hazards on human health. Radiation on Mars
and on the journey has been considered the most critical issue
for long-term spacemissions (Hellweg and Baumstark-Khan, 2007;
McPhee and Charles, 2009).

One essential hypothesis of circadian adaptive advantage is
“escape from light” (Ditty et al., 2009), suggesting that circadian
rhythms are protective against radiation damage. Gamma
radiation has been demonstrated to affect the circadian patterns
of mouse activity and potato O2 consumption (Brown et al., 1970).
In addition to dictating circadian rhythm, circadian clock genes
play a role in regulating cell division and tumorigenesis. Multiple
circadian components have been implicated in the defense against
radiation hazards. PER2 regulates the expression of a series of genes
associatedwith the cell cycle and tumor suppression. Fu et al. found
that after gamma radiation, Per2 mutation resulted in a marked
increase in tumor development and reduced apoptosis in
thymocytes compared to control mice (Fu et al., 2002). PER1
modulates the expression of key cell cycle regulators that sensitize
human cancer cells to DNA damage-induced apoptosis. PER1
interacts with the checkpoint proteins ATM and checkpoint kinase
2 (CHK2). Abnormal expression of Per1 resulted in disturbed
apoptosis induced by DNA damage or radiation (Gery et al., 2006;
Zhu et al., 2019). CHK2 is a key component of the DNA damage
response that links DNA damage–activated kinases with
checkpoint effectors in the cell cycle and DNA repair
machinery, and its expression is under circadian control.
Neurospora PRD4, the homolog of CHK2, consistently interacts
with FRQ, the counterpart of the negative element circadian clock
in Neurospora. DNA damage induced by radiation resets the
circadian clock in a CHK2-dependent fashion (Pregueiro et al.,
2006). Based on these findings, maintenance of circadian rhythms
may help alleviate radiation hazards.

Isolation and Confinement
During the long-distance interplanetary journey between Mars
and Earth, astronauts will encounter long-term isolation and
confinement (Oluwafemi et al., 2021). After the astronauts reach
Mars and live there, they will spend most of their time in a closed
ecological facility. The negative consequences of isolation
comprise decrements in mood, sleep deprivation, problems in
concentration, and interpersonal tensions (Tafforin, 2015).

Isolation and confinement impose effects on circadian
rhythms and sleep. Wrist actigraph records indicated that
weightlessness simulated by head-down bed rest led to
decreased activity, which was immediately recovered after bed
rest (Liang et al., 2014). During the Mars500 project, which is a
simulation of manned flight to Mars, the volunteers displayed
increased sleep and rest times across the mission until the last
2 months (Basner et al., 2013), reflecting the effects of simulated
isolation on sleep-wake dynamics.

Similar experiments or trainings include the Isolation Study
for European Manned Space Infrastructure (ISEMSI),
Experimental campaign for European Manned Space
Infrastructure (EXEMSI), Human Behavior in Extended Space
flight (HUBES), Simulation of Flight International Crew on Space
Station (SFINCSS) and programs conducted at the FlashlineMars
Arctic Research Station (Tafforin 2015).

Social and Interspecies Interaction
Psychological challenges, including crew interaction, must also be
considered (Oluwafemi et al., 2021; Dietrich 2004; Kanas et al.,
2000). Social interaction has been shown to affect circadian
rhythms in a variety of species, including rodents, roosters,
Drosophila, and cave glowworms (Levine et al., 2002; Shimmura
et al., 2015; Maynard and Merritt 2013; Oluwafemi et al., 2021).
Interspecies interactions also contribute to circadian modification.
Reciprocal influences exist extensively between some symbiotic
species, and the circadian rhythms of the hosts are modulated by
symbionts, such as the bobtail squid Euprymna scolopes and its
luminous symbiont Vibrio fischeri (Heath-Heckman et al., 2013)
andConvoluta roscoffensis and its symbiont green alga living inside
the worm (Palmer, 2002). Here, we refer to social interaction as not
only the interaction between human individuals but also the
interaction between humans and other species.

Abundant microorganisms colonize the human body,
including mucosal and skin environments, which is closely
associated with human physiology and health. A prevalent
proportion of the human microbiota displays a diurnal
oscillatory pattern in its abundance (Ma et al., 2019; Collado
et al., 2018; Thaiss et al., 2014). Furthermore, the symbiosis
between the host and gut microbiota plays a critical role in
maintaining the homeostasis of the host and dysbiosis of
microbiota, which accounts for immune dysregulation and an
impaired digestive system and metabolism (Knight and Girling,
2003; Thaiss et al., 2014). Symbiotic microbiota functions to
bridge circadian rhythms with diverse effects, including
development immunity and metabolism (Brooks et al., 2021;
Kuang et al., 2019; Thaiss et al., 2014; Ma et al., 2019; Collado
et al., 2018). Much evidence has revealed that space environment
factors or analog conditions (e.g., microgravity, radiation, low
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fluid shear, and diet) cause altered composition of gut microbiota
(Siddiqui et al., 2021; Acres et al., 2021; Cervantes and Hong,
2016; Saei and Barzegari et al., 2012; Li et al., 2015; Jiang et al.,
2019). Improving the balance of symbiotic microbiota and the
association between the circadian clock and microbiota in space
remain areas to be further investigated.

Temperature is also a critical circadian zeitgeber as periodic
temperature change can reset the phase and amplitude of
circadian rhythm in many species (Rensing and Ruoff, 2002).
However, to survive on Mars we have to maintain a similar
ambient temperature region in the habitats to that on Earth.
Atmospheric pressure, has also been demonstrated to affect
circadian rhythms, for instance, the phosphorylation rhythms
of KaiC protein in Cyanobateria (Kitahara et al., 2019), however,
the study on this issue is very limited. Therefore, the potential
effects of these two factors are not discussed in this review.

COUNTERMEASURES TO IMPROVE
CIRCADIAN RHYTHMS UNDER MARTIAN
CONDITIONS
Regardless of whether we are still living on Earth, some pilot studies
have been carried out to assess potential countermeasures against
circadianmisalignment onMars. To date, light is the only approach
used as a countermeasure in almost all of the available reports. In
the Phoenix Mars Lander (PML) mission, the personnel worked on
a Mars day (24.65 h) for 78 days with additional manual
illumination (0–4,000 lux) when at work as a countermeasure.
However, the daily sleep durations were 5.98 ± 0.94 h for those who
showed a synchronized sleep-wake cycle to theMars day and 4.91 ±

1.22 h for those who failed to synchronize their sleep-wake cycles
(Barger et al., 2012). As 7–8 h sleep is critical for sleep duration
(Chen et al., 2020), this data suggests that all of the personnel may
have insufficient sleep (Sgobba and Schlacht, 2018; Flynn-Evans
et al., 2016). Certain human rhythms can be entrained to the
Martian period; for instance, under moderately bright light
(∼450 lux) or with bright light pulses, the sleep-wake cycles of
the volunteers were synchronized with LD24.65 h (Scheer et al.,
2007; Gronfier et al., 2007). However, assessment of the potential
desynchronization between tissues and its physiological and
behavioral consequences is critical since the adaptation of the
sleep-wake cycle does not equal sychronization at other levels.

Candidate organisms to send to Mars could be screened.
Nonhuman species (especially crops) with less robust rhythms
and organisms with longer intrinsic periods might be more likely
to adapt to the Martian environment (Figure 2). For instance,
hydrodictyon shows high plasticity in its circadian period
compared to other organisms (Bünning, 1964), suggesting that
entrainment plasticity is adjustable. It is noteworthy to mention
that despite the entrainment range of the locomotor rhythms, at
the molecular and metabolic levels, they may have much
narrower windows. Altered expression of circadian clock
genes, such as Clock, also extends the entrainment range or
accelerates adaptation to shifted environmental cues (Udo et al.,
2004).

Food and exercise may also be used as countermeasures. Food
is effective in entraining peripheral circadian clocks (Mendoza,
2007). Exercise also acts as a countermeasure to adjust circadian
rhythm, but its effects are roughly opposite to those of melatonin
according to the PRCs, which has been validated in a long-term
space mission (Mendt et al., 2021). It will be interesting to assess

FIGURE 2 | Martian factors with effects on the circadian clock and strategies for future investigation and improvement of circadian rhythms in representative
species. C. rheinhardi, N. crassa, Arabidopsis, mouse and human are depicted in the central column (Sulzman et al., 1984; Mergenhagen and Mergenhagen, 1989;
Mallis and DeRoshia, 2005; Guo et al., 2014; Ma et al., 2015; Agliassa and Maffei, 2019; Kandarpa et al., 2019; Zhang et al., 2021).
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whether atrophy and osteoporosis can be alleviated by exercise
and whether timing has an influence on exercise effects, as the
physiology and function of muscle and bone metabolism are
under circadian control (Lefta et al., 2011; Zhang et al., 2020;
Mayeuf-Louchart et al., 2015; Song et al., 2018; Swanson et al.,
2018). Exercise affects circadian phase and amplitude with a
roughly reversed PRC pattern to light entrainment (Lewis et al.,
2018; Juhl et al., 2021; Moosavi et al., 2021; Refinetti 2016).
However, the effects of these factors also require further
assessment. In addition, other environmental factors may also
affect circadian rhythms and sleep-wake cycles, for instance, the
continuous and inevitable noise in the spacecraft during extended
interplanetary travel. To this end, the reduction of noise through
technology updates will be the solution.

CONCLUSION AND PROSPECTS

Astronauts and other Earth organisms will encounter many
threats to their circadian rhythms during their travel to or
from Mars and dwelling on Mars. Among the different cues
from Earth, compared to light conditions, the conditions of low
gravity, low magnetic field and stronger radiation are very
challenging to change or overcome. These facts raise the
following question: living on Mars with an Earth circadian
clock or adapting the circadian clock to the Mars
environment, which is more effective? This is not a black-or-
white question; instead, it is a multidimensional question. For
crops, plants, lower animals, and microorganisms, it is possible to
screen those showing better adaptation to the Mars environment.
Nevertheless, this does not apply to humans, at least at the
beginning of Mars exploration, in light of ethics.

Establish an Enclosed Ecosystem to Mimic
Earth Conditions
For humans, in the long future, the practicable strategy is to
establish Earth-like closed ecosystems to shield hazardous cues
and simulate Earth conditions, where most of the time living and
working is spent (Bamsey et al., 2009). For crops, in the short-
term future, people will cultivate crops in greenhouses in which
the conditions are controlled to be similar to those on Earth. This
process consumes a considerable amount of energy while artificial
selection requires a large amount of time.

Select Emigrant Organisms With More
Adaptive Rhythms
For organisms such as crops, farm animals or poultry, those with
periods slightly longer than 24 h, adaptability to low light
intensity and red light, a wide entrainment range or less
robust rhythmicity might be considered prior candidates to
transport to Mars. For the former, it might be easier for them

to adapt to the Mars period; for the latter, arrhythmic organisms
or organisms with less robust rhythms may be more competent
than rhythmic organisms under a cycling environment with a
period far beyond the entrainment range of rhythmic organisms
(Ouyang et al., 1998; Erzberger et al., 2013).

Evolution of Circadian Clock on Mars
In an even longer-term future, the organisms on Mars may not
always live in a closed ecosystem similar to Earth’s environment.
More or less, fast or slow, circadian clocks and other aspects will
start to evolve. We have limited knowledge about the
evolutionary processes of the circadian clock, but further
understanding of the circadian rhythms in caverns or other
special environments may help. Moreover, we may impose
artificial selection pressure to accelerate evolution in crops
(Cavallari et al., 2011; Müller et al., 2016; Arnold et al., 2018;
Lu et al., 2010).

In this article, there is little discussion on circalunar and
circannual rhythms. Organisms on Earth are more or less
modulated by the Moon (Raible et al., 2017). Mars has two
satellites, Phobos and Deimos, suggesting a more complex
influence. In addition, the Mars year is approximately
687 days, nearly double the year length of Earth, which also
challenges Earthly organisms. As the regulation and underlying
mechanisms of circalunar and circannual rhythms of Earth
lives remain less investigated than circadian rhythms, there is
even more research necessary on this topic in regards to live
on Mars.
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