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The Kelvin–Helmholtz (KH) instability of magnetohydrodynamic surface waves at the low
latitude boundary layer is examined using both an eigenfrequency analysis and a time-
dependent wave simulation. The analysis includes the effects of sheared flow and Alfvén
velocity gradient. When the magnetosheath flows are perpendicular to the ambient
magnetic field direction, unstable KH waves that propagate obliquely to the sheared
flow direction occur at the sheared flow surface when the Alfvén Mach number is higher
than an instability threshold. Including a shear transition layer between the magnetosphere
and magnetosheath leads to secondary KH waves (driven by the sheared flow) that are
coupled to the resonant surface Alfvén wave. There are remarkable differences between
the primary and the secondary KH waves, including wave frequency, the growth rate, and
the ratio between the transverse and compressional components. The secondary KH
wave energy is concentrated near the shear Alfvén wave frequency at the magnetosheath
with a lower frequency than the primary KH waves. Although the growth rate of the
secondary KH waves is lower than the primary KH waves, the threshold condition is lower,
so it is expected that these types of waves will dominate at a lower Mach number. Because
the transverse component of the secondary KH waves is stronger than that of the primary
KH waves, more efficient wave energy transfer from the boundary layer to the inner
magnetosphere is also predicted.

Keywords: Kelvin–Helmholtz instability, Alfvén wave, boundary layer, magnetopause, mode conversion, wave
coupling

1 INTRODUCTION

The Kelvin–Helmholtz (KH) instability has been widely investigated in the Earth’s magnetosphere
(Johnson et al., 2014). Unstable KH waves generally occur at the interface between two fluids having
different velocities and are fundamentally important for understanding dynamics within the
boundary layer that develops between the flows. These waves can affect the exchange of mass,
momentum, and energy across those boundaries (e.g., Miura, 1984; Thomas andWinske, 1993; Otto
and Fairfield, 2000; Nykyri and Otto, 2001; Matsumoto and Hoshino, 2006; Cowee et al., 2010;
Hwang et al., 2011; Nakamura et al., 2011; Moore et al., 2016; Nykyri et al., 2017; Johnson et al.,
2021). Mass transport due to KH instability can result from diffusion through thin boundaries
created by the instability (e.g., Nakamura et al., 2017) and/or as the result of secondary reconnection
(e.g., Otto and Nykyri, 2003; Ma et al., 2017) which results in more effective transport (Ma et al.,
2019). Cross-scale energy transport associated with the KH instability may result from the generation
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of plasma waves leading to both ion and electron heating
(Johnson and Cheng, 2001; Chaston et al., 2007; Moore et al.,
2017; Nykyri et al., 2021a; Nykyri et al., 2021b; Delamere et al.,
2021). The KH waves are also critical to the interaction between
the solar wind and other planetary magnetospheres (McComas
and Bagenal, 2008; Delamere and Bagenal, 2010; Delamere et al.,
2021).

KHwaves are surface waves because they are localized near the
interface and exponentially decay away from the interface (e.g.,
Southwood, 1968; Pu and Kivelson, 1983). However, because the
wave number is relatively small, the wave energy can still
penetrate into the plasma sheet and/or the inner
magnetosphere (e.g., Pu and Kivelson, 1983) and play a role in
the generation of geomagnetic pulsations andmode conversion to
the shear Alfvén waves (e.g., Chen and Hasegawa, 1974;
Engebretson et al., 1998).

The magnetopause boundary is often assumed for simplicity
to have zero thickness (Pu and Kivelson, 1983; Mills and
Wright, 1999; Turkakin et al., 2013), and this assumption is
valid for waves with wavelengths longer than the thickness of
the boundary layer. When the shear velocity and the Alfvén
speed jump at the zero-thickness interface, the linear
dispersion relation of KH waves in a slab geometry for an
incompressible plasma can be derived as follows
(Chandrasekhar, 1961):

ω � k · ρmshVmsh + ρmspVmsp( )
ρmsp + ρmsh

± i

��������������������������������������������������
ρ∗

ρmsh + ρmsp

k · Vmsh − Vmsp( )[ ]2 − k · Bmsh( )2 + k · Bmsp( )2
μ0ρ

∗⎛⎝ ⎞⎠√√
,

(1)

where ω and k are a wave frequency and vector, respectively, V
and B are shear flow velocity and magnetic field, ρ and ρ∗ �
ρmshρmsp/(ρmsh + ρmsp) are a mass density and a mean mass
density, respectively, μ0 is the magnetic permeability of free
space, and msp(msh) denotes the magnetosphere
(magnetosheath). When Bmsp � Bmsh and ρmsp � ρmsh, the KH
wave frequency in Equation 1 is reduced to
ω � ωKH0 � 1

2 k · Vmsh. In Equation 1, the KH waves become
unstable when

k · Vmsh − Vmsp( )[ ]2 > k · Bmsh( )2 + k · Bmsp( )2[ ]/μ0ρ∗ (2)

is satisfied; and the stability threshold condition (2) may be used
to determine a critical Alfvén Mach number (MAs) above which
the KH wave is unstable.

In addition to the velocity transition at the magnetopause
boundary, there is also a large gradient in the Alfvén velocity,
which is typically wider in extent than the velocity shear layer
(Paschmann et al., 1993). When an Alfvén velocity (VA)
transition layer is included between the magnetosheath and
magnetosphere, it can modify the KH wave properties. Strong
coupling between the Alfvén surface wave and KH surface wave
can result when the frequencies are comparable. This interaction
between the two surface waves can lead to instability at a slower

flow velocity. This new instability has been referred to as the
resonant flow instability (RFI) as it results when Doppler-shifted
compressional waves originating at the velocity interface have
approximately the same frequency as the Alfvén resonance
frequency (Taroyan and Erdélyi, 2003). The RFI includes a
negative absorption of the magnetosonic waves, and it has been
investigated for the solar corona (Tirry et al., 1998; Andries
et al., 2000; Andries and Goossens, 2001; Taroyan and
Ruderman, 2011; Antolin and Van Doorsselaere, 2019),
magnetopause (Ruderman and Wright, 1998; Taroyan and
Erdélyi, 2002, 2003), and magnetotail (Turkakin et al., 2014),
respectively. While these works focused on shear in the velocity
along the magnetic field direction, a similar instability can also
result in velocity shear across the magnetic field or for
discontinuous changes in the magnetic field direction at
velocity interfaces. These modes can generally be referred to
as secondary KH instabilities and are characterized by
instability at a slower flow speed than the primary KH
instability with growth occurring in a narrow range of
propagation angle or Mach number (e.g., González and
Gratton, 1994; Taroyan and Erdélyi, 2002; Turkakin et al.,
2013). Turkakin et al. (2013) examined the primary and the
secondary KH waves in the magnetopause and magnetotail
when the magnetic fields in the magnetosheath and
magnetosphere are perpendicular to each other. This mode
may be particularly important during periods of low solar wind
Alfvén Mach number (Lavraud and Borovsky, 2008; Lavraud
et al., 2013; Génot and Lavraud, 2021) as it may be unstable even
when the primary KH mode is stabilized. Although the
(primary) KH wave is considered to be one source of the
field-line resonances, the secondary KH instability is strongly
coupled to the Alfvén waves. While it has been shown that the
secondary KH instability is important in the solar corona, in
this article, we show that the secondary KH waves also appear
when the shear transition layer exists between the
magnetosheath and magnetosphere. Using both eigenmode
analysis and a newly developed time-dependent MHD wave
model, detailed characteristics of the secondary waves are
examined.

This article is structured as follows: in Section 2, the MHD wave
equations are presented. Section 3 describes the dispersion relation
of the KH waves when the zero-thickness interfaces are assumed.
The eigenmode frequency, growth rate, and the KH wave amplitude
ratio are also shown. In Section 4, we introduce a new time-
dependent MHD wave simulation code. The simulation results
are compared with the eigenfrequency analysis from Section 3.
We also discuss the wave coupling between KH and Alfvén waves.
The last section contains a brief discussion and conclusions.

2MHDWAVEEQUATIONS INCOLDPLASMA

In a cold plasma, basic equations of an ideal MHD plasma are

ρ
z

zt
+ V · ∇[ ]V − ]V � 1

μ0
∇ × B( ) × B, (3)

zB
zt

� ∇ × V × B( ), (4)
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where ] is a collisional frequency that is introduced to damp
waves propagating outside the region of interest, which effectively
imposes outgoing boundary conditions. It should be noted that
collisional effects play no role in the stability of the primary or
secondary KH instabilities that we analyze in the rest of this
article.

We assume that a field variable consists of background
equilibrium (0) and small perturbation (1) components (B �
B0 + B1, ρ � ρ0 + ρ1, and V � V0 + V1), and a shear flow (V0(x) �
V0(x)ŷ) and a uniform backgroundmagnetic field (B0 � B0ẑ) lie
in the y- and z-directions, respectively. Then, the perturbed
quantities can be Fourier analyzed in the y- and z-directions
(z/zy→ iky and z/zz→ ik‖, where ky and k‖ are wavenumbers in
the y and field-aligned (z) directions). Thus, the linearized MHD
wave equations are

ρ0
z

zt
+ ikyV0( )V1x + ]V1x � B0

μ0
ik‖B1x − zB1z

zx
( ), (5)

ρ0
z

zt
+ ikyV0( )V1y + ]V1y � B0

μ0
ik‖B1y − ikyB1z( ) − ρ0V1x

zV0

zx
,

(6)

z

zt
+ ikyV0( )B1x � ik‖B0V1x, (7)

z

zt
+ ikyV0( )B1y � ik‖B0V1y + B1x

zV0

zx
, (8)

z

zt
+ ikyV0( )B1z � −ikyB0V1y − B0

zV1x

zx
. (9)

In Section 3, we solve the spectrum of eigenmodes of these
equations in slab geometry, while in Section 4, we solve these
equations using a finite-difference time-domain method.

To proceed with the spectral analysis, we define an auxiliary
set of variables including the fluid displacement (ξ)

V1 ≡
z

zt
+ V0 · ∇( )ξ, (10)

the total pressure perturbation (p), and compressibility (ψ),

p ≡ B0B1z, (11)

ψ ≡ ∇ · V1. (12)

Taking the Fourier transform in time ( z
zt → − iω) and ignoring

the collision term (] → 0), Equations 5–9 become

μ0ρ0 ~ω
2ξx � −iB0k‖B1x + zp

zx
, (13)

μ0ρ0 ~ω
2ξy � −i~ωμ0ρ0ξx

zV0

zx
− iB0k‖B1y + ikyp, (14)

~ωB1x � i~ωB0k‖ξx, (15)

~ωB1y � i~ωB0k‖ξy + iB1x
zV0

zx
, (16)

~ωB1z � −iB0ψ, (17)

where ~ω � ω − kyV0.

Then, Equations 11–17 can be reduced to two coupled first-
order differential equations,

dp

dx
� μ0ρ0 ~ω2 − k2‖V

2
A( )ξx, (18)

μ0ρ0
dξx
dx

� − ~ω2 − k2yV
2
A + k2‖V

2
A

~ω2 − k2‖V
2
A

⎛⎝ ⎞⎠ p

B2
0

. (19)

We solve Equations 18 and 19 to analyze the eigenmode
frequency in Section 3.

3 WAVE DISPERSION RELATION AT THE
PLASMA INTERFACES

Eigenfrequency analysis is performed when the shear transition
layer exists between magnetosheath and magnetosphere. For
calculations, V0 and VA are assumed to vary only in the
direction of the x-axis, as shown in Figure 1A,

V0 x( ) � V0IΘ x( ), (20)

VA x( ) � VAI + VAIII − VAI( )Θ x − d( ), (21)

where Θ(x) � 0(x < 0) or 1(x ≥ 0) is a Heaviside step function.
Figure 1A illustrates the transition from magnetosheath (I)
to magnetosphere (III). The flow is sheared between regions I
and II, while the Alfvén velocity increases between regions II

FIGURE 1 | Illustration of the adopted background plasma profile. We
assume (A) zero and (B) finite boundary width for eigenfrequency analysis and
the numerical simulation, respectively. Regions I and III correspond to the
magnetosheath and magnetosphere, respectively, and region II is the
shear transition layer.
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and III. Region II is the shear layer, which divides the plasma
into two semi-infinite homogeneous regions (I and III)
separated with a width d. It is generally expected that
velocity shear between layers I and II can drive a KH
instability that is localized at this interface, while the
jump in Alfvén velocity between regions II and III
supports surface Alfvén waves satisfying the Alfvén
resonance condition. In the following analysis, we show
how these modes couple when the transitions occur in
close proximity.

The eigenmodes of these equations are localized, so they
must satisfy exponentially decaying boundary conditions in
regions I and III. Moreover, it is also expected that in region
II that the solution decays away from either boundary. As such,
the analytical forms of the solutions in each region J are as
follows:

pJ x( ) � p−
J exp −κJx( ) + p+

J exp κJx( ), (22)

ξxJ x( ) � ξ−xJ exp −κJx( ) + ξ+xJ exp κJx( ), (23)

where ± signs represent waves toward positive or negative
directions in x.

For a surface wave, it is required that
p−
I � p+

III � ξ−xI � ξ+xIII � 0, and ξx and p must be continuous
at each interface; thus, at x � 0

p+
I � p−

II + p+
II, (24)

ξ+xI � ξ−xII + ξ+xII, (25)

and at x � d,

p−
III exp −κIIIx( ) � p−

II exp −κIIx( ) + p+
II exp κIIx( ), (26)

ξ−xIII exp −κIIIx( ) � ξ−xII exp −κIIx( ) + ξ+xII exp κIIx( ). (27)

The wave dispersion relation is obtained by inserting the
solutions into Equations 18 and 19 and noting that for
solutions of the form exp(±κx) that

κp � ∓ μ0ρ0 ~ω2 − k2‖V
2
A( )ξx, (28)

κμ0ρ0ξx � ± ~ω2 − k2yV
2
A + k2‖V

2
A

~ω2 − k2‖V
2
A

⎛⎝ ⎞⎠ p

B2
0

, (29)

and the relationship between p and ξx in each region J � I, II, and
III in Figure 1A becomes

HJξxJ � pJ, (30)

where HJ � μ0ρ0J(~ω2 − k2‖V
2
AJ)/κJ.

From Equations 24–27 and 30, the wave dispersion can be
derived as

D ω, ky, k‖, V0, VA( ) � HI +HII( ) HII +HIII( ) − HI −HII( )
HIIHII( )exp −2κIId( ) � 0.

(31)

The amplitude ratio (Ap) of the magnetic compressional
component (p) between the two interfaces (x � 0 and d) can
also be determined:

Ap ≡
px�d
px�0

� p+
II exp κIId( ) + p−

II exp −κIId( )
p+
II + p−

II

� HIII

HI

H2
I −H2

II

H2
III −H2

II

.

(32)

3.1 Primary and Secondary
Kelvin–Helmholtz Waves
Using Equations 31 and 32, we calculate the eigenfrequency (ω),
growth rate (c), and amplitude ratio between magnetic
compressional component (Ap) for various widths of the shear
transition layer, kyd � 0, 0.25, 0.75, and 2.0, as shown in Figure 2.
For these plots, the plasma densities in region I and region III are
assumed to be N0I � 5 × 106/m3 and N0III � 5 × 105/m3, and the
background magnetic field strength is B0 � 25nT. We also specify
an angle of propagation (ϕ) with respect to the ambient magnetic
field, ϕ � tan−1(ky/k‖) � 80° and

������
k2y + k2‖

√
� π/(2RE). For

complete stability analysis, this angle would be varied to
determine the maximum growth rate for a given Mach
number. The upper panels of Figure 2 are the calculated real
(black and red) and imaginary (blue, growth rate c) frequencies as
functions of the Alfvén Mach number (MA ≡ V0I/VAI), and the
lower panels plot the amplitude ratio Ap of unstable wave modes.

In the absence of the shear transition layer (kyd � 0) as shown
in Figure 2A, forward and backward propagating fast waves,
which have positive and negative frequencies at MA � 0, occur
when MA is small (Taroyan and Erdélyi, 2002). These waves are
stable until MA reaches the threshold of the KH instability,
MAs � tan−1(ϕ) ��������������

2(1 + VAI/VAIII)
√

. For MA > MAs marked as
a gray-shaded region in Figure 2A, the waves develop a complex
frequency and become unstable. For the given range ofMA, ω and
c increase linearly with MA. Because the characteristics of this
wave mode are the same as the typical KH waves (e.g., Johnson
et al., 2014), this wave corresponds to primary KH waves
(hereafter PKHW). In this figure, we also found a shear
Alfvén wave mode at ω � ωAI � k‖VAI. The fast and shear
Alfvén waves cross each other near MA ∼ 0.45, but the
coupling of the two wave modes does not occur.

Introducing a finite width of the shear transition layer
significantly changes the wave dispersion relations. In
Figure 2, the PKHWs also occur for the cases of kyd ≠ 0. The
MA threshold decreases from 0.83 for kyd � 0 to 0.35 for kyd � 2.0.
Overall, the wave frequency ω decreases, while the growth rate c
increases as kyd increases. For example, for MA � 0.85, ω/ωAI �
(4.35, 3.68, 2.95, 2.48) and c/ωAI � (0.35, 1.5, 1.85, 1.89) when
kyd � (0.0, 0.25, 0.75, 2.0). Thus, when a shear transition layer is
included, lower frequency PKHWs are excited with a stronger
growth rate and lower MA threshold.

For kyd � 0.25 in Figure 2B, coupling between the backward
propagating fast and shear Alfvén waves occurs near ω/ωAI ∼ 1,
and unstable waves also appear for 0.355 ≤ MA ≤ 0.47 (shaded
yellow in Figure 2B). These waves correspond to the secondary
KH waves (hereafter SKHW) (Turkakin et al., 2013). In this case,
the SKHWs are clearly separated from the PKHWs and have
lower ω, lower c, and lowerMA threshold than the PKHWs. The
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compressional amplitude ratio (Ap) in the lower panel shows
significant differences between PKHWs and SKHWs; Ap ≪ 1 for
the PKHWs and Ap ∼ 1 for the SKHWs. Therefore, for SKHWs,
the amplitude of the instability is similar at both the V0 and VA

interfaces, indicating a spreading of wave power over a more
extended region, while the PKHWs are localized about the V0

interface. When the Mach number is low, it is expected that only
the SKHWs would be excited.

When the VA interface is further away from the V0 interface
(kyd � 0.75), as shown in Figure 2C, the PKHW and SKHW
modes merge near MA ∼ 0.47. Although ω and c monotonically
increase as a function ofMA, the KH waves have similar behavior
to the SKHW (Ap ∼ 1 and ω ∼ ωAI) at smallerMA and the PKHWs
(Ap < 1 and ω ≫ ωAI) at larger MA. Thus, the waves may still be
divided into the semi-SKHW marked as a light yellow-shaded
region and PKHWmarked as a gray-shaded region in Figure 2C.

For kyd � 2, as shown in Figure 2D, only a single unstable wave
mode corresponding to the PKHWs occurs localized at the V0

interface. The VA profile can be treated as a constant at the V0

interface and theMA threshold becomesMAs ∼ 2 tan−1(ϕ) � 0.359.
The threshold occurs near ω/ωAI ∼ 1; thus, the wave frequencies
are always higher than ωAI.

It is also useful to examine how ω and Ap depend on MA and
kyd. Figure 3A,B shows contour plots of ω normalized to 1) ωKH0

and 2) ωAI, respectively. In this figure, two wave modes are clearly
organized by ranges of MA; the PKHW for MA > 0.47 and the
SKHW for 0.355 ≤ MA ≤ 0.47. Red and magenta lines in

Figure 3A represent the MA threshold for the PKHW and
SKHW, respectively. The MA threshold of the PKHWs
decreases and the upper MA limit of the SKHWs increases as
kyd increases. The thresholds merge near kyd ∼ 0.534 and MA ∼
0.47. Thus, for MA > 0.47, a single wave mode appears (see
Figure 2C); however, wave characteristics at lower and higherMA

are significantly different.
The PKHWs show that all parameters (ω/ωKH0,ω/ωAI, andAp)

have a strong dependence on kyd, and they decrease as kyd
increases. For most MA, ω/ωKH0 ∼ 1 and 1 < ω/ωKH0 < 2.
Because both ω and ωKH0 increase proportionally to MA,
ω/ωKH0 has less dependence on MA. However, because ωAI

does not depend on ky and ω increases as MA increases, ω/ωAI

depends on both MA and kyd. For the given conditions, ω/ωAI is
maximized when kyd is small and MA is large. Figure 3C shows
Ap < 1 for MA ≥ 0.47, except kyd → 0. Thus, it shows that the
PKHWs are almost always dominant at the V0 interface. For
kyd → 0, a strong amplitude of the pressure term occurs at the
secondary interface. However, this increase in Ap is not an
indicator of a separate instability, but rather it simply indicates
that the decay of the wave power from the V0 interface to the VA

interface reduced as the shear layer vanishes.
On the other hand, the eigenmode frequency of the SKHWs is

comparable to ωKH0 and ωAI (0.9 ≤ ω/ωKH0(AI) ≤ 1.2) in the entire
range of kyd and MA because this wave mode appears due to the
coupling between shear Alfvén mode and the fast compressional
waves (thus, ωKH0(AI) ∼ ωAI). For the entire range of kyd, Ap is

FIGURE 2 | (Upper) Normalized eigenfrequencies (ω) and wave growth rate (c) to Alfvén wave frequency at the magnetosheath (ωAI). (Lower) The amplitude ratio
of the magnetic compressional component (Ap) at the two interfaces for kyd � 0, 0.25, 0.75, and 2.0, respectively.
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always close to or even higher than 1. These results suggest that
the KH instability occurs at both the V0 and VA interfaces with
almost the same amplitude even though the interfaces are well
separated.

The eigenmode calculations can be summarized as follows: the
PKHWs are localized at the V0 interface having a higher
frequency than ωA in the magnetosheath for faster shear flow
velocity, while the SKHWs can be detected at both the V0 and VA

interfaces with similar wave frequency to ωAI in the
magnetosheath for slower shear flow velocity.

4 MHD WAVE SIMULATIONS

In order to examine the PKHWs and SKHWs, we also developed
an MHD wave simulation model. Similar to the previous fluid
wave simulation codes (Kim and Lee, 2003; Kim et al., 2007), the
finite-difference method is used in both time and space to solve
the MHD Equations 5–9 as an initial-valued problem. We adopt
a box model in which B0 is assumed to lie along the z-direction
and inhomogeneity is introduced in the x-direction, while the
boundary layer plasma flows in the y-direction with variation in
the x-direction. Perfect reflecting boundaries are assumed and
strong collisions are applied near the boundaries to describe semi-
infinite space. Therefore, the total energy of traveling waves

decreases once the initial waves reach the boundary. Seed
perturbations in the simulation domain result in linear growth
of unstable modes, and the growth rate can be calculated once the
unstable waves exceed the amplitudes of the initial perturbation.

4.1 KH Waves in Uniform VA Plasma
We first examine the KH waves in a plasma where VA does not
vary in space. In this simulation, a hyperbolic tangent V0 profile
along with constant VA was adopted in the wave code:

V0 x( ) � V0I

2
1 − tanh

x

a
( )[ ], (33)

where V0I is the flow velocity in region I, and this profile
characterizes the V0 discontinuity in a scale length a, as shown
in Figure 1B. One of the primary differences between the
background profile used in the time-dependent analysis, and
the previously discussed eigenmode analysis (a → 0) is the
fact that the discontinuous profile has been smoothed.

We assume that the length of the simulation box is Lx ∼ 45/ky.
Since the KH surface wave is expected to not fully decay by the
time it reaches the edge of the simulation domain in the x-
direction, we add an absorption layer near the boundary (∼30/ky)
in the simulation box to prevent reflection. An initial
perturbation is launched as a compressional component of V1x

at the source location (kyxsource ∼ − 7.5) in region I
(i.e., magnetosheath). This source is assumed to have a narrow
spatial width (kyδsource � 0.093) and to include broadband
frequencies, V1x(x, t) � exp(−1.5 t2

t2KH
)exp(−(x−xsource)2

δ2source
), where

kKH � 2π/ωKH0. The simulation is run from t � 0 to t �
5.6tKH, and all components of B1 and V1 at each time step are
stored during the simulation run time. The background densities
in the magnetosheath (region I) and the magnetosphere (region
III), the background magnetic field strength, ky, and kz are the
same as in the eigenmode analysis of Section 3.

FIGURE 3 | (A,B) Normalized eigenfrequencies to ωKH0 � 1
2kyV0 and ωAI

� k‖VAI. (C) The amplitude ratio of the compressional magnetic field
component Ap. Here, the horizontal and vertical axes are normalized shear
layer width (kyd) and Alfvén Mach number (MA).

FIGURE 4 | The time evolution of the magnetic compressional
component (B1z) in the x-direction. The time and space are normalized to tKH �
2π/ωKH0 and ky, respectively. The interface is assumed to be located at kyx � 0.
It is noted that the wave power is saturated at a 100 in this figure.
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Figure 4 shows the time evolution of the magnetic
compressional component (B1z) in the x-direction for MA �
1 and kya � 0.025. Two vertical lines represent the source
location (kya � − 7.5) and the V0 interface (kyx � 0), and thick
dashed lines represent Alfvén speed (VA). Since the initial wave
packet includes broadband frequencies, the wave packet

disperses in time and space. Leftward propagating waves
reach a strong collisional layer near the boundary (kyx < −
10.5) and are totally absorbed. Rightward propagating waves
reach the V0 interface at kyx � 0 around t/tKH � 0.7, and they
partially reflect from the interface due to a steepened density
gradient. The rest of the waves penetrates the V0 interface and
reach the collisional layer (kyx > 3.0). Once the magnetic field
and velocities are perturbed near the interface, an unstable

FIGURE 5 | (A,B) Time histories of magnetic compressional (B1z) and transverse (B1y) components, (C,D) time histories removing the growth rate of b1z and b1y,
and (E,F) fast Fourier transform in time of b1z and b1y at the interface (kyx � 0).

FIGURE 6 | (A) Time evolution of wave energy (U) and (B) normalized
growth rate (Γ � 2ca/V0I) in time.

FIGURE 7 | Normalized growth rates (Γ � 2ca/V0I) of KH surface waves
(A) as a function of normalized tangential wavenumber 2kya forMA � 1 and (B)
as a function ofMA for 2kya � 1. Here, gray and red star dashed lines are from
Miura and Pritchett (1982) and simulation results.
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wave mode begins to grow at around t/tKH ∼ 1.2. Unlike the
initial perturbation, these waves decay in the x-direction rather
than propagate. The wave amplitude in Figure 4 saturates
at ± 100.

We focus on the surface waves at kyx � 0 and determine the
growth rate, wave frequency, and polarization. Time histories of
B1z and B1y at x � 0 in Figure 5A rapidly grow in time; thus, the
sinusoidal wave form is not clearly seen. However, the wave
growth term can be removed from the time histories using the
magnetic (UB), kinetic energy (UV), or total energy (U �UB +UV).
We plot Utot(t) � ∑xU(x, t) in the simulation box in Figure 6A.
Early in the simulation period (t/tKH < 1.2) Utot is quasi-stable;
however, once an unstable waves generated, it increases linearly.
The wave magnetic field with a constant growth rate c can be
written as

B1 x, t( ) ∼ b1 x, t( )exp c x, t( )t[ ], (34)

and because of the magnetic energy UB ∝ |B|2, the wave growth
rate c in each grid point can be estimated from

c x, t( ) ∼ z

zt
ln

�������
UB x, t( )√( ). (35)

We also confirmed that c calculated using either the
magnetic (UB) or kinetic energies (UV) are identical; thus,
c(x, t) � z

zt ln(
������
U(x, t)√ ) � z

zt ln( �������
UB(x, t)

√ ) � z
zt ln(

�������
UV(x, t)

√ ).
Furthermore, once the initial wave vanishes near the boundary,
only the localized surface waves (such as KH waves) remain in the
simulation domain; thus, c also can be calculated using Utot:

c t( ) � z

zt
ln

������
Utot t( )√( ). (36)

When a boundary has a finite thickness, the normalized
growth rate (Γ ≡ 2ac/V0I) becomes a function of normalized

FIGURE 8 |Wave spatial distribution for kyd � 0.25 (A)MA � 0.45 and (B)MA � 0.6. Upper panels are perturbed magnetic field compressional (b1z) and transverse
(b1y) components, middle panels are the spatial structure of the peak frequency, and lower panels are the Poynting flux parallel (S‖) and perpendicular (S⊥) to B0.
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boundary width (2kya) (Miura and Pritchett, 1982). To illustrate,
the time evolution of Γ(t) is plotted in Figure 6B for kyd � 0.025
and MA � 1, and it converges to ∼ 0.0083. Therefore, for these
parameters, the normalized growth rate can be estimated as Γ �
0.0083.

Once the growth rate is determined, the wave components
(and polarization) can be obtained from

b1 t( ) ∼ B1 t( )/ exp c t − t0( )( )∣∣∣∣t> t0
, (37)

where t0 is the time at which the wave growth begins. Figures
5C,D show that b1z and b1y have clear sinusoidal structures with a
single frequency. The wave spectra of b1z and b1y in Figures 5E,F
confirm that the single peak corresponds the KH wave frequency,
ωKH0 � 1

2kyV0. In this manner, we can determine both the real
and imaginary components of the frequency, which can be
compared with the eigenmode analysis.

For code validation, we also compared the simulation results
with prior analytical results in Miura and Pritchett (1982).
Figure 7 shows the growth rate, Γ, as a function of (a) 2kya
forMA � 1 and (b) as a function ofMA for 2kya � 1. In this figure,
the prior analytic results (gray lines) and our simulations (red
stars) show excellent agreement with each other. For MA � 1 in
Figure 7A, wave growth only occurs for a limited value of the
normalized boundary width 0 < 2kya < 1.8 and maximizes near
2kya � 0.8. For 2kya � 1, the maximum Γ occurs forMA → 0 and
has a value of 0.144, as predicted from Miura and Pritchett
(1982). The growth rate decreases as MA increases and no KH
wave arises for MA > 1.6. Therefore, the new MHD wave code
successfully demonstrates KH waves and benchmarking

comparisons of the simulations with previous analytical results
validate the code accuracy.

4.2 Coupling Between KH and Alfvén
Resonant Waves
In this section, the simulation results include the shear transition
layer between the magnetosphere and the magnetosheath, as
shown in Figure 1B. In contrast to the results of Section 3,
we consider a finite width of the boundary layer. Similar to the V0

profile in Equation 33, VA is assumed to have a hyperbolic
tangent profile:

VA x( ) � VAI + VAI + VAIII

2
tanh

x − d

a
( )[ ]. (38)

The two interfaces are separated with width d, although each
interface has its own width, a. From the eigenfrequency
calculations in Figure 2, we showed that the inclusion of a
shear transition layer effectively generates the SKHWs when
the shear flow velocity is slow; thus, we ran the simulations
for kyd � 0.25 and 0.75 and MA < 0.85 to compare with the
eigenmode calculation.

We used the time histories of b1, which does not include the
exponential growth, in order to analyze the real frequency and
relative strength of the field components. Figure 8 presents wave
spectra of perturbed magnetic field and the Poynting flux for
kyd � 0.25. ForMA � 0.45 in Figure 8A, only the waves at ω/ωAI ∼
1.2 have strong amplitude. This frequency is close to the
eigenmode frequency of ω/ωAI � 1.17 in Figure 2. The

FIGURE 9 | Wave spatial distribution for kyd � 0.75 (A) MA � 0.45 and (B) MA � 0.6.
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estimated growth rate near the V0 and VA interfaces are identical
with c/ωAI � 0.128. This growth rate is also in good agreement
with the analytical results of c/ωAI � 0.142 in Section 3.

In order to examine the detailed wave properties, we plot
spatial structures of the fluctuating magnetic field (b1x, b1y, and
b1z) at ω/ωAI � 1.2 in the middle row of Figure 8A. In this case,
the compressional components (b1x and b1z) maximize at the VA

and V0 interfaces and decay in the x-direction away from the
interfaces. The b1z and b1x amplitudes at the two interfaces are
comparable; thus, b1z(x � d)/b1z(x � 0) � 1.025. This ratio is
almost identical to the amplitude ratio of the pressure Ap � 1.06
from Figure 2B.

On the other hand, the transverse component b1y is enhanced
at three different locations near V0 (kyx � −0.022 and 0.033)
and VA interfaces (ky � 0.22), where the wave frequency matches
the Alfvén resonance condition (ωAR):

ω � ω±
AR ≡ kyV0 ± k‖VA.

Due to the finite width of the V0 interface near x � 0, ω−
AR can

be positive at the V0 interface; thus, two separate regions of
enhanced wave power can occur corresponding to Doppler-shifted
resonance with both Alfvén resonances. In this case, b1y is

significantly stronger than b1z or b1x, and b1y/max(b1z) ∼ 28 at
the VA interface. Furthermore, strong field-aligned Poynting flux
occurs at the interfaces, as shown in the lower panels of Figure 8A.
The Poynting flux parallel (S‖) and perpendicular (S⊥) to B0 show
that the wave energy predominantly flows along the magnetic field
line at both interfaces. Since we launch compressional waves (with
V1x) in the magnetosheath, and the growing KH waves are
compressional waves, the amplitude enhancement of the
magnetic transverse component and intense field-aligned
Poynting flux at the interfaces are clear evidences of the mode
conversion from the surface KHwaves to the surface Alfvén waves.

For the higher MA case in Figure 8B, the amplitude is
maximized at ω � 2.57ωAI, which is similar to the analytical
value of ω � 2.6ωAI in Section 3. The b1z component maximizes
near x � 0 and the secondary peak near kyx � 0.25 becomes
weaker. The b1z amplitude ratio between the two interfaces is
0.64, which is in good agreement with the analytical value of Ap �
0.4. The b1y component shows strong amplitude near kyx � 0 and
kyx � 0.26. In this case, because the eigenmode frequency is higher
than ω−

AR, b1y enhanced only at ω � ω+
AR. The amplitude ratio

between b1y and b1z is much lower than that for the case withMA

� 0.45 in Figure 8A, having b1y/max(b1z) ∼ 6 at x ∼ d. Strong
field-aligned flux S‖ appears at the V0 interface in the bottom
panels, but S⊥ becomes stronger than the case of MA � 0.45. The
analytic eigenmode calculations predict that the PKHWs occur
under (kyd, MA) � (0.25, 0.75). The simulation results show that
the mode conversion from the PKHWs to the surface Alfvén wave
still occurs at each interface, but this process is less effective than
that from the SKHWs.

For kyd � 0.75, the waves have a strong amplitude peak near
ω/ωAI � 1.4 and 2.03 for MA � 0.45 and 0.6, respectively, and the
spatial structures of these waves are presented in Figure 9. In this
case, the PKHWs and SKHWs are not separated anymore (See
Figure 2) and we define the KH waves in the lower MA as semi-
SKHWs in Section 3. ForMA � 0.45 in Figure 9A, b1z maximizes
near x � 0 and a weak secondary peak appears near x � d. On the
other hand, three amplitude peaks near kyx � − 0.025 4, 0.018, and
0.754 appear in b1y. The power ratio |b1y/max(b1z)| at the V0

interface is reduced to |b1y/max(b1z)| ∼ 7 from 23 for (kyd,MA) �
(0.25, 0.45) in Figure 8A. The enhancement of S‖ is also seen at
both interfaces and relatively strong S⊥ also appears. Near x � 0 at
the V0 interface, |S⊥/S‖|x�0 is about 0.39, which is almost twice as
large as |S⊥/S‖|x�0 � 0.195 for (kyd,MA) � (0.25, 0.45). Therefore,
even though the compressional wave behavior of the semi-
SKHWs is similar to the SKHWs, the mode conversion from
semi-SKHWs becomes much weaker than that from the SKHWs.

For MA � 0.6 in Figure 9B, b1z decays along the x-direction
from the V0 interface and no amplitude bump occurs at the VA

interface. The b1y component shows a discontinuity at the VA

interface following the compressional Alfvén wave dispersion
relation. Therefore, S⊥ becomes comparable to S‖ for kyx > 0.75.
In this case, the mode conversion at the VA interface does not
occur, but energy still flows along the magnetic field line at the V0

interface.
We also analyzed the cases forMA for kyd � 0, 0.25, and 0.75 at

variousMA. Figure 10 shows the extracted eigenmode frequency
and growth rate from the simulations. In this figure, the red and

FIGURE 10 | Calculated wave frequency (blue circles) and growth rate
(red circles) from time-dependent simulations and eigenmode analysis (gray
lines) for kyd � 0.25 and 0.75.
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blue circled lines represent simulations, and the gray lines are
taken from the eigenfrequency analysis from Figure 2 in
Section 3. Although the boundary thicknesses used in
Section 2 (slab) and Section 3 (width a) are different
because the inhomogeneity scale length for the numerical
simulation is much shorter than the wavelength, the
eigenmode analytical and simulation results in ω and c show
excellent agreement.

We also calculate the amplitude ratios between the
compressional component at the two interfaces (Ap) and

between transverse (b1y) and compressional (
�������
b21x + b21z

√
)

components at each interface. Due to the finite thickness of
the boundary, two wave amplitude peaks can occur within the
V0 interface as shown in Figures 8, 9, so we average the
amplitude near x � 0, if ω � ω±

AR � kyV0 ± kzVA. The
simulated Ap and eigenfrequency calculations show good
agreement with each other in Figure 11A,B. In particular, Ap

of the SKHWs in Figure 11A are almost identical to the analytic
calculations. Thus, these results confirm that the SKHWs occur
with nearly the same amplitude at both interfaces, while the
PKHWs only happen at the V0 interface. The amplitude ratio
between the transverse and compressional components in
Figure 11C,D suggests that the transverse magnetic
component of the SKHWs is dominant. In other words, the
mode conversion to the shear Alfvén wave from the SKHWs
effectively occurs at the interfaces. The PKHWs in Figure 11C
and semi-SKHWs and PKHWs in Figure 11D show that the
transverse mode amplitudes are comparable to the
compressional mode amplitude; therefore, weaker or no

mode conversion occurs under given conditions at the VA

interface.

5 CONCLUSION AND DISCUSSION

This article investigates the coupling between KH and Alfvén
waves when a shear transition layer exists between the
magnetosheath and magnetosphere. Using the
eigenfrequency analysis and time-dependent wave
simulations, we showed that the SKHWs are generated when
the shear velocity is slower than the typical threshold value for
the onset of the KH instability.

The SKHWs occur with a frequency comparable to both KH
wave frequency (ωKH0 � 1

2kyV0) and the Alfvén frequency at the
magnetosheath (ωAI � k‖VAI), while the PKHWs have a much
higher frequency thanωAI. These results suggest that PKHWs and
SKHWs can be identified using the frequency ratio to ωKH0 and
ωAI from in situ observations. The SKHWs appear at both the V0

and VA interfaces with nearly the same amplitude, while the
PKHWs appear only at theV0 interface. SinceV0 is uniform at the
VA interface, no KH waves can be generated at the VA interface
without coupling between the KH and Alfvén waves. For the
given conditions of 0 < kyd ≤ 0.5, where the SKHWs are well
separated from the PKHWs in Figure 3 and the shear transition
layer width is 0 < d ≤ 0.3RE; thus, if the thickness of each
boundary (a) is much shorter than the width of the transition
layer (d), the SKHWs can be detected at the VA interface.

The simulation results in Figures 8, 9 show that the magnetic
transverse component is dominant at the interface and a strong

FIGURE 11 | (A,B) Ap from the simulations (red circles) eigenfrequency calculations (black dots) for kyd � 0.25 and 0.75. (C,D) The amplitude ratio between the
transverse and compressional components at the V0 interface (black stars) and the VA interface (blue circles), respectively.
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field-aligned Poynting flux appears. Therefore, the energy
transfer from the boundary layer to the Earth via mode-
converted shear Alfvén waves occurs, which is similar to
observations (Chaston et al., 2007). The wave simulations
predict that a stronger mode conversion occurs from the
SKHWs than from the PKHWs. However, the wave growth
rate should be considered as well. Even though the mode
conversion efficiency from the PKHWs is weaker than the
SKHWs, the PKHWs amplitude can be strong enough due to
the higher growth rate. Thus, a strong transverse component also
can be detected from the PKHWs, but the compressional
components are still comparable to the transverse components.

Although we clearly show the characteristics of PKHWs and
SKHWs, this article only considers that the magnetic field is
perpendicular to the flow velocity, and the magnetic field is
assumed to be a constant. Indeed, the magnetic field in the
magnetosheath and magnetosphere can be perpendicular in the
magnetopause, and also the magnetic field and the flow velocity
can be parallel in space, such as the solar corona and
magnetotail. The secondary KH instability or resonant flow
instability can occur under such conditions (Taroyan and
Erdélyi, 2002, 2003; Turkakin et al., 2013). Furthermore,
compressional waves bounded in the inner magnetosphere
can contribute to the generation of the secondary KH
instability (Turkakin et al., 2013) and also mode conversion
to the shear Alfvén wave (Taroyan and Erdélyi, 2002). The total
length of our numerical simulation model, including the
collisional layer in Section 4, is somewhat comparable to
∼ 10RE; thus, the bounded plasma effect should be
considered in the future.

We also used a cold plasma approximation in the
magnetosheath. The inclusion of thermal effects leads to an
additional KH wave branch (Taroyan and Erdélyi, 2003). In
warm plasmas, the Alfvén waves propagate as kinetic Alfvén
waves (KAW). The KAW can have a larger wavenumber across
the magnetic field line and field-aligned electric field and velocity
components (Lin et al., 2010, 2012). Similar to Alfvén waves,
KAW also transfers the energy away from the mode conversion
location along the magnetic field line; thus, it is expected that a
strong transverse component at each interface would also be
detected with thermal effect.

In addition, a high level of turbulent fluctuations in the
magnetosheath is observed in multiple satellites (e.g.,
Rakhmanova et al., 2021); however, nonlinear effects are not
included in our analysis. It is possible that if these modes grow to
sufficient amplitude, vortices will form and nonlinear interactions
may become important, leading to plasma heating and transport.
These nonlinear effects are left for future studies.
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