AUTHOR=Borovsky Joseph E. , Liu Jianghuai , Ilie Raluca , Liemohn Michael W. TITLE=Charge-Exchange Byproduct Cold Protons in the Earth’s Magnetosphere JOURNAL=Frontiers in Astronomy and Space Sciences VOLUME=8 YEAR=2022 URL=https://www.frontiersin.org/journals/astronomy-and-space-sciences/articles/10.3389/fspas.2021.785305 DOI=10.3389/fspas.2021.785305 ISSN=2296-987X ABSTRACT=

Owing to the spatial overlap of the ion plasma sheet (ring current) with the Earth’s neutral-hydrogen geocorona, there is a significant rate of occurrence of charge-exchange collisions in the dipolar portion of the Earth’s magnetosphere. During a charge-exchange collision between an energetic proton and a low-energy hydrogen atom, a low-energy proton is produced. These “byproduct” cold protons are trapped in the Earth’s magnetic field where they advect via E×B drift. In this report, the number density and behavior of this cold-proton population are assessed. Estimates of the rate of production of byproduct cold protons from charge exchange are in the vicinity of 1.14 cm−3 per day at geosynchronous orbit or about 5 tons per day for the entire dipolar magnetosphere. The production rate of cold protons owing to electron-impact ionization of the geocorona by the electron plasma sheet at geosynchronous orbit is about 12% of the charge-exchange production rate, but the production rate by solar photoionization of the neutral geocorona is comparable or larger than the charge-exchange production rate. The byproduct-ion production rates are smaller than observed early time refilling rates for the outer plasmasphere. Numerical simulations of the production and transport of cold charge-exchange byproduct protons find that they have very low densities on the nightside of geosynchronous orbit, and they can have densities of 0.2–0.3 cm−3 at geosynchronous orbit on the dayside. These dayside byproduct-proton densities might play a role in shortening the early phase of plasmaspheric refilling.