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Evidence for the primordial black holes (PBH) presence in the early Universe renews
permanently. New limits on their mass spectrum challenge existing models of PBH
formation. One of the known models is based on the closed walls collapse after the
inflationary epoch. Its intrinsic feature is the multiple production of small mass PBH which
might contradict observations in the nearest future. We show that the mechanism of walls
collapse can be applied to produce substantially different PBH mass spectra if one takes
into account the classical motion of scalar fields together with their quantum fluctuations at
the inflationary stage. Analytical formulas have been developed that contain both quantum
and classical contributions.
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1 INTRODUCTION

Interest in the primordial black holes (PBHs) is dramatically increasing since the gravitational waves
discovery from the black holes mergers (Abbott, 2016). However, PBHs origin and possible
formation mechanisms are still a topical issue of modern astrophysics and cosmology. The first
ideas of such mechanisms had been proposed in (Zel’dovich and Novikov, 1967; Hawking, 1971;
Carr and Hawking, 1974) and lately developed in many other works (see reviews and references
within (Khlopov, 2010; Carr et al., 2020; Carr and Kühnel, 2020)). The different PBH spectra are used
in papers (Carr, 1975; Dolgov and Silk, 1993; Sendouda et al., 2006; Clesse and García-Bellido, 2015;
Garriga et al., 2016; Carr and Kühnel, 2019; Liu et al., 2020) depending on specific needs.

The phase transitions of the first (Hawking et al., 1982; Kodama et al., 1982; Konoplich et al., 1998;
Jedamzik andNiemeyer, 1999; Konoplich et al., 1999) and the second order (Rubin et al., 2000; Rubin
et al., 2001) might also underlay a mechanism of the PBH formation. In this paper, we continue
elaboration of the model based on the second type phase transitions during the inflationary epoch
(Rubin et al., 2000; Rubin et al., 2001; Khlopov et al., 2002). However, the described model has a flaw.
It inevitably leads to a multiple production of small mass PBHs. That problem could not be avoided
within the framework of the discussed scenario, and typical mass spectra have the falling form d N/d
M∝M−α, α > 0 (see review (Belotsky et al., 2019)). Such a form of spectra could be unfavorable for
explaining the observable effects. In addition, the overproduction of low-mass PBHs could contradict
future experiments.

The solution to the above problems is to use the classical motion of massive scalar fields together
with their quantum fluctuations. The idea was firstly studied in (Dokuchaev et al., 2010) to suppress
the production of intermediate-mass black holes. In this research, we have elaborated this idea and
obtain the analytical formula for the field distribution probability.

At present, there are a lot of models that contain a complicated form of scalar field potential. The
latter is used in a variety of inflationary models predicting the potential landscape. In addition,
inflation can be driven by the dynamics of several fields (Wands et al., 2007). For instance, the
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supergravity often produces more than one physical scalar field
(Ketov and Starobinsky, 2012) and predicts nontrivial forms of
inflaton potentials (Ketov, 2021). The string theory also predicts
the landscape with a large number of vacua, local peaks, and
saddle points (Susskind, 2003; Cline, 2005). Such a complex
potential can have both random and quasi-periodic forms (Li
et al., 2009) and leads to the multi-field inflation such as multi-
stream one (Li and Wang, 2009; Duplessis et al., 2012), assisted
inflation (Battefeld and Battefeld, 2009) or multi-field inflation
with a random potential (Tye et al., 2009; Frazer and Liddle,
2012). Therefore, other non-inflaton scalar fields might have
complicated potential as well.

In this paper, we adopt the mechanism of black hole formation
(Rubin et al., 2000; Rubin et al., 2001; Khlopov et al., 2002;
Belotsky et al., 2019) to the modern trends in the inflaton
potential complication. A complex potential shape influences
the classical motion of the fields so that the analytical form of
the probability contains the classical trajectories as well as the
quantum field contributions. The resulting black holes mass
spectrum appears to be related to a shape of the scalar field’s
potential. The tool elaborated here allows fixing the potential
form by knowledge of black hole mass distribution.

This paper is organized as follows. In Section 2, we elaborate
the way to involve the classical part of scalar fields into the
expression for its fluctuations probability. The PBH spectrum
depends on an initial position of the scalar field that allows us to
adjust the model predictions to future observational data without
inserting small parameters. The numerical results are represented
in Section 3. Finally, Section 4 concludes the paper.

2 QUANTUM FLUCTUATIONS
ACCOMPANIED BY CLASSICAL MOTION
AT THE INFLATIONARY STAGE
The discussed mechanism of PBHs production requires closed
domain walls formation due to the quantum fluctuations of scalar
fields at the inflation epoch (Rubin et al., 2000; Rubin et al., 2001).
Let us take into account both the quantum and classical motion of
fields. Consider the scalar field Φ of mass m and the standard
action

S � M2
Pl

2
∫d4x ��

g4
√

R + zΦ( )2 −m2Φ2[ ]. (1)

Here, MPl is the Planck mass. The scalar field could be the
inflaton field as well as a spectator one. The field equation in the
de Sitter space is represented as (Khlopov and Rubin, 2004)

zΦ
zt

− 1
3H

e−2HtΔΦ − zV Φ( )
zΦ[ ] � y x, t( );

y x, t( ) ≡ − 1
3H

z2

zt2
− z

zt
+ 1
3H

e−2HtΔ( )Q x, t( ).
(2)

Here, Q (x, t) is the “quick” part of the Fourier field
decomposition. This equation was simplified: we have omitted

the second time derivative due to a slow roll approximation and
have neglected higher powers of the function y (x, t). The latter is
supposed to be small so that we may find a solution to the
equation in the form

Φ � Φcl + ϕ. (3)

The deterministic part of the classical field Φcl is governed by
the equation

zΦcl

zt
− 1
3H

e−2HtΔΦcl − zV Φcl( )
zΦcl

[ ] � 0, (4)

while its random part ϕ depends strictly on quantum fluctuations
according to the linear equation

zϕ

zt
− 1
3H

e−2HtΔϕ − V″ Φcl( )ϕ[ ] � y x, t( ). (5)

Here, we consider the limit Φcl ≫ ϕ which is valid if the
random “force” y (x, t) is small. Let us denote

m2 t( ) ≡ V″ Φcl( ). (6)

The parameter m is positive if we are near the bottom of
potential and is imaginary if we are near the potential maximum.
It is supposed that m(t) varies slowly during inflation.

We are interested in the super horizon scales where the
fluctuations do not depend on the space coordinates. The
uniform distribution Φ � Φ(t) is governed by the more simple
equation

zΦcl

zt
+ 1
3H

zV Φcl( )
zΦcl

� 0, (7)

zϕ

zt
+ μ t( )ϕ � y t( ); μ t( ) ≡ m2 t( )

3H
, (8)

provided thatH(t) � const. The correlator of the random function
y(t) may be approximated as follows (Rey, 1987)

〈y t1( )y t2( )〉 � D x, t1; x, t2( ) � H

4π2
δ t1 − t2( ). (9)

The delta function in the rhs of this expression indicates that
the random function y(t) is distributed according to the Gauss law
with the density

W y( ) � const exp − 1
2σ2

∫y2 t( ) dt[ ], σ � H3/2

2π
. (10)

The probability distribution of the function ϕ is proportional
to that of the function y(t) due to their linear relationship (8). It
means that the probability to find the specific value ϕ(t) inside
some small interval is equal to (Feynman et al., 2010)

dP ϕ( ) � constDϕ exp − 1
2σ2

∫ zϕ

zt
+ μ t( )ϕ[ ]2

dt[ ]. (11)

Let’s obtain the probability to find a quantum part of the field
ϕ2 at an instant t2 provided that a value ϕ1 at an instant t1 is
known. Evidently, we have to integrate over all values of the field
inside the interval (t1, t2) and come to the expression
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dP ϕ2, t2; ϕ1, t1( ) � const dϕ2∫ ϕ2

ϕ1

Dϕ exp − 1
2σ2

∫ t2

t1

zϕ

zt
[[

+μ t( )ϕ]2dt]. (12)

The constant factor in this equation is determined by
normalization condition

∫ ∞

−∞
dP ϕ2, t2; ϕ1, t1( )

dϕ2

dϕ2 � 1. (13)

Functional integral (12) can be calculated in the standard
manner by finding an extreme trajectory of the integral in the
exponent

€ϕ − μ2 t( )ϕ � 0, (14)

where the term _μ is neglected due to slow variation of μ(t). The
boundary conditions for (14) are as follows

ϕ t1( ) � ϕ1; ϕ t2( ) � ϕ2. (15)

Exact solution to this equation is

ϕ t( ) � A exp M t( )( ) + B exp −M t( )( ); M t( ) ≡ ∫ t

t1

μ t′( ) dt′;
(16)

A � ϕ2 − ϕ1e
−M t2( )

2 sinh M t2( )( ), B � − ϕ2 − ϕ1e
M t2( )

2 sinh M t2( )( ). (17)

Notice that M(t1) � 0 by definition.
Substituting this solution into the integral in the exponent of

the expression (12) one obtains the desired probability in the
saddle point approximation

dP ϕ2, t2; ϕ1, t1( ) � const dϕ2 exp −2A
2

σ2 ∫ t2

t1

μ2 t( )e2M t( )dt[ ]
� const dϕ2 exp −q2 ϕ2 − ϕ1e

−M t2( )( )2[ ],
(18)

q2 ≡
1

2σ2 sinh2 M t2( )( )∫ t2

t1

μ2 t( )e2M t( ) dt. (19)

It describes the probability to find specific value of “quantum”
part of the field (3). The “classical” part of the field Φcl is
incorporated into the function M(t). The probability for the
field value F (the distribution function f) is easily obtained by
substitution ϕ(t) � Φ(t) − Φcl(t) into the formula above.

f Φ2, t( ) � dP Φ2, t;Φ1, t1( )
dΦ2

�
��
q2

π

√
exp −q2 Φ2 −Φcl t2( ) − Φ1 −Φcl t1( )( )([

e−M t2( ))2]. (20)

The limit m → 0 restores the textbook formula.
The next section aims to demonstrate how the obtained

formulas can be applied to a particular scalar field potential.
It is assumed that the potential may possess many extremes of

a different kind. In our consideration, we choose a part of
phase space containing two maxima and at least one
saddle point.

3 THE PBH FORMATION

In this section, we show that the classical motion of fields together
with their quantum fluctuations influence the PBH mass spectra.
To this end, we have to find the classical trajectory and use the
probability (20) derived above.

The fields move between potential local maxima that lead to
complicated spectra of fluctuations. The latter are discussed in
papers (Wands et al., 2007; Ketov and Starobinsky, 2012). At
the same time, the presence of saddle points is the reason for
the closed domain walls formation, see details in (Gani et al.,
2018; Murygin et al., 2021). In the following, they could
collapse to black holes (Rubin et al., 2001; Belotsky et al.,
2019).

Let us consider the model of two real scalar fields with the
Lagrangian

L � 1
2

zμΦzμΦ + zμXz
μX( ) − V Φ,X( ). (21)

We choose the potential possessing n peaks and saddle points

V Φ,X( ) � m2
ϕ

2
Φ2 + m2

χ

2
X2 +∑n

i�1
δVi Φ,X( ),

δVi Φ,X( ) � Λ4
i exp − Φ − ϕi

Δi
( )2

− X − χi
Δi

( )2( ). (22)

Here, δVi describes the ith local maximum. The global
minimum of the potential is located at the point (ϕmin, χmin)
� (0, 0) with exponentially small errors. Hereinafter, all variables
are taken in the Hubble units H where H ≈ 1013 GeV at the
inflationary epoch.

For our estimates, we choose the fields massesmϕ � 0.4 andmχ

� 0.5. For simplicity, we consider the potential with two peaks
(n � 2) with the coordinates ϕ1 � − 9.0, χ1 � 3.0 and ϕ2 � − 1.7, χ2
� 4.5. The parameters corresponding to the peaks heights areΛ1 �
3.0 andΛ2 � 1.5, and the peaks widths are set with Δ1 � 0.5 and Δ2

� 1.5. The initial fields values are ϕin � − 8.0 and χin � 45.0. Note,
all chosen parameters have the values ∼ O(1).

Following Section 2, the first step consists of finding the
classical trajectory Φcl(t), Xcl(t) of the fields Φ, X. Starting
from the initial values (ϕin, χin) at the inflation epoch, the
scalar fields tend to the potential minimum. The process is
described by the classical motion equations

Φcl,tt + 3HΦcl,t + zV Φcl,Xcl( )
zΦcl

� 0,

Xcl,tt + 3HXcl,t + zV Φcl,Xcl( )
zXcl

� 0.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (23)

The classical evolution of the fields and the form of the specific
potential are shown in Figure 1. At the same time, quantum
fluctuations lead to fields “diffusion” during inflation. The
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probability density f to find the fields F or X in any point of the
physical space is given by (20).

Both F and X distributions depend on a classical position of
the fields at the instant t. In our estimates, we suppose that the
probability function for the quantum parts ϕ or χ of the fields is
separated into two independent fluctuation processes

f t, ϕ, χ( ) � fϕ t,ϕ( )fχ t, χ( ) � dP
dϕ

dP
dχ

, (24)

where distribution functions of each field ϕ, χ can be defined as
in (18).

As noted above, the fields should reach a saddle point of
potential for domain wall formation. Suppose that some quantum
fluctuation crosses a saddle point and ends up at a point of the
areaO. As was shown in (Gani et al., 2018;Murygin et al., 2021), it
causes nontrivial field solutions of the system (23) characterized
by a nonzero winding number. Such configurations might lead to
the domain walls formation after the inflation is finished. Detailed
explanation might be found in (Gani et al., 2018). The calculation
of an exact shape of the area O is a separate, quite complicated
task, so that we limit ourselves with the following approximation.
Let us assume that the area O is bordered by two lines χcl-sp(Φ)
and χmin −sp(Φ) in the phase space. The first line connects the
classical value at the instant t and the saddle point (ϕsp, χsp)

χcl−sp Φ( ) � χsp +
Φ − ϕsp

ϕcl t( ) − ϕsp

χcl t( ) − ϕsp( ). (25)

The second one connects the vacuum value and the saddle
point

χmin−sp Φ( ) � χsp +
Φ − ϕsp

ϕmin − ϕsp

χmin − ϕsp( ). (26)

Thus, the probability for the fields to attain the area O where
domain walls might form is calculated by integrating (24)

P t( ) � ∫∫
Ω

f ϕ, χ, t( ) dX dΦ

� ∫ +∞

ϕsp

fϕ ϕ, t( ) dΦ∫ χmin−sp Φ( )

χcl−sp Φ( )
fχ χ, t( ) dX. (27)

Here, both distribution functions fϕ and fχ are defined in (20)
and according to (3) ϕ � Φ − Φcl, χ � X − Xcl. The algorithm for
calculating the probability (27) discussed above is more accurate
then that used in the previous papers.

Now, let us find the mass spectra of primordial black holes. In
the considered model, they are formed due to the collapse of
domain walls. Here, we briefly reproduce the idea, while
details may be found in the review (Belotsky et al., 2019).
As was shown in (Gani et al., 2018; Murygin et al., 2021),
domain walls might be formed due to the quantum
fluctuations in field models with potential possessing at
least one saddle point and a local maximum. The proto-
soliton is formed if the fields achieve a saddle point (in our
model, we have noted this area as Ω). These proto-soliton
field configurations are quickly expanded during inflation.
The final scale of such configuration depends on an e-fold
number N. More definitely, the configuration scale is
stretched in the factor ∼ eNinf−N to the end of inflation.
The soliton is quickly formed after the end of inflation.
The total mass of the field configuration is proportional to
its area. It could collapse into a black hole after the end of
inflation (Rubin et al., 2000; Rubin et al., 2001; Khlopov et al.,
2002).

The regions number where the fields reach the critical values
ϕcr and χcr belonging to O can be found as

n t( ) � P t( ) e3Ht. (28)

Here, the term e3Ht is the number of causally independent
regions of the size H−1 at the instant t from the beginning of
inflation. After the end of inflation at t �NinfH

−1 � 60H−1, the size
of each region is expanded

r0 t( ) � H−1 exp Ninf −Ht( )≫ rh,0. (29)

FIGURE 2 | The PBH mass distribution is shown.

FIGURE 1 | The contour plot of the potential (22) with the parameters
m1�0.4,m2�0.5, Λ1�3.0, Λ2�1.5, ϕ1�−9.0, χ1�3.0, ϕ2�−1.7, χ2�4.5, Δ1�0.5,
Δ2�1.5 is shown. The red circles illustrate the classical trajectory of the fields
Φ, X, and the black cross shows the potential minimum. The initial fields
values for (23) are ϕin �−8.0 and χ in �45.0.
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Here, Ninf ≈ 60 is the total e-folds number, and rh,0 is the
horizon size at the end of inflation. At the radiation stage
(RD), each region expands as ∝

�
τ

√
while the horizon size is

rh �H−1(τ) � 2τ. Here, τ is time after the beginning of the RD
epoch. After a domain wall goes under the horizon, its
collapse begins (the details of the process taking into
account detachment from the Hubble flow may be found
in (Khlopov et al., 2005; Dokuchaev et al., 2008; Belotsky
et al., 2019)). Thus, the maximal size of a domain wall can be
written as the function of the instant t

r t( ) ≈ 1
2
e2 Ninf−Ht( )

HNinf
. (30)

After eliminating of t from (28) and 30, one can finally get the
distribution n(r) of closed walls sizes which can be rearranged
into the mass spectrum.

Next, we have to find masses of PBHs. For simplicity, we
assume total energy of domain wall converts to a black hole
mass during its collapse and neglect nonsphericity of a
domain wall and losses caused by gravitational waves. The
energy density of a domain wall might be found by a common
way. The energy momentum tensor for the Lagrangian (21) is
given by

Tμ
] � ∑

i�1,2
zμφi z]φi −

1
2
zαφi zαφiδ

μ
]( ) + V δμ] , (31)

where φ1, φ2 correspond to the fields Φcl and Xcl, respectively.
Then, the energy density of a domain wall is found to be

ε x( ) � T0
0 �

1
2

∑
i�1,2

ztφi( )2 + zxφi( )2( ) + V. (32)

Upon integrating (32) over the all possible values of x (infinite
interval), the surface energy density of a domain wall σ may be
found. Finally, masses of black holes are M(r(t)) ≃ 4πσr2(t).
Taking into account (28) and (30), one can find the mass
spectrum of primordial black holes. The PBH mass
distribution for the parameters of the Lagrangian (21) is
shown in Figure 2. Note, the mass spectrum has the non-
power form due to taking into account both the quantum and
classical motion of scalar fields and the compound form of the
potential leading to nontrivial classical fields trajectory. The
obtained spectrum is free from the overproduction of light
PBHs and, therefore, is much more adaptable to new

observational effects. We leave a detailed analysis of these
possibilities for future research.

4 CONCLUSION

In this note, we have shown that the mechanism of PBHs
formation in the second-order phase transitions of scalar fields
might produce a wide variety of the PBH mass spectra. It is
expected that observations (e.g. cosmic gamma-rays, gravitational
waves spectrum (Sakharov et al., 2021), gravitational lensing
(Toshchenko and Belotsky, 2019)) will help to select an
appropriate one. The key point is the classical field motion
which was taken into account together with the quantum
fluctuations at the inflationary stage. We show here that the
probability to find a particular value of the scalar field at a space
point depends on its classical dynamics. We have derived the
appropriate analytical formula and have applied it to obtain one
of the PBHmass spectra. The elaborated method is the useful tool
to fit an observable spectrum in the near future.
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