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By using 2.5-dimensional resistive MHD simulations, dynamics of the plasmoid instability in
a Harris current sheet has been studied with taking into account two main controlling
parameters: the plasma-β in the range (0 < β < 1) and the amplitude ratio of magnetic guide
field to the reconnection plane field in three different cases with zero, uniform, and non-
uniform guide field. Varying the plasma-β changes the plasma compressibility which
affects significantly on the linear and nonlinear growth rates of the plasmoid instability. For
each of three cases, some associated scaling relations between the instability growth rate,
the plasma-β and the magnitude of guide field are obtained.
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1 INTRODUCTION

Magnetic reconnection is a fundamental phenomenon in highly conductive magnetized plasmas
such as space and astrophysical plasmas in which the magnetic energy is abruptly released and
converted to the heating and kinetic energies as well as the acceleration of particles. Magnetic
reconnection takes place in narrow regions where the frozen-in-flow constraint breaks down. As a
result the field lines cut and reconnect to each other continuously and the large scale topology of
magnetic field lines changes significantly (Birn and Priest, 2007; Yamada et al., 2010; Priest and
Forbes, 2000; Gonzalez and Parker 2016).

The initial steady-state classical models of the magnetic reconnection process were discussed in
MHD framework in two-dimensional by Sweet-Parker and Petschek models. In high Lundquist
numbers, S � LvA/η (L is the system size, vA( � B0/

����
μ0ρ0

√ ) is the Alfvén velocity and η is the magnetic
diffusion) when the Lundquist number exceeds a critical value (Sc ≃ 104) (Biskamp, 1986) the
elongated thin current sheet is fragmented and new X-points (reconnection site) are generated.
Therefore, multiple X-points and secondary magnetic islands fill the current layer. These magnetic
islands merge with each other and form a larger islands. This type of MHD instability is known as
“Plasmoid instability” (Bhattacharjee et al., 2009). The formation of plasmoids leads to a
reconnection rate much faster than that predicted by previous models (Huang and
Bhattacharjee, 2010; Uzdensky et al., 2010; Comisso et al., 2015; Comisso and Grasso, 2016).
For weakly collisional systems such as solar corona, the Lundquist number is very large (∽ 1012–1014)
and hence, the growth of plasmoid instability in elongated current sheets of solar flares are expected
(Comisso et al., 2016; Comisso et al., 2017).

Numerical simulation of the magnetic reconnection event plays a crucial role in the conception of
plasmoid instability dynamics and what happens inside the current sheets. Hence, in the last decade,
the study of numerical simulation of the plasmoid instability was interested (Huang and
Bhattacharjee, 2013; Loureiro and Uzdensky, 2015). Some of these studies are MHD simulation
in two (Yu et al., 2010; Murphy 2010; Bárta et al., 2008) and three dimensions (Ugai 2008;
MacTaggart and Fletcher, 2019). These simulations have uncovered some new aspects of the non-
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linear evolution of magnetic reconnection and plasmoid
instability. In addition, the plasmoid instability has also been
observed and discussed in many kinetic simulations (Stanier
et al., 2019; Daughton and Karimabadi, 2007) and also there is
tentative observational evidence (Bemporad 2008) that plasmoid
might play a key role in the dynamics of magnetic reconnection.
Theoretically, plasmoid formation has been proposed as a
mechanism of fast reconnection (Lapenta 2008; Daughton
et al., 2006) and non-thermal particle acceleration in
reconnection related events (Drake et al., 2006).

In MHD numerical simulations, some physical parameters
play a major role in the dynamics of plasmoid instability and
magnetic reconnection. Some publications have considered the
effects of some main parameters on the plasmoid instability such
as plasma viscosity (Comisso, et al., 2015; Comisso and Grasso,
2016), asymmetric magnetic field (Murphy et al., 2013), shear
flow (Hosseinpour et al., 2018) and non-uniform plasma mass
density in two sides of the current layer (Doss et al., 2015; Birn
et al., 2008). Besides, magnetic and plasma pressure play
important roles in MHD studies. The ratio of plasma pressure
to the magnetic pressure is described by the plasma-β(≡ pplasma/
pmag). This parameter in the upstream region is a key parameter
in the reconnection dynamics and might vary from β > 1 in the
photosphere at the base of the field line to β ≪ 1 in the mid-
corona (Gary 2001).

In many of the researches on the plasmoid instability, the
plasma-β effect has been ignored (Hosseinpour et al., 2018; Dong
et al., 2018; Huang et al., 2017) and it is usually considered a

constant and large. Hence, the β effect is not clear yet on the
plasmoid dynamics. So, it is important to understand the physics
of the plasmoid instability with various β values. The β effect not
only shows itself in the linear phase of the instability but also in
the nonlinear phase. The Lundquist number depends on the β
and in the linear stage is proportional to β as S ∝ β−1/2.

Ni et al. (2012) and Baty (2014) with considering Harris
current sheet configuration investigated the effect of plasma-β
on the critical Lundquist number, Sc, for the onset of the plasmoid
instability. In an initially uniform temperature configuration, Ni
et al. (2012) concluded that the critical Lundquist number is
strongly dependent on the plasma-β and claimed that the Sc varies
between 104 for β � 0.2 and 2000 for β � 50. Also, Baty (2014)
with changing plasma resistivity (η), investigated the effect of
varying plasma-β (0.2–15) and the equilibrium structure
(uniform temperature or uniform density) on the plasmoid
instability in a Sweet-Parker like layer. They found that the
critical Lundquist number depends on the β, and indicated
that for higher β, the critical Lundquist number is smaller.
Also, the simulation results of Ni et al. (2012) showed that the
reconnection rate for larger β is higher than smaller β, and the
current sheet becomes turbulent earlier in larger β. To reach this
conclusion they used β � 0.2, 1, 5, 50. Recently Zenitani and
Miyoshi (2020) investigated the properties of plasmoid instability
for β � 0.2, 1, 5. They showed that the reconnection rate increases
as β decreases.

Many physical systems observed in laboratory experiments,
space and astrophysical plasmas can be modeled as a simple

TABLE 1 | Dependence of the main parameters on the initial plasma-β

β P (Initial pressure) ρ (Plasma mass density) vA (Alfvén velocity) S (Lundquist number)

0.1 0.05 0.045 4.69 2.1 × 105

0.2 0.1 0.090 3.33 1.5 × 105

0.4 0.2 0.142 2.65 1.2 × 105

0.6 0.3 0.187 2.31 1.0 × 105

0.8 0.4 0.222 2.12 9.5 × 104

1.0 0.5 0.25 2.0 9.0 × 104

FIGURE 1 | Time variation of magnetic reconnection for different values of β.
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current sheet with a magnetic field reversal (Harris sheet). A
current sheet in the solar corona is one of the few concrete
examples of solar applications where force-free state is possible,

which is not necessary the case in other applications. However,
often additional component of the magnetic field need to be
considered. In the Earth’s magnetopause, there is an out-of-plane

FIGURE 2 | Magnetic field lines at different times of plasmoid instability for β � 0.2. (A): t � 5, (B): t � 30, (C): t � 50, (D): t � 65 and (E): t � 85, (F): t � 105.
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magnetic field (referred to as guide field) of strength comparable
to the lobe field on either side of the Harris sheet. The magnetic
reconnection in the presence of a guide field is an important issue

in magnetospheric physics. In astrophysical systems, such as jets
from acceleration disk, the magnetic field is believed to be
primarily aligned with the current and can be represented by

FIGURE 2 | Continued.
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Harris sheet with a very strong guide field much larger than the
reconnection plane field. Additionally, in magnetic confinement
fusion devices, reconnection develops in the presence of strong

toroidal fields and the configuration can be represented by a
Harris sheet in the poloidal plane with a strong guide field in the
toroidal direction.

FIGURE 3 | Magnetic field lines for different values of beta at t � 95 for (A): β � 0.1, (B): β � 0.2, (C): β � 0.4, (D): β � 0.6, (E): β � 0.8 and (F) β � 1.0.
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The presence of guide field has been shown to be important for
particle acceleration issue (Zenitani and Hoshino, 2008; Hamilton
et al., 2003; Li and Lin, 2012) and also is widely considered in kinetic

simulations (Inoue et al., 2015; Fu et al., 2007; Huang et al., 2011),
which have shown that the strength of the guide field controls the
growth of secondary magnetic islands and can evidently alter not

FIGURE 3 | Continued.
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only the trajectory of the particles but also the structure of the electric
and velocity fields in the vicinity of the reconnection region. These
simulations showed that the reconnection rate decreases with the
guide field. The dependence ofHall mediatedmagnetic reconnection
dynamics on the guide field is also investigated (Yang et al., 2008;
Huba 2005), and found that the reconnection rate and plasma
energization are reduced by increasing the guide field strength. In the
MHD scale, the guide field effect on the plasmoid instability is very
different from the results of the kinetic simulations (Ni et al., 2013).
However, in 3DMHD simulations it has been shown that the guide
field makes the reconnected field lines, as well as the jet, inclined

from the current sheet normal direction, and also the guide field acts
as an obstacle to the jet formation (Huang and Bhattacharjee, 2016;
Hashimoto et al., 2005).

In spite of many related simulation works, there are still some
unambiguities regarding the detailed effects of the plasma-β and the
guide field on the plasmoid instability. Therefore, in this work, we
investigate the effect of plasma-β in the range (β ≤ 1) with and
without a guide field on the dynamics of plasmoid instability. Three
different cases are considered: A: with a zero guide field, B: with
uniform guide field and C: with non-uniform guide field. It should
be mentioned that the effect of plasma viscosity is ignored in our
study by ignoring the respective term in MHD equations. The effect
of plasma viscosity on the dynamics of plasmoid instability has
already been discussed in detail by Comisso, et al., 2015, Comisso
and Grasso, 2016. They have shown that plasma viscosity has the
effect of decreasing the linear growth rate and thewavenumber of the
instability. However, despite its damping effect, for very high
Lundquist numbers the plasmoid instability turns out to be very
rapid in the linear regime. The initial temperature is assumed to be
uniform. Therefore, the initial plasma density and pressure are
strongly dependent on the plasma-β. The paper is organized as
follows. In Section 2, the basic MHD equations, numerical setup,
and initial condition are described. In Section 3, numerical results
are presented. A summary and a short discussion of the results are
then given in Section 4.

2 EQUATIONS AND NUMERICAL MODEL

The compressible single-fluid resistive MHD equations are solved
by using the OpenMHD code being developed by Zenitani (2016)

FIGURE 5 | Time variation of magnetic reconnection for different values of Bg for β � 0.4.

TABLE 2 | Dependence of the physical parameters on the uniform guide field for β � 0.4 and β � 1.0

Bg (uniform guide field) β = 0.4 β = 1.0

P vA S P vA S

0.1 0.195 2.67 1.2 × 105 0.495 2.01 9 × 104

0.3 0.155 3.0 1.35 × 105 0.455 2.09 9.4 × 104

0.5 0.075 4.32 1.94 × 105 0.375 2.30 1 × 105

FIGURE 4 | Instability growth rate with β.
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to investigate the dynamics of the plasmoid instability in 2.5-
dimensional cartesian coordinate system. The basic equations are

ztρ � −∇.(ρ.V), (1)

zt(ρV) � −∇.[ρVV + ptotI − BB], (2)

ztϵ � −∇.[(ϵ + ptot)V − (V.B)B + ηj × B], (3)

ztB � −∇.(VB − BV) − ∇ × (ηj), (4)

E + V × B � ηj, (5)

which are written in conservation-law form. Here, ρ, V, B, I, j, η
are the plasma mass density, the flow velocity, the magnetic field,
the unitary tensor, the electric current density and the magnetic
diffusivity, respectively. The ptot � p + B2/2 is total pressure and ϵ
� p/(Γ − 1) + ρv2/2 + B2/2 is total energy density. For the
convenience of numerical calculations, all variables are
normalized. For this purpose, the plasma mass density is
normalized to the initial plasma mass density (ρ0), the
magnetic field to the initial magnetic field (B0), the flow
velocity to the Alfvén velocity (VA), the electric current
density to L0B0/μ0 and resistivity to L0vA. Note that, L0 is the

length scale of the system and all spatial variables are normalized
to L0. We set the adiabatic index Γ � 5/3. All variables are function
of space (x, y) and time (t) and the variation of variables in the
z-direction is ignored, z/zz � 0. Equations 1–5, are solved by a
Godunov-type code. The code employs the HLLD scheme
(Miyoshi and Kusano, 2005) to calculate numerical fluxes. The
second-order Runge-Kutta method is used for time marching.
Also, the hyperbolic divergence cleaning method (∇.B � 0) is
employed for the solenoidal condition (Dedner et al., 2002).
Moreover, the time step is based on convective and diffusive
CFL condition. Our simulations are carried out in the x − y plane.
The size of simulation box is set to be x � [ − 90, 90] and y � [ − 9,
9]. The number of grid points areNx � 3,000 and Ny � 300 so that
the grid sizes are Δx � 2Lx/Nx � 0.06, Δy � 2Ly/Ny � 0.06. We set
open boundary condition at x � ±Lx direction, so that the
reconnected field lines can leave boundaries freely. On the
other hand, conducting boundary condition is considered for
the bottom y � − Ly and top y � + Ly boundaries.

An initial Harris current sheet is used in the form (B � [Bx,
0, Bz]):

FIGURE 9 | Scaling of outflow velocity with uniform guide field.

FIGURE 8 | Time variation of maximum outflow velocity with uniform
guide field.

FIGURE 6 | Instability growth rate with uniform guide field for β � 0.4 and
β � 1.0.

FIGURE 7 | Magnetic energy variation with uniform guide field.
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Bx(y) � B0 tanh
y

aB
( ), By � 0, Bz(y) � Bg, (6)

where B0 � 1.0 is initial asymptotic magnetic field strength and aB
� 0.7 is the half width of the current sheet in the initial geometry.
Bg is the guide field that is perpendicular to the reconnection
plane. Initial plasma velocity is zero.

The initial static pressure, P, is obtained by solving the
equilibrium equation and is given by:

P(y) � 1
2
[B2

0(1 + β) − (B2
x + B2

z)]. (7)

Assuming the isothermal equation of state (P � 2ρT) and
solving the above Equation 7, the initial plasma mass density is
satisfied as follows:

ρ(y) � P(y)
1 + β

. (8)

The initial plasma pressure (Eq. 7) and plasma density (Eq. 8)
depend on the plasma-β( � 2ρT/B2

0). In these simulations, the initially
isothermal condition is used so that the variation of plasma-β is
associated with the variation of plasma mass density in the upstream
region. Also, in theMHD scale, the guide field appears as a term in the
pressure equation. Hence, the Alfvén velocity is determined by both
the plasma-β and the strength of the guide field. In all our simulations,
the time is normalized with the Alfvén transit time scale τA � aB/vA.
On the other hand, to achieve fast reconnection the initial resistive
disturbance is set during 0 < t< 5 as η � η0 exp [ − (x

2 + y2)] where η0
� 0.025. As a result, an X-point is formed at the origin (x � y � 0).
However, for t > 5, a uniform resistivity η � 2 × 10–3 is assumed.

3 SIMULATION RESULTS

In this section, we discuss three different cases: A: instability with
a zero guide field (Bg � 0) where the effect of plasma-β in the

FIGURE 13 | The maximum reconnection rate for three cases.

FIGURE 12 | Instability growth rate in presence of non-uniform
guide field.

FIGURE 11 | Time variation of magnetic reconnection for different values
of β in presence of non-uniform guide field.

FIGURE 10 | The initial gas andmagnetic pressures, and the structure of
the magnetic fields.
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range (0.1 ≤ β ≤ 1) is addressed. B: instability with a uniform
guide field where Bg � 0.1, 0.3, 0.5B0 and β � 0.4, 1.0 is assumed. C:
instability with the non-uniform guide field with β � 0.1, . . . , 1.0.

3.1 Instability With Zero Guide Field (Bg = 0)
In the first step, we consider the case without the presence of any
guide field and discuss the growth of plasmoid instability with
different values of plasma-β. The subsequent variation of main
plasma parameters in the inflow region, such as (p, ρ, vA, S) with
plasma-β is shown inTable 1. For all cases inTable 1, the Lundquist
number is larger than the critical value (S > Sc), so the plasmoid
instability is expected to be triggered in the current sheet.

We diagnose the magnetic reconnection rate during plasmoid
instability with taking the average of the electric field component
perpendicular to the reconnection plane, Ez, on the y � 0 line:

Ez � |ztψ(t)|, (9)

Where ψ is the reconnected flux function defined by B �
∇ψ(x, y) × ẑ. The reconnection rate is normalized to B0vA. The
time evolution of the reconnection rate for different values of β(�
0.1, 0.2, 0.4, 0.6, 0.8, 1.0) is shown in Figure 1, in which different
linear and non-linear phases of instability can be distinguished.
As can be seen, in both linear and non-linear phases, the
reconnection rate decreases as plasma-β increases. This means
that it will take a much longer time for the system to develop
plasmoid instability and the subsequent transition to the
nonlinear stage occurs at longer time scales. Here, larger β
corresponds to higher density plasmas (see Table 1) with
more flow incompressibility which results in a slow reconnection.

For smaller β cases (β � 0.1, 0.2) where the system transits
faster into the non-linear phase, we find that the fast reconnection
evolution becomes more drastic. To better understand the growth
of plasmoid instability in the current layer, we consider a case that
includes linear, transition, and non-linear phases, i.e. β � 0.2 (case
b in Figure 1). Figure 2 shows the contour plots of the magnetic
field lines at different phases according to plot b in Figure 1. From
Figure 2 we can see that how the primary current sheet becomes
unstable to plasmoid instability which is eventually filled with
multiple X-points and O-points.

Figures 2A,B are plotted in the linear phase. The initial
X-point of Figure 2A is transformed into an elongated Sweet-
Parker current sheet, while Figure 2C (at time t � 45) represents
the transition state to the non-linear stage. New X-points are
formed around the original O-point and in continue a small
magnetic island, which its size is small compared to the width of
current sheet (aB � 0.7) grows (Figure 2D). Figure 2E represents
the field lines in the non-linear regime. Following the transition
into the non-linear phase at t > 60 (for β � 0.2) the secondary
magnetic islands are generated. As a result, theymerge and form a
larger magnetic island. As the merging of magnetic islands
continues, a large size plasmoid, named “monster plasmoid”,
can be produced whose size even exceeds the scale length of
magnetic shear. Note that, inside plasmoid, high density and so
high-pressure plasma is enclosed.

We now discuss the effect of different values of β on the
dynamics of plasmoid instability by using contour plots of

magnetic field lines. These contour plots are coordinate with
the reconnection rate plots in Figure 1. Figure 3 shows the
magnetic field lines for different values of β at the same time, t �
95. Figures 3A,B correspond to β � 0.1 and 0.2 show that the
secondary magnetic islands form inside the current sheet and so
the plasmoid instability developed at there. Since the β is low in
these cases, the small plasma compressibility leads to increased
reconnection rate, and thus the current sheet becomes unstable.
The oscillations of reconnection rate decrease as β increases in the
nonlinear phase. Each peak in the reconnection rate plot is related
to the generation of new X-points where the dissipation of
magnetic energy is significant. As the plasma-β increases the
plasmoid instability growth rate decreases and the plasmoid
generation turns out to be slower. This point can be seen from
the size of the monster plasmoid in different panels of Figure 3.
According to Figure 3, we see that in cases with smaller β, the
magnetic field lines are piled up around the outflow regions.
Therefore, the plasma outflow jets are ejected more rapidly due to
the high pressure behind the plasma outflow jet, inside the
islands.

Figure 4 shows the variations of the logarithmic average of
reconnection rate (Ln dER

dt ) with β in the linear phase of the
plasmoid instability in the time range (∼ 40 < t < ∼ 60) where
the growth rate increases almost linearly with time for all β cases.
In fact, measurements have been done at t ∼ 50. The blue squares
correspond to the numerical values at the beginning of the
transition phase (where the primary plasmoid is born in the
origin of the current sheet and its size is smaller than the width of
the initial current layer). The red dashed line also represents the
quadratic fitted curve (scaling) of the numerical values obtained
in this simulation, which is a scaling of the growth rate of the
plasmoid instability in the linear phase. At the beginning of the
transition phase where the primary plasmoid appears, the scaling
is found to be:

c ≡ ln
dER

dt
≃ a(β + b)2 + c, (10)

where the coefficients are a � 0.51, b � − 2.74 and c � − 12.14. As a
result, it can be seen that in plasmas with lower compressibility (a
case with the higher β), the plasmoid instability growth rate also
decreases following a reduction in the reconnection rate. Also, at
the longer times (when the primary magnetic island grows), the
growth rate of instability decreases faster.

3.2 Instability With Uniform Guide Field
In this section, we consider the presence of the uniform guide
field and discuss the effect of this magnetic field on the dynamics
of plasmoid instability. Different values of uniform guide field
assumed in our study: Bz � Bg � 0.1, 0.3, 0.5B0. Due to the
dependence of the initial plasma pressure to the guide field in our
model (Eq. 7), plasma pressure decreases in the current sheet and
upstream region with increasing the magnitude of the guide field.
For a better understanding of the uniform guide field effect on the
physical parameters, we consider β � 0.4, 1.0 in Table 2. In all of
cases shown in Table 2, according to Eq. 7, and Eq. 8, increasing
the magnitude of the guide field leads to increase in the Alfvén
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velocity and the Lundquist number. Therefore, it is expected that
as the Lundquist number increases, the magnetic reconnection
rate will increase. Figure 5 shows the magnetic reconnection rate
for β � 0.4 with different values of the guide field. In a weak guide
field (Bg � 0.1B0), the system behaves similar to the case of zero
guide field (Bg � 0), but in the medium one the rate of magnetic
reconnection increases, and for Bg � 0.5B0 the nonlinear stage
appears faster, which means that the plasmoid instability
developed and the secondary magnetic islands are formed in
the current layer.

For all cases (β � 0.1, 1.0 and Bg � 0.1, 0.3, 0.5B0), the
simulations are carried out. The results show that increasing
the strength of the uniform guide field not only leads to the rise in
the maximum reconnection rate, but also the linear phase of the
system becomes shorter. Also, for all cases β > 0.4 and Bg � 0.5B0,
although, the Lundquist number is greater than the critical value
(S > Sc), the nonlinear phase was not observed, and secondary
plasmoids do not form in the current layer, because in high β
systems the plasma pressure is high at the center of the current
sheet and the plasma behaves like an incompressible plasma
which suppresses up to some extent the plasmoid instability.

We now present a scaling for the growth rate of instability.
Figure 6 shows the effect of the uniform guide field on the growth
rate of instability for β � 0.4, 1.0 and Bg � 0, 0.1, 0.3, 0.5B0.
Therefore, it can be seen that the presence of a guide field leads to
an increase in the growth rate of instability for both β values. The
blue stars and the blue diamonds represent the numerical values
obtained from the simulations, and the red dashed lines are the
quadratic fitted curve as a scaling of the instability growth rate as:

c ≡ ln
dER

dt
≃ a(Bg + b)2 + c, (11)

with a � − 3, b � − 0.55, c � − 7.9 for β � 0.4 and a � − 2.5,
b � − 0.64, c � − 8.9 for β � 1.0.

The variation of magnetic energy with uniform and zero guide
fields are shown in Figure 7 which is normalized to the initial
magnetic energy. As we know, the magnetic reconnection process
is a mechanism to convert the stored magnetic energy to plasma
kinetic and thermal energies.With an increased reconnection rate
by applying the uniform guide field, the conversion of the
magnetic energy becomes faster. This point is clear from Figure 7.

Figure 8 shows the time variation of the maximum outflow
velocity at the X-points (Vx,out) in the presence of different values
of the uniform guide field. In all three cases of the uniform guide
field, the plasma outflow velocity from X-points increases until
the system reaches the saturation state. After that, due to the
increase of pressure in the outflow regions, the velocity slows
down and becomes uniform. In general, as shown in Figure 8, the
maximum outflow velocity increases with increasing guide field
and around X-points is of the order of the Alfvén velocity.

Now, we are looking to find a scaling relation for variation of
the maximum outflow velocity in different values of the guide
field. Figure 9 shows the variation of the Vx,out with uniform Bg in
our simulations. Plots are considered for two cases. The first case
(red squares) is for the maximum outflow velocity between t1 � 65
and t2 � 75, while the second case (blue stars) is the maximum

outflow velocity between t2 � 75 and t3 � 85. In both cases, the
maximum outflow velocity increases as the uniform guide field
increases. The dashed lines in Figure 9 represent theVx,out scaling
with the uniform Bg, which has been obtained from the quadratic
fitted curve of the numerical values:

Vx,out ≃ a(Bg + b)2 + c (12)

with a � 8.9, b � − 0.13, c � 2.15 for t1 < t < t2 curve and a � 8.7, b �
− 0.13, c � 2.3 for t2 < t < t3 curve.

3.3 Instability With the Non-uniform Guide
Field
Now, we discuss the effect of non-uniform guide field. Note that
the general structure of three components of the initial
equilibrium of the magnetic field is in the form
B2
x + B2

y + B2
z � B2

0, where By � 0 and B0 � 1.0. Therefore, in
our study we consider the non-uniform guide field as:

Bg � Bz �
�������
B2
0 − B2

x

√
. (13)

As we have described in Section 2, Eq. 7, we obtain the initial
plasma pressure as:

P(y) � β

2
. (14)

Hence, for the case of non-uniform guide field the initial
plasma pressure and so the plasma density are uniform
everywhere.

The initial profiles of the plasma pressure (p), magnetic
pressures (B2

x/2, B
2
z/2), reconnection plane magnetic field (Bx),

guide field (Bz) and total pressure (Pt � P + B2
x/2 + B2

z/2) are
shown in Figure 10 for β � 0.1 and 1. The total pressure
remains constant inside and outside of the current layer. In
our study, the uniform temperature was assumed. Accordingly,
the variation of β results from the change in density, so in the
presence of the non-uniform guide field the plasma pressure and
the plasma density only dependent on the β. The magnetic
pressure due to the non-uniform guide field reaches its
maximum value in the center of the diffusion region.

The reconnection rate plots are shows in the presence of the
non-uniform guide field for different β in Figure 11. As seen,
similar to the previous cases, the reconnection rate decreases by
increasing the plasm-β. The presence of a non-uniform guide
field makes much shorter the linear phase of the instability
compared to previous cases (with zero and uniform guide
field) for all β cases. Therefore, the instability rapidly enters
the transition phase, and the initial plasmoid is generated and
grows in the center of the current sheet. Unlike the previous cases,
when a non-uniform guide field is added to the reconnection
plane, the system cannot enter the nonlinear phase due to the
increased magnetic pressure caused by the guide field in the
center of the current layer, except β � 0.1 case, so secondary
magnetic islands do not form in the current layer. Over time, the
primary plasmoid grows, and when the width of the primary
plasmoid is much larger than the width of the current layer, the
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system becomes saturated, and then the reconnection rates
decrease.

Figure 12 shows the linear growth rate of the plasmoid
instability with β with a non-uniform guide field. As expected,
the growth rate of the instability decreases as β increases. By
comparing this case with the case A (without the guide field),
we find that due to the presence of the non-uniform guide field,
the decreasing slope of the linear instability growth rate is
sharper. From the numerical values obtained in this simulation
(blue stars) and quadratic fitted curve (red dashed line) in
Figure 12, we can calculate the scaling of the linear growth
rate as:

c ≡ ln
dER

dt
≃ a(β + b)2 + c, (15)

where the coefficients are a � 1.5, b � − 1.4 and c � − 10.14. The
coefficient a in the quadratic equations expresses the slope of the
parabolic graph, and its sign is related to its direction. According
to the scaling equations for the instability growth rate in cases A
and C, this coefficient increases with the presence of the guide
field. Also, in case B, the presence of the medium guide field has
led to an increase in this coefficient.

4 SUMMARY AND CONCLUSION

In this study, the plasma-β effect in the range of β(� 0.1, 0.2, 0.4, 0.6,
0.8, 1.0) is investigated on the dynamics of plasmoid instability as a
fundamental parameter in the magnetic reconnection with and
without guide field. We used 2.5-dimensional MHD simulations
and considered a standardHarris current sheet profile to establish an
initial equilibrium. We added a magnetic field component
perpendicular to the reconnection plane (so-called “guide field”)
to the standard Harris current sheet. Three different cases was
considered: case A: instability with zero guide field, case B:
instability with the uniform guide field (Bg � 0.1, 0.3, 0.5B0) and
case C: instability with the non-uniform guide field
(Bg �

�������
B2
0 − B2

x

√
). In the early times, a non-uniform localized

resistivity was applied to trigger a Petschek type reconnection at
the origin. Latter, a uniform resistivity was set which corresponds to
a Lundquist number sufficient for the plasmoid instability. The
Petschek structure is shortly converted to an elongated thin Sweet-
Parker layer, which is subsequently fragmented to multiple X- and
O-points (magnetic islands). Then, secondary magnetic islands
merge and produce larger plasmoids. In these simulations, the
temperature is assumed to be uniform and the plasma mass
density profile was obtained from the initial equilibrium
condition. The plasma mass density profile has a gradient from
the upstream region to the center of the current sheet, thus the
plasma mass density is non-uniform and β dependence could be
largely attributed to the density variation. Therefore, as β increases
the Alfvén speed and the Lundquist number decrease, but in all of
our simulations, the Lundquist number is greater than the critical
Lundquist number (Sc£104).

The simulation results can be listed as follows: 1. From case A,
we found that the plasma-β leads to change in reconnection rate
and growth rate of the plasmoid instability by affecting the

plasma compressibility. Plasma compressibility decreases with
increasing β, so the reconnection rate slows down, and the linear
phase of the system becomes longer, which means a longer time is
needed to achieve instability. For β > 0.2 cases, in which the
Lundquist number is greater than the critical value (S > Sc), the
nonlinear stage is not observed, and secondary magnetic islands
do not form. Also, the growth rate of instability (Eq. 10) decreases
with increasing β. 2. By adding the uniform guide field (Bg � 0.1,
0.3, 0.5B0) (case B), we saw that the weak guide field (0.1B0) does
not much affect on the reconnection process, but for the larger
guide fields (0.3B0 and 0.5B0) the reconnection rate increases and
the system becomes unstable faster. In particular, for the β � 0.4
case, the medium guide filed (0.5B0) was investigated in detail.
Comparing this case with the case of zero guide field showed that
in the presence of the guide field the reconnection rate increases,
and the system reaches the nonlinear phase, so the secondary
magnetic islands are generated. For β > 0.4 cases, although the
Lundquist number is larger than the critical value, but due to the
significant flow incompressibility, the nonlinear stage is not
observed at time scales on the order of previous cases.
Moreover, according to Figure 8, by comparing the maximum
outflow velocity (Vx,out), we found that Vx,out increases with
increasing the uniform guide field, and we obtained the
respective scalings. In the last case (case C), the non-uniform
guide field was added. This guide field leads to a constant pressure
and density everywhere. The magnetic pressure due to the guide
field in the current sheet is an obstacle to the reconnection
process. However, the linear stage for all β cases is very
shorter than the cases of A and B, so the primary plasmoid in
the center of the current sheet grows rapidly. In this state, the
system cannot enter the non-linear phase and the secondary
magnetic islands do not form. The reconnection rate decreases
with increasing β in all cases. The presence of the uniform guide
field has more impact on the reconnection rate than a non-
uniform guide field. In cases B and C for β > 0.6, the reconnection
rate shows almost equality, and for β < 0.4 cases the guide field
has a more effect on the reconnection process (see Figure 13).
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