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The huge variety of planetary systems discovered in recent decades likely depends on the
early history of their formation. In this contribution, we introduce the FAUST Large Program
which focuses specifically on the early history of solar-like protostars and their chemical
diversity at scales of ∼ 50 au, where planets are expected to form. In particular, the goal of
the project is to reveal and quantify the variety of chemical composition of the envelope/
disk system at scales of 50 au in a sample of Class 0 and I protostars representative of the
chemical diversity observed at larger scales. For each source, we propose a set of
molecules able to (1) disentangle the components of the 50–2000 au envelope/disk
system, (2) characterize the organic complexity in each of them, (3) probe their ionization
structure, and (4) measure their molecular deuteration. The output will be a homogeneous
database of thousands of images from different lines and species, i.e., an unprecedented
source survey of the chemical diversity of solar-like protostars. FAUST will provide the
community with a legacy dataset that will be a milestone for astrochemistry and star
formation studies.

Keywords: astrochemistry, stars: formation, interstellar medium: molecules, interstellar medium: abundances,
protostars

1 INTRODUCTION: THE ROOTS OF FAUST

Planets are a common product of the star formation process, and there is an incredible variety of
planetary systems in the Galaxy (e.g., http://exoplanet.eu/), very different from the Solar System. The
origin of such diversity, both in physics and chemistry, probably resides in the earliest history of the
system formation, namely, what happens during the protostellar phases. The low-mass star formation
is the complex process transforming a diffuse atomic cloud into, first, a dense molecular cloud and
eventually into a Sun-like star surrounded by its planetary system. Meanwhile, the chemical
composition of the gas involved in this process increases its complexity, from mostly atomic
clouds to the so-called interstellar complex organic molecules (iCOMs), i.e., species with at least
six atoms (e.g., methanol, CH3OH), which can be considered as a brick to build pre-biotic chemistry
(see e.g. Ceccarelli et al., 2007; Herbst and van Dishoeck, 2009; Caselli and Ceccarelli, 2012; Jørgensen
et al., 2020, and references therein). Nowadays, evidence is mounting that the first steps of the process,
namely, when the protostar is in the so-called Class 0 ( ∼ 104 yr) and I ( ∼ 105 yr) source phases (e.g.,
André et al., 2014, and references therein), are crucial for the future of the nascent planetary system.
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More specifically, a breakthrough result has been provided by the
ALMA (Atacama Large Millimeter/submillimeter Array)
interferometer, which provided images of rings and gaps (see e.
g., Sheehan and Eisner, 2017; Andrews et al., 2018; Fedele et al.,
2018) in the dust distribution around objects with an age less than 1
Myr. This supports that planet formation starts earlier than the
classical protoplanetary stage (Class II; ∼ 106 yr). These findings
then support the importance of investigating the chemical
complexity associated with protostars younger than 1 Myr.

In a nutshell, a Sun-like protostar is accreting itsmass through a disk
rotating along the equatorial plane. The disk, expectedwith a radius less
than 100 au, is perpendicular to fast ( ∼ 100 km s−1) jets removing the
angularmomentumexcess (see e.g., Frank et al., 2014; Lee et al., 2017a).
In turn, the disk is fed by a large-scale ( ≥ 1,000 au) rotating and
infalling molecular envelope. The chemical composition of the
envelopes surrounding solar-like Class 0 and I protostars on large
scales (100–2000 au) can be very different. Two distinct classes have
been discovered (1) the hot corinos (Ceccarelli et al., 2007) and the
WCCC (warm carbon chain chemistry) sources (Sakai and
Yamamoto, 2013). Hot corinos (as e.g., IRAS16293-2422) are
compact ( ≥ 100 au) and dense ( ≥ 107 cm−3) regions, where the
temperature is warm enough ( ≥ 100 K) to thermally evaporate the
frozen dust mantles. As a consequence, the gas phase is chemically
enriched in iCOMs due to either direct release from dust mantles or
formed in the gas phase using simpler molecules from themantles. On
the other hand, WCCC sources (as e.g., L1527) are deprived of such
iCOMs and enriched with unsaturated carbon-chain species, such as
HC2n+1N,CnH, andCnH2 (Higuchi et al., 2018, and references therein).

In this context, breakthrough open questions are (i)
whether such diversity is also present in the inner envelope/
disk system ( ∼ 50 au) and (ii) what molecules are passed from
the large-scale envelope ( ∼ 2000 au) to the disk in which
planets, comets, and asteroids form. Yet, this is crucial to know
because very likely the chemical composition and fate of the
future planetary systems depend on the chemical class to
which the original protostar belonged. The aim of this study
is to introduce the ALMA (Atacama Large Millimeter/
submillimeter Array) Large Program (LP) FAUST (Fifty AU
STudy of the chemistry in the disk/envelope system of Solar-

like protostars; http://faust-alma.riken.jp), focused on
astrochemistry of Class 0/I sources imaged at the Solar
System spatial scale.

2 THE FAUST PROJECT

2.1 Context and Main Goals
The goal of FAUST is to characterize the gas chemical composition
of the protostellar system, associated with several physical
components at work to build a Sun-like star from a rotating
and infalling envelope. FAUST builds up on previous surveys of
the chemical composition of the Sun-like youngest protostars at
larger spatial scales, such as ASAI (https://www.oan.es/asai/), and
SOLIS (https://solis.osug.fr/), which covered the large envelopes at
≤ 5000 au and the transition between the large-scale envelope and
the circumstellar disk at ≥ 5000 au and ≤ 100 au, respectively. The
FAUST approach is to identify three zones (see Figure 1), as learnt
from previous ALMA studies (e.g., Sakai et al., 2014a, 2017):

• ENVELOPE: Here, we mean the infalling–rotating envelope on
scales of a few 100 au. The gas chemical composition evolves
from that at large (∼ 2000 au) scales because of the heating from
the central object, which sublimates the grainmantles (Ceccarelli
et al., 1996). Besides, the gas close to the outflow cavity wall
might also be exposed to the UV and X-ray photons from the
central object or be affected by mild transverse shocks (Stäuber
et al., 2005), with a consequent chemical enrichment of the gas.

• BARRIER: The gas transits a centrifugal barrier, on scales
of about 50 au, before entering the disk. The gas chemical
composition may be drastically affected by the low
velocity ( ∼ 1 km s−1) shock at the centrifugal barrier
as grain mantles may be at least partially liberated into the
gas phase and the gas heated and compressed (Sakai et al.,
2014b,a; Oya et al., 2016). As a matter of fact, the IRAS
04 386 + 2557 protostar, in the L1527 Taurus core, can be
considered the archetypal edge-on disk where Sakai et al.
(2014b, 2017) revealed, for the first time, an increase of
SO abundance at the radius of the centrifugal barrier.

FIGURE 1 | Schematic structure of the region around solar-like Class 0 and I protostars, adapted from the study by Oya et al. (2016). Three main zones can be
identified (see Section 2): the infalling and rotating envelope, the centrifugal barrier, and the rotating and accreting disk.
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Another enlightening case is represented by the HH212
pristine jet/disk system, located in Orion B. The disk,
edge-on also in this case, shows iCOM-rich rotating
rings, possibly associated with the centrifugal barrier
with a radius of about 40 au (Lee et al., 2017b, 2019).

• DISK: At scales smaller than about 50 au, the gas settles in the
rotationally supported disk, where the gas chemical composition
is expected to be stratified (e.g., Aikawa andHerbst, 1999;Walsh
et al., 2015) and affected by the dynamics and dust coagulation
(e.g., Zhao et al., 2016; Ilee et al., 2017). Indeed, very recently,
Podio et al., (2020) observed with ALMA the evolved Class I
source IRAS 04302 + 2247, where the bulk of the envelope has
been dispersed; the molecular (CO, CS, and H2CO) emission is
vertically stratified on a scale of 50–60 au (see also van’t Hoff
et al., 2020). A breakthrough result would be to reveal a chemical
stratification in early protostellar disks still fully embedded in the
envelope. Furthermore, the observations of protostellar disks are
also challenged by the presence of jets and disk winds, which are
powered at similar scales (e.g., Lee et al., 2017a; Tabone et al.,
2017). For a proper study of disks, it is mandatory to reveal also
the fast jet flowing perpendicular to the disk equatorial plane
using e.g., a standard tracer as SiO (see e.g., Codella et al., 2019).
Finally, at these small scales, dust opacity increases, which
strongly affects the emission spectrum from the gas (see below).

Therefore, the three zones are expected to possess distinct
physical and chemical properties, likely varying from source
to source and/or depending on the star-forming regions. The
goal of FAUST is to disentangle the three zones with the help
of their kinematic signatures and ALMA line images at 50 au
spatial resolution. Our pioneering studies showing the proof
of concept have already been conducted for a few sources and
a few molecules (e.g., Ceccarelli et al., 2010; Oya et al., 2016;
Codella et al., 2017): time is now ripe for a systematic study of
many more sources and many more species, via an ALMA LP.
In summary, the aim of FAUST is to reveal and quantify the
variety of the chemical composition of the envelope/disk
system of solar-like Class 0 and I protostars. Such chemical
varieties will add a new dimension to the diversity of planetary
systems, and we expect that it will have a substantial impact on
studies of planet formation and the origin of the Solar System.

2.2 Sources and Molecular Lines
From a kinematical point of view, the envelope/disk system can
be divided into three different zones. Although they could, in
principle, be studied kinematically by observing CO and its
isotopologue lines, but as a matter of fact, only rarer species
provide a much more powerful diagnostic tool because they are
differentially enhanced in the three zones, thanks to chemical
composition changes (e.g., Sakai et al., 2014b, 2017; Oya et al.,
2016). FAUST will simultaneously use kinematics and chemistry
to fully resolve the complexity of the envelope/disk system. Four
groups of species have been selected to probe different topics:

1. ZONE PROBES: c-C3H2, CS, CH3OH, SO, SiO, H2CO, C
18O,

and HC3N. We select the following species to disentangle each
zone: Envelope: c-C3H2 and CS. These species are present in
the infalling–rotating envelope, with different abundances for
different sources, but their abundance significantly drops in
the other two zones so that they are specific in probing the
ENVELOPE zone in different sources. Barrier: CH3OH, SO,
and SiO. Their abundance is enhanced in the weak shocks at
the centrifugal barrier. Narrow (∼ 1 km s−1) SiO lines could
trace the release of Si from dust mantles (Guillet et al., 2011;
Lesaffre et al., 2013) at the centrifugal barrier, whereas broad (
≥ 10 km s−1) SiO emission is expected to trace fast jets
(associated with high-velocity shocks) perpendicular to the
disk. Disk: H2CO, C

18O, and HC3N. Given their relatively
large abundance in the warm layers of the disks, lines from
these species can probe the inner disk, via their high-velocity
components.

2. MOLECULAR COMPLEXITY PROBES: CH3OH, NH2CHO,
CH3CHO, CH3OCH3, and HCOOCH3. A major goal of
FAUST is measuring the organic complexity in the disk/
envelope system as it might be inherited at later stages by
the nascent planetary system (Zhao et al., 2016). Based on
previous studies, five species are particularly important to
identify the organic diversity: methanol (CH3OH), formamide
(NH2CHO), acetaldehyde (CH3CHO), dimethyl ether
(CH3OCH3), and methyl formate (HCOOCH3). They are
predicted to have a different chemical origin, with
methanol a grain-surface product and formamide likely a
gas-phase product (Codella et al., 2017; Skouteris et al.,

TABLE 1 | List of the frequency windows and of the species covered by the selected backends, divided in four groups (see Section 2.2).

Setup Frequency Zones Molecular Gas Molecular

(GHz) complexity Ionization deuteration

1 214.0–219.0 c-C3H2, CH3OH, SO CH3OH, NH2CHO DCO+ N2D
+, D2CO

229.0–234.0 SiO, H2CO, C
18O CH3CHO, HCOOCH3

2 242.5–247.5 c-C3H2, CS CH3OH, NH2CHO H13CO+ HDCO, CH2DOH
257.5–262.5 CH3OH, SO CH3CHO, HCOOCH3

CH3OCH3

3 85.0–89.0 CH3OH, HC3N CH3OH,
13CH3OH N2H

+ c-C3HD
97.0–101.0
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2017), while for acetaldehyde, dimethyl ether, and methyl
formate, the chemical synthesis route is largely debated (e.g.,
Garrod et al., 2008; Balucani et al., 2015).

3. GAS IONIZATION PROBES: H13CO+, DCO+, and N2H
+.

The degree of ionization in the inner 100 au envelope is a very
important parameter for any theory of planet formation (e.g.,
Balbus and Hawley, 1998). Yet, this quantity is very poorly
known at these scales. Several processes can affect it, from an
inner source of energetic particles and/or X-rays (Stäuber
et al., 2005) to the growth of dust grains (Zhao et al.,
2016). Here, we propose to use molecular ions, following a
previously used methodology, to estimate the gas ionization,
such as the H13CO+/DCO+ and H13CO+/N2H

+ abundance
ratios. The first ratio measures the ionization in cold (smaller
than ∼ 30 K) and dense ( ≥ 104 cm−3) gas (e.g., Caselli et al.,
2008), while the second one in warm ( ≥ 40 K) and, again,
quite dense (up to ∼ 107 cm−3) gas (e.g., Ceccarelli et al.,
2014b).

4. DEUTERIUM-BEARING SPECIES: c-C3HD, N2D
+, HDCO,

D2CO, and CH2DOH D-bearing species are powerful
diagnostic tools to study the physical conditions at present
and in the past (Ceccarelli et al., 2014a). Specifically, species
like c-C3H2 (one of the infalling–rotating envelope probe) and
N2D

+ are present-day products, whereas H2CO and CH3OH,

being major components of the grain mantles, were mostly
formed during the pre-stellar phase and introduced in the
present-day gas by the presence of the accreting inner object.
The respective deuterated counterparts provide, therefore, a
precious tool to understand the physical conditions when
these species are/were deuterated. In addition, molecular
deuteration provides a sort of Ariadne’s thread that links
the ISM to the Solar System history (Ceccarelli et al., 2014a).

We selected a representative sample of sources that is known
to exhibit a wide chemical composition diversity, based on the
available large-scale observations. The following two criteria have
been adopted: (1) Chemical diversity: Since, so far, the major
chemical diversity is represented by WCCC and hot corino
sources, we select sources that represent a continuous
variation of the abundance ratio of species characteristics of
these two classes. Specifically, (i) CH3OH can be regarded as a
proxy of the hot corino species because it is a crucial organic
molecule, considered a parent species of larger iCOMs; (ii) small
hydrocarbons such as C2H or c-C3H2 are characteristics of
WCCC sources. The selected sources are, therefore, associated
with measured abundance ratios of these species varying by two
orders of magnitude, covering the two extremes of hot corino and
WCCC sources (Higuchi et al., 2018). (2) Distance and previously

FIGURE 2 | Zoo of preliminary spectra observed towards FAUST sources (see black labels) in a portion of 2 GHz (245.7–247.7 GHz) of the frequency Setup2 (See
Table 1). The FAUST logo is also reported. The intensity scale is in brightness temperature (K). The spectra have been obtained merging ACA data with those at high-
spatial resolution. The identification of the lines is out of the focus of the present study. The goal of the sketch is to enlight the observed chemical differentiation, with some
sources characterized by a rich spectra associated with iCOM emission.
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studied sources: We select nearby Class 0 and I sources with
distance ≤ 250 pc and a bolometric luminosity ≤ 25 L□.

The final list contains 13 sources located in different star-
forming regions: L1527 and L1551 IRS5 (the Taurus region),
IRAS 15398–3359 (Lupus), L483 (Aquila), Elias 29, VLA1623A,
IRS63, and GSS30 (Ophiucus), NGC1333 IRAS4A, and IRAS4C
(Perseus), BHB07-11 (Pipe), RCrA IRS17A (Cr A), and CB68 (the
isolated source). We will observe the three frequency settings in
Table 1. They target lines from the four groups of molecules
described above. We require a uniform linear resolution of 50 au

to identify the centrifugal barrier and to disentangle the disk from
the envelope, namely, an angular resolution of 250–350 mas,
depending on the distance of the source, and almost uniform
brightness sensitivity. The high-angular scale of 50 au will be
reached using the 12-m antenna ALMA array in different
configurations. Furthermore, given the goal to also sample the
molecular envelope, Atacama Compact Array (ACA/Morita
Array) observations of 7-m antennas will be also performed.
By combining all the visibility data obtained using both the 12-m
and the 7-m antenna array, FAUST will be able to follow the
physical and chemical changes from the large-scale envelope (∼
2000 au) to the inner disk/jet system. For each frequency setting,
we allocate one continuum setting to measure the dust spectral
energy distribution (SED) from 3 to 1 mm. The frequency
resolution is set to 0.2 km s−1, i.e., the sound speed at 10 K.

2.3 Data Exploitation
We will use a two-step modeling procedure to extract the
information from the data, as follows: (1) Kinematics and
radiative transfer models: The three zones are disentangled by
comparing the velocity structure observed in the various
molecular lines with kinematic models (Oya et al., 2016). The
gas temperature and density structure, as well as the species
column density, will be extracted from a multiline non-LTE
(when possible) analysis using 1 and 3D codes (Bisbas et al.,
2015; Zhao et al., 2016), taking into account the dust optical
depth. The analysis of the continuumwill provide the distribution
of the H2 column density. (2) Astrochemical models: The derived
molecular abundances will be compared with our astrochemical
models (Ceccarelli et al., 2018; Wirström and Charnley, 2018),
where the physical structure will be incorporated. From this
analysis, we will extract valuable constraints on the reactions
involved in the formation and destruction of the observed
iCOMs. FAUST members with specific expertise will
contribute to the project with laboratory experiments and

FIGURE 3 | L1551 IRS5 binary source, in Taurus. (A): 1.3 mm dust continuum emission in color scale and black contours (Bianchi et al., 2020): the N and S
protostars are revealed. (B): Gas enriched in iCOMs around the IRS5 binary system, imaged on the 50 au scale. More specifically, the intensity-weighted velocity (also
calledmoment 1) map of the HCOOCH3(184,14–174,13)A is shown, revealing a velocity gradient perpendicular to the axes of the protostellar jets (see the arrows in the (A))
driven by N and S. The systemic velocities are +4.5 km s−1 (S object) and +7.5 km s−1 (N). The chemical enrichment occurs in rotating hot corinos around the
protostars and/or in the rotating circumbinary disk.

FIGURE 4 | Adapted from (Okoda et al., 2021): Schematic picture of the
molecular distributions around the IRAS 15 398–3359 protostar located in the
Lupus star-forming region. FAUST observations of emission lines due to
different molecular species disentangle different components on large-
scale associated with multiple outflows.
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theoretical quantum chemistry calculations (Watanabe et al.,
2010; Dulieu et al., 2013; Skouteris et al., 2017). In summary,
we will determine (i) the extent to which the large-scale envelope
diversity is conserved in the disk/envelope system and (ii) what
molecules are passed from the large-scale envelope to the disk. In
this way, the goal of the FAUST project will, therefore, be
achieved.

3 FIRST FAUST RESULTS AND
PERSPECTIVES

The analysis of the FAUST data is in progress. However, some
instructive results have been already obtained. The data were
reduced by using a modified version of the ALMA calibration
pipeline and an additional in-house calibration routine (Okoda
et al., 2021) to correct the system temperature and spectral line
data normalization. Figure 2 reports an example of the zoo of
FAUST spectra observed in a portion of the frequency Setup 2
(see Table 1) toward the protostellar coordinates. The spectra
have been obtained merging ACA data with those at high-spatial
resolution. The line identification and the discussion of the
chemical content are out of focus of the present study; the
goal of the spectra sketched in Figure 2 is to enlight a
chemical differentiation, indicating the source sample is not
biased by some selection criterium. More precisely, four
(query) sources (L1551, L483, CB68, BHB07-11, and CB68)
are characterized by iCOM emission, revealing hot corino
activity. The next step is a careful investigation of weaker lines
and the inspection of the images obtained using each array
configuration, in order to provide a complete characterization
of the molecular complexity in each source.

An example of what FAUST is able to provide when studying
the inner 50 au around protostars is reported by Bianchi et al.
(2020), who imaged the Class I L1551-IRS5 binary system in
several species, namely, methanol (including 13CH3OH and
CH2DOH), methyl formate (HCOOCH3), and ethanol

(CH3CH2OH). Figure 3A shows the dust continuum 1.3 mm
emission revealing the binary components, namely, the N
(northern) and S (southern) objects. The two sources are
surrounded by a circumbinary disk, clearly traced by Cruz-
Sáenz de Miera et al. (2019). The 50 au resolution reveals an
iCOM-rich hot corino toward the N component (see the
HCOOCH3 map in Figure 3B) and, in addition, a possible
second hot corino around the S object. The number of hot
corinos imaged around Class I sources is, so far, limited to a
handful number (e.g., De Simone et al., 2017; Yang et al., 2021).
The discovery of iCOMemission in L1551-IRS5 is, thus, instructive
in the effort of tracking how the chemical richness around Class 0
objects is inherited by later Class I protostars: as a matter of fact, it
looks that chemistry does not dramatically change. Projects on this
topic based on statistically reliable samples will be hopefully
performed soon. Figure 3B shows the map of the velocity peak
of the HCOOCH3(184,14–174,13A) line profile. A clear velocity
gradient is revealed perpendicular to the axes of the protostellar
jets (see the arrows in the Left panel) driven by N and S. In
conclusion, the chemical enrichment occurs in rotating hot corinos
around the protostars and/or in the rotating circumbinary disk.

Moving to larger spatial scales (from 50 au to 1800 au), FAUST
recently published a review of themolecular emission in the Class 0
IRAS15398–3359 star-forming region in Lupus (Okoda et al.,
2021). The FAUST multi-species approach (CO, C18O, SO,
H2CO, CH3OH, and SiO) allows Okoda et al. (2021) to well
trace the dense and/or shocked material around the protostellar
object. Besides the already known main outflow located along the
NE-SW direction, a narrow (∼ 1 km s−1) line emission of shock
tracers such as SiO and CH3OH reveals (i) a secondary outflow
with an axis normal to the main flow, and (ii) an arc-like structure
related with the secondary outflow (see the schematic picture in
Figure 4). Which is the origin of the secondary outflow? Are the
outflows driven by different protostars? As a matter of fact, there is
no evidence (neither in the FAUST continuum maps) of a
companion of the Class 0 IRAS15398–3359 protostar. An
alternative solution proposed by Okoda et al. (2021) is that the

FIGURE 5 | (A): NGC1333 IRAS 4A continuum emission map at 25 GHz as imaged using VLA (Adapted from De Simone et al. (2020)). Two protostars A1 and A2
are observed. (B): CH3OH(62,4–61,5) velocity-integrated maps in the color scale, revealing for the first time the hot-corino associated with A1, missed by sub-millimeter
surveys due to dust opacity effects.
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secondary outflow is a relic of a past reorientation of the outflow
launched from a single protostar and that the arc-like structure has
dissipated the turbulence of the old shocked material. In principle, a
dramatic change in the direction of the outflow axis could be possible
if the molecular core hosting the protostar is associated with a non-
uniform internal angular momentum, transferred onto the central
region via episodic accretion.

Finally, the FAUST synergy is at work also to prepare
complementary observations to those collected with the
ALMA Large Program. More specifically, we started pilot
projects in the cm-spectral window using the very large array
(VLA) interferometer. Given the dust opacity at cm-wavelengths is
negligible (e.g., Testi et al., 2014, and references therein), the main
goal is to evaluate the effects of dust emission on Solar System
scales, associatedwith both high volume and column densities (e.g.,
Miotello et al., 2014; Galván-Madrid et al., 2018; Galametz et al.,
2019) on the collected iCOM images (and derived abundances) at
(sub-) mm-wavelengths. An instructive example is provided by De
Simone et al. (2020), who imaged at 1.3 cm at VLA in the FAUST
context, the NGC1333-IRAS4A binary system. One of the two
components 4A1 lacks iCOM emission when observed at
millimeter wavelengths (see Figure 5), while the other
component 4A2 is very rich in iCOMs. De Simone et al. (2020)
found that, once imaged at 1.3 cm, methanol lines are similarly
bright toward 4A1 and 4A2, proving that both are hot corinos and
not only 4A2. Complementing the ALMA observations with
centimeter images can be then considered the future step which
the FAUST synergy will perform. The VLA-ALMA combination
will allow us to perform steps ahead in the study of the protostellar
environments and to understand the ultimate molecular
complexity in regions with a high column density of the
material and consequently high dust opacity.
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