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In this review article, we present themain results from our most recent research concerning
the oscillations of fast rotating neutron stars. We derive a set of time evolution equations for
the investigation of non-axisymmetric oscillations of rapidly rotating compact objects in full
general relativity, taking into account the contribution of a dynamic spacetime. Using our
code, which features high accuracy at comparably low computational expense, we are
able to extract the frequencies of non-axisymmetric modes of compact objects with
rotation rates up to the Kepler limit. We propose various universal relations combining bulk
properties of isolated neutron stars as well as of binary systems before and after merger;
these relations are independent of the true equation of state and may serve as a valuable
tool for gravitational wave asteroseismology. We also present an introductory example
using a Bayesian analysis.
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1 INTRODUCTION

Oscillations and instabilities of neutron stars were always considered among the promising
sources for gravitational waves. The systematic study of non-axisymmetric neutron star
oscillations began in the 1960s with the pioneering works of Thorne and collaborators (cf.
Thorne and Campolattaro (1967); Thorne (1969) (and subsequent papers)), in which they laid
out the equations governing the perturbations of compact stars in general relativity. The
numerical solution of these equations has proven highly challenging and it has taken nearly
two decades before Lindblom and Detweiler found an advantageous formulation of the
eigenvalue problem that allowed them to determine the complex frequencies of the acoustic
modes of sufficiently realistic stellar models (Lindblom and Detweiler (1983); Detweiler and
Lindblom (1985)). These results did not conclude the investigation of these modes; in particular
Chandrasekhar and Ferrari (1991a); Chandrasekhar and Ferrari (1991b) turned to the
perturbations of relativistic stars and studied their oscillations as a scattering problem.

In themid-1980s, inspired by a toymodel Kokkotas and Schutz (1986) suggested that the dynamic
spacetime of a neutron star exhibits its very own class of modes and christened them w-modes
(Kokkotas and Schutz (1992)). The short damping times of these modes (comparable to the ones of
black-holes) pose numerical challenges, but the application of the continued fraction method (Leaver
(1985)) and numerical integration along anti-Stokes lines (Andersson et al. (1995)) improved
considerably the accuracy in the calculation of both fluid and spacetime modes and led to the
discovery of the new class of w-modes, the so-called wII-modes (Leins et al. (1993)). This
advancement in computational accuracy allowed the study of many neutron star equations of
state leading to the discovery of universal relations involving frequencies and damping times of
oscillationmodes. These universal relations provided ways for solving the inverse problemwithin the
so-called gravitational wave asteroseismology, allowing to set constrains on the mass and/or radius of
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the neutron star, and eventually the nuclear equation of state, via
the observation of oscillations (see, e.g., Andersson and Kokkotas
(1996, 1998); Kokkotas et al. (2001); Benhar et al. (2004)).

With increasing computational power during the 1990s, the
first attempts were made to increase the dimensionality of the
hitherto (due to the restriction to spherical symmetry) purely
radial problem and include time as a second dimension. The first
successful time evolutions of perturbations of relativistic neutron
stars were reported by Allen et al. (1998). Ruoff (2000, 2001)
reformulated those evolution equations by means of the ADM-
formalism (Arnowitt et al. (1962)) and introduced a non-uniform
radial grid to ensure stable numerical evolution when using
realistic equations of state.

1.1 Asteroseismology
The different oscillation patterns of a neutron star are
characterized by their restoring force, e.g., p(pressure)-modes,
g(gravity)-modes, i(Coriolis)-modes, s(shear)-modes orw(wave)-
modes. The f-mode is the fundamental mode of the p-mode
sequence and it is the oscillation mode most likely to be excited in
violent processes such as neutron star formation by supernova
core collapse (Torres-Forné et al. (2018; 2019)), the pre-merger
interaction of neutron stars (see, e.g., Lai (1994); Kokkotas and
Schafer (1995); Fuller and Lai (2011); Gold et al. (2012); Chirenti
et al. (2017); Chaurasia et al. (2018); Suvorov and Kokkotas
(2020); Kuan et al. (2021a,b)), the early-post-merger oscillations
of the final object (Shibata and Taniguchi (2006); Bauswein and
Janka (2012); Hotokezaka et al. (2013); Bernuzzi et al. (2014);
Bauswein et al. (2014); Lehner et al. (2016); Bauswein et al.
(2017); Rezzolla and Takami (2016); Takami et al. (2015); De
Pietri et al. (2018); Breschi et al. (2019)). In the case that the
merging neutron stars are of relatively small mass and the post-
merger object is a fast spinning neutron star, the unstable f-mode
oscillations can lead to its spin-down (Doneva et al. (2015)). The
f-mode is associated with major density variations and thus can
potentially be an emitter of copious amounts of gravitational
radiation. The emission of gravitational waves is the primary
reason for the mode’s rapid damping, at least for newly born
neutron stars.

The efforts to associate the patterns of oscillations with the
bulk parameters of the stars, e.g., their mass, radius or equation of
state (henceforth EoS) was initiated in the mid-1990s and
continued for almost two decades, advancing the field of
gravitational wave asteroseismology (Andersson and Kokkotas
(1996, 1998); Kokkotas et al. (2001); Benhar et al. (2004); Tsui and
Leung (2005); Lau et al. (2010)). To date, very robust empirical
relations have been derived for non-rotating neutron stars,
connecting observables such as frequency, damping time, or
moment of inertia I to the bulk properties; for example,

relations of the form σ0 � α + β
������
M0/R3

0

√
or Mσ0 � F(M3

0/I) (cf.
Andersson and Kokkotas (1996); Lau et al. (2010)) could provide
the average density or the moment of inertia of the star if the
f-mode frequency σ0 is known.

In the era of gravitational wave astronomy, the various
oscillation patterns (traced already in non-linear numerical
simulations, e.g., Stergioulas et al. (2004); Kastaun (2006);

Baiotti et al. (2008, 2009); Zink et al. (2010); Stergioulas et al.
(2011); Bernuzzi et al. (2015)), if observed, can provide a wealth of
information about the emitting sources, and their effects can leave
their imprints both in the gravitational but also in the
electromagnetic spectrum. Moreover, recent studies relate the
f-mode frequencies to the Love numbers (Wen et al. (2019);
Pratten et al. (2020); Andersson and Pnigouras (2021);
Manoharan et al. (2021)) and even to the postmerger short
gamma-ray bursts (Chirenti et al. (2019)).

1.2 Rotation
Nearly all the previously mentioned studies were concerned with
non-rotating stars. In nature, neutron stars will always rotate and
their rotation rate may reach extreme values. The inclusion of
rotation proves difficult since the extreme rotation rates that
neutron stars may (and do) reach do not allow to neglect the star’s
oblateness which removes the spherical symmetry from the
system; this in turn makes the mathematical formulation
much more involved. As a first approximation, rotation was
treated perturbatively, too, which allowed considering even
rotating stars as spherically symmetric (Hartle (1967)). In this
so-called slow-rotation approximation, the perturbation
equations gain considerably in complexity and have been
written down in a gauge introduced by Regge and Wheeler
(1957) first by Kojima (1992). Even though the problem
remains one-dimensional, its solution is not straightforward as
(among other technicalities) the outgoing-wave boundary
condition at infinity is elusive. Notwithstanding, Andersson
(1998) successfully applied this formalism and discovered that
r-modes are prone to the so-called CFS-instability, named after
their discoverers Chandrasekhar (1970) and Friedman and
Schutz (1975, 1978), at any rotation rate. There has been
continuing effort using the slow-rotation approximation
concerning rotational modes (Lockitch et al. (2000; 2003)),
and also employing different gauges (Ruoff et al. (2002);
Vavoulidis et al. (2008); Passamonti et al. (2008)), but with
the pressing need for frequencies of rapidly rotating neutron
stars, the interest slowly faded.

Even though the slow-rotation approximation has proven
fruitful in the understanding of neutron star physics, it is no
longer applicable when considering neutron stars at arbitrary
rotation rates, which is essential for nascent neutron stars or post-
merger configurations in the immediate aftermath of a binary
merger. Without the spherical symmetry of the problem, one has
to account for at least two spatial dimensions which complicates
the equations further and amplifies the computational expense;
furthermore, it remains elusive how to formulate the outgoing-
wave boundary condition at infinity for the spacetime
perturbations in two spatial dimensions which essentially
removes the possibility to formulate a corresponding
eigenvalue problem. This issue can be circumvented by
adopting the Cowling approximation (Cowling (1941)), in
which the spacetime is considered static, also leading to a
considerable simplification of the perturbation equations.
Ignoring the impact of a dynamic spacetime (which is most
severe for the quadrupolar f-mode), Yoshida and Eriguchi (1997,
1999) computed quadrupolar f-mode frequencies of rapidly
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rotating neutron stars and studied the associated CFS-instability
in the late 1990s. Boutloukos and Nollert (2007) revived this
approach and investigated the general properties of the spectrum
of neutron stars regarding the acoustic and Coriolis-driven
modes. As a further step toward a more general relativistic
treatment, Yoshida (2012) revisited the problem in the
conformal flatness approximation. However, with the
mathematical difficulties of extending the eigenvalue
formulation to include a dynamic spacetime, the focus shifted
to study the oscillation spectra by evolving the perturbation
equations in time.

Despite their complexity, the perturbation equations for
rapidly rotating relativistic stars have been written down by
Priou (1992), even though they were not approached
numerically at that time. Gaertig and Kokkotas (2008, 2009)
worked in the Cowling approximation and successfully extracted
f- and g-mode frequencies of arbitrarily uniformly and fast
rotating neutron stars and even of differentially rotating ones
Krüger et al. (2010) by adding artificial viscosity (also known as
Kreiss and Oliger (1973) dissipation) to their evolution equations
in order to stabilise their time evolutions.

During the first decade of the new millennium, substantial
advances were made in the time evolution of the unperturbed,
non-linear Einstein equations, mostly driven by the aim to
simulate compact binary mergers but also applicable to
isolated neutron stars. These systems have hardly any
symmetries that can be exploited to reduce the complexity of
the problem, requiring to carry out the time evolutions on a three-
dimensional grid. The upside of which is that essentially no
constraints have to be placed on the rotational profile when
simulating the dynamics of a neutron star. Such codes have been
seen as a promising new approach to the calculation of mode
frequencies of rapidly (and differentially) rotating neutron stars
and already at the beginning of the decade, the frequencies of
axisymmetric modes in the Cowling approximation (Font et al.
(2000; 2001)) and those of (quasi-)radial modes in full general
relativity (Font et al. (2002)) had been reported. The non-linear
codes kept evolving and were used to generate mode frequencies
of f-modes in the conformal flatness approximation
(Dimmelmeier et al. (2006)) or those of inertial modes in the
Cowling approximation (Kastaun (2008)). Baiotti et al. (2009).
Not much later, the frequencies of non-axisymmetric modes in
full general relativity of non-rotating polytropic neutron stars
(Baiotti et al. (2009)) and soon those of rapidly rotating
polytropic neutron stars (Zink et al. (2010)) were obtained
from fully non-linear simulations. Even though successful, this
approach to computing the frequencies of non-axisymmetric
modes, however, has not been followed closely, which is also
due to the computational expense associated with such numerical
simulations and the accompanying limited accuracy.

In fact, from the point of view of gravitational wave
detectability of oscillation modes, the most relevant scenarios
are likely to involve rapidly rotating stars. Unfortunately, the
aforementioned empirical relations cannot be trivially extended
to rotating stars. Rotation splits the oscillation spectra in a
similar fashion as the Zeeman splitting of the spectral lines due
to the presence of magnetic fields. In rotating stars, the splitting

leads to perturbations propagating in the direction of rotation
(so-called co-rotating modes) and perturbations traveling in the
opposite direction (counter-rotating modes). The oscillation
frequency as observed by an observer at infinity will either
increase or decrease depending on the propagation direction of
the waves; for slow rotation there will be a shift of the form
σ � σ0 ± κmΩ +O(Ω2) where m is the angular harmonic index,
κ a mode and stellar model-dependent constant, and Ω the
angular rotation rate of the star. If the spin of the star exceeds a
critical value, which depends on, e.g., the EoS and its
mass—i.e., when the pattern velocity σ/m of the backward
moving mode becomes smaller than the star’s rotation rate
Ω/2π—then the star becomes unstable to the emission of
gravitational radiation; this is the aforementioned CFS
instability. This instability is generic (independent of the
degree of rotation) for the r-modes (Andersson (1998);
Friedman and Morsink (1998)) while it can be excited only
for relatively high spin values (ΩU0.8ΩK, with ΩK the Kepler
velocity) for the quadrupolar f-modes. An extensive discussion
can be found in Paschalidis and Stergioulas (2017) and
Glampedakis and Gualtieri (2018).

This review is based on the highlights of four recent articles
published by the authors, which are Krüger and Kokkotas
(2020a,b); Völkel et al. (2021); Manoharan et al. (2021).

Throughout this article, we employ units in which c � G �
M0 � 1.

2 PERTURBATION EQUATIONS

2.1 Background Configuration
We are going to work with the Einstein equations along with the
law for the conservation of energy-momentum,

Gμ] � 8πTμ] and ∇μT
μ] � 0, (1)

whereGμ] is the Einstein tensor and Tμ] is the energy-momentum
tensor.

We restrict ourselves to the study of the dynamics of small
perturbations around an equilibrium configuration which allows
us to linearise Eq. 1. We assume an axisymmetric, stationary
background configuration for which the metric written in quasi-
isotropic coordinates takes the form

ds2 � g(0)
μ] dx

μdx]

� −e2]dt2 + e2ψr2 sin2 θ(dφ − ωdt)2 + e2μ(dr2 + r2dθ2).
(2)

Here, ], ψ, μ, and ω are the four unknown metric potentials,
depending only on r and θ.

We model the neutron star to be a perfect fluid without
viscosity for which the corresponding energy-momentum
tensor takes the form

Tμ] � (ϵ + p)uμu] + pgμ], (3)

where ϵ is the energy density, p is the pressure, and uμ the 4-
velocity of the fluid. The only two non-vanishing components of
the 4-velocity are linked via the star’s angular rotation rate, uφ �
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Ωut, and by means of the normalisation of the 4-velocity they are
given by

ut � 1���������������������
e2] − e2ψr2 sin2 θ(Ω − ω)2

√ . (4)

After specifying an EoS, which may be a polytropic or a tabulated
one, linking energy density and pressure to each other, we
generate uniformly rotating equilibrium configurations using
the rns-code (Stergioulas and Friedman (1995); Nozawa et al.
(1998); Stergioulas (1995)).

We considered sequences of neutron stars along which we
keep either the central energy density constant or the baryon
mass fixed (the latter are also known as evolutionary sequences)
with rotation rates up to their respective mass-shedding limit.
Our neutron star models were based on polytropic and realistic
EoSs. We considered polytropic models with three different
polytropic indices N � 0.6849, 0.7463, and 1.0. Furthermore,
we employed piecewise-polytropic approximations, introduced
by Read et al. (2009), for the four tabulated EoSs (APR4, H4, SLy,
and WFF1) that we used. Our nonrotating configurations have
gravitational masses M ∈ [1.17, 2.19]M0. Even though current
astrophysical constraints play a role in our particular choice of
EoSs, it is largely motivated by our desire to provide robust
universal relations by covering a wide part of the parameter space.

2.2 Perturbation Equations
As usual in perturbative studies, we decompose the metric as

gμ] � g(0)
μ] + hμ], (5)

where g(0)
μ] is the background metric and hμ] its perturbation. As

we will work in the Hilbert gauge, it will be advantageous to work
instead with the trace-reversed metric perturbation, defined by

ϕμ]dhμ] − 1
2
g(0)
μ] h, (6)

where hdhμμ is the trace of the metric perturbations.
The metric perturbations are not unique but possess gauge

freedom which can be utilised in different ways. Often, the gauge
freedom is used to eliminate some of the spacetime perturbations,
e.g., by using the well-known gauge by Regge andWheeler (1957),
and hence to reduce the number of perturbation equations. In our
studies, however, we followed a different approach (which we will
reason below) and opt for the Hilbert gauge, which is the
gravitational equivalent to the well-known Lorenz gauge in
electromagnetism, specified by

fμd∇]ϕμ] � 0. (7)

In the Hilbert gauge, the perturbed Einstein tensor takes the form.

−2δGμ] � □ϕμ] + 2Rα β
μ ]ϕαβ + Rϕμ] − Rα

μϕ]α + Rα
]ϕμα( )

− gμ]R
αβϕαβ,

where Rα β
μ ], R

αβ, and R are the background Riemann tensor,
Ricci tensor and scalar curvature, respectively. The advantage of
the Hilbert gauge is that the evolution equations for the metric

perturbations will take the form of ten coupled wavelike
equations (note that in the above expression, the d’Alembert
operator, defined with respect to the background metric, is the
only differential operator acting on the metric perturbations)
while the mixing of temporal and spatial derivatives is avoided.
This is in contrast to other common gauge choices (Allen et al.
(1998); Battiston et al. (1971); Ruoff (2001); Ruoff et al. (2002)) or
the ones without any gauge choice (Priou (1992)) where the field
equations split into subsets of hyperbolic and elliptic equations
which have to be either solved simultaneously or by quite
cumbersome manipulations to bring them in a hyperbolic
form, something that is technically very difficult for the
perturbations of rotating stars if not impossible. The fully
hyperbolic character of the perturbation equations in the
Hilbert gauge makes this gauge particularly convenient for the
numerical implementation in a time evolution.

Our choice of gauge, namely theHilbert gauge, does not eliminate
any of the metric perturbations; hence, we need 10 variables to
describe the spacetime perturbations. As in previous studies of
rotating neutron stars (Vavoulidis (2007); Krüger et al. (2010)),
we use four variables for the fluid. In total, we need to evolve 14
variables in time. The evolution equations follow in a very
straightforward manner from the perturbed Einstein equations

δGμ] � 8πδTμ], (8)

and the perturbed law for the conservation of energy-momentum

δ ∇μT
μ]( ) � 0. (9)

The evolution equations themselves are quite lengthy and not
very enlightening and we refer the reader to Krüger and Kokkotas
(2020b) for details in the derivation and their implementation.

FIGURE 1 | Universal relations for the l �|m|�2 f-mode frequencies for
sequences of constant central energy density as observed in the inertial frame.
The graph shows the results from 21 such sequences (three sequences per
EoS; three polytropic and four realistic EoSs). The potentially unstable f-
mode branch displays a strikingly universal behavior; the largest deviations
from a quadratic fit occur close to the mass-shedding limit of the sequences,
mainly for the polytropic EoSs. Figure taken from Krüger and Kokkotas
(2020a) with permission by APS.
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3 RESULTS

3.1 Universal Relations for Single Neutron
Stars
As shown in Krüger and Kokkotas (2020b), our code produces
results in excellent agreement with previously published values
(Zink et al. (2010); Chaurasia et al. (2018)) and our convergence
tests demonstrate an accuracy of the obtained frequencies of
1–2%. In this article, we will provide some highlighted results in
order to demonstrate the existence of asteroseismological
relations of various types and we lay out the way that one can
make use of these relations in analyzing gravitational wave
signals.

More specifically, we will show different universal relations
providing accurate estimates for the f-mode frequency given
some bulk parameters of the star and vice versa. First, we
observe a universal behavior of the f-mode frequency σ i as
observed in the inertial frame as a function of the star’s
angular spinning frequency Ω along sequences of fixed central
energy density models when we normalize both frequencies with
the f-mode frequency σ0 of the corresponding non-rotating star.
Figure 1 displays this behavior for more than 230 different
neutron star models of each the co-rotating (i.e., stable) and
counter-rotating (i.e., potentially unstable) branches of the f-
mode for seven EoSs and various central energy densities (with
corresponding central rest mass densities ρc ∈ [2.2, 7.3]ρ0, where
ρ0 � 2.7 × 1014 g/cm3 is the nuclear saturation density); we model
the universal behavior using the quadratic function

σ i

σ0
� 1 + a1

Ω
σ0

( ) + a2
Ω
σ0

( )2

. (10)

The results of a least squares fit are au1 � −0.193 and au2 � −0.0294
for the potentially unstable branch and as1 � 0.220 and as2 �
−0.0170 for the stable branch of the f-mode. The quadratic fit
accounts well for the increasing oblateness of the star with its
rotation; however, close to the Kepler limit, deviations from this
simple model become visible. As this deviation is most
pronounced for the less realistic polytropic EoSs, we do not
take them into account for the quadratic fits. The root mean
square of the residuals is 0.024 for the counter-rotating branch
and 0.048 for the co-rotating branch.

We point out that our model predicts that the unstable
branch of the quadrupolar f-mode becomes susceptible to the
CFS instability once the angular rotation rate of the star
exceeds Ω ≈ (3.4 ± 0.1)σ0 (when considering sequences of
constant central energy density); note that the given
uncertainty is a bound, not a confidence interval. This
finding regarding the critical value complements the well-
known threshold of T/|W| ≈ 0.08 ± 0.01 in terms of the
ratio of rotational to gravitational potential energy
(Stergioulas and Friedman (1998); Morsink et al. (1999)),
which is confirmed in our simulations and is in contrast to
the widely used Newtonian result of T/|W| ≈ 0.14.

The stable branch of the f-mode can be fitted more accurately
when switching to the comoving frame and considering
sequences of constant baryon mass. The frequency σc observed

in the comoving frame is related to the frequency observed in the
inertial frame via σc � σ i +mΩ/2π. We show our results for more
than 120 different neutron star models using four realistic EoSs in
Figure 2. We fit our results to the quadratic function

σc

σ0
� 1 + b1

Ω
ΩK

( ) + b2
Ω
ΩK

( )2

; (11)

note that we use the Kepler velocity ΩK to normalize the star’s
rotation rate in this formula. The results of a least squares fit are
bu1 � 0.517 and bu2 � −0.542 for the potentially unstable branch
(which in the comoving frame exhibits the higher frequencies)
and bs1 � −0.235and bs2 � −0.491 for the stable branch of the f-
mode. The root mean square of the residuals is 0.024 for the co-
rotating branch and 0.051 for the counter-rotating branch.1

In earlier studies for non-rotating models, fitting relations of
the form σ0 � α + β

������
M0/R3

0

√
were derived (Andersson and

Kokkotas (1998); Gaertig and Kokkotas (2011); Doneva et al.
(2013)). Here, α and β can be estimated for the EoSs that fulfill the
constraints at the time of observation while M0 and R0
correspond to the mass and radius of the non-rotating model.
Thus, this relation in combination with Eqs 10, 11 connects three
fundamental parameters of the sequence, i.e., mass and radius of
the non-rotating member with the spin of the observed model.
Obviously, from a single observation of the f-mode frequency,
one cannot extract these values but can put constraints among the
three of them. Any extra observed oscillation frequency, e.g., both
co- and counter-rotating frequencies or knowledge of some
parameters of the star, such as its mass, will place more
stringent constraints.

FIGURE 2 | Universal relations for the l �|m|�2 f-mode frequencies for
sequences of constant baryon mass as observed in the comoving frame. The
graph shows the results from 12 such sequences (three sequences per EoS).
The stable f-mode branch displays universal behavior. Figure taken from
Krüger and Kokkotas (2020a) with permission by APS.

1Similar relations were presented in Gaertig and Kokkotas (2011); Doneva et al.
(2013) but in the Cowling approximation.
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Another fitting relation which can easily be implemented in
solving the inverse problem is incorporating the effective

compactness ηd
������
�M3/I45

√
(which is closely related to the

compactness M/R), where �MdM/M0 and I45dI/1045 g cm2

are the star’s scaled gravitational mass and moment of inertia,
inspired by Lau et al. (2010). We will be guided by the model
employed in the Cowling approximation by Doneva and
Kokkotas (2015) which reproduces the f-mode frequency of a
particular neutron star from its rotation rate, gravitational mass,
and effective compactness. We propose the fitting formula

σ̂ i � c1 + c2Ω̂ + c3Ω̂
2( ) + d1 + d3Ω̂

2( )η, (12)

where σ̂ id �Mσ i/ kHz and Ω̂d �MΩ/ kHz; note that we set d2 � 0
as it turns out that this coefficient would be afflicted with a large
uncertainty. Using around 100 models based on polytropic as well
as around 400 models based on realistic EoSs, the resulting
coefficients from a least-squares fit for the counter-rotating
branch of the f-mode are (c1, c2, c3)u � ( − 2.14,−0.201,−7.68 ×
10−3) and (d1, d2, d3)u � (3.42, 0, 1.75 × 10−3); for the co-rotating
branch, we find the coefficients (c1, c2, c3)s � ( −
2.14, 0.220,−14.6 × 10−3) and (d1, d2, d3)s � (3.42, 0, 6.86 × 10−3).
The error in the above reported coefficients is less than 10% and the
fitting formula recovers the frequencies with a deviation of less than
20%, with considerably higher accuracy (below 5%) where the f-
mode frequency is larger than ≈500 Hz. We show the obtained
frequencies along with the predictions from our proposed fitting
formula for a few select values of Ω̂, spanning the parameter space
up to the Kepler limit, in Figure 3.Qualitatively, our coefficients for
the counter-rotating branch agree in order of magnitude with those
published by Doneva and Kokkotas (2015) in the Cowling
approximation; comparing the special case of no rotation, Ω̂ � 0,
our fitting formula yields roughly 20% lower frequencies in our fully
general relativistic setup, which is in accordance with expectations.

The lines of constant Ω̂ in Figure 3 may give the impression
that the CFS instability operates more easily in stars with low
(effective) compactness, seemingly in contrast to the finding that
post-Newtonian effects tend to enhance this instability Cutler and
Lindblom (1992). This paradox can be resolved by noting that
relativistic effects mainly shift the f-mode frequency to lower
values while the inclination of the lines of constant Ω̂ is largely
unaltered (cf. Figure 3 in Doneva and Kokkotas (2015)).
Furthermore, while stars of lower (effective) compactness may
reach the neutral point of the f-mode indeed at a lower rotation
rate, this happens considerably closer to the Kepler limit (if at all)
than it would do in more compact stars.

The fitting formula (12) has the advantage that it does not
rely on specifically defined sequences of neutron stars, along
which a particular property is held constant. For example, Eq.
11 depends on the f-mode frequency σ0 of the (in a very
particular fashion) corresponding non-rotating configuration,
which may not even exist in some cases (e.g., for supramassive
neutron stars supported by rotation); the latter model, cf. Eq. 12,
is satisfied with bulk properties of the star of which we want to
know the oscillation frequency and vice versa. Another benefit
of this formulation is that (as demonstrated by Doneva and
Kokkotas (2015)) a similar formula can be derived for higher
multipoles, i.e., l ≥ 3. Fitting formula (12) can be useful in
imposing further constraints on the parameters of the
postmerger objects since it combines the mass and spin of
the resulting object with the f-mode frequency and, via η, the

FIGURE 3 | The scaled f-mode frequency of the potentially unstable
branch in dependence of the effective compactness for different values of
Ω̂ � �MΩ/ kHz. The straight lines represent the prediction of our fitting formula,
cf. Equation 12. Figure taken from Krüger and Kokkotas (2020a) with
permission by APS.

FIGURE 4 | The frequency of the 2f2-mode for the entire EoS H4 is
displayed color coded and some contour lines are shown. Each black dot
indicates a neutron star model for which we have calculated its
nonaxisymmetric mode frequencies. All neutron stars located above the
(nearly horizontal) dash-dotted line are supramassive. The red (thick) contour
line at 0.0 kHz separates the stable models from those that are susceptible to
the CFS-instability. Figure taken from Krüger and Kokkotas (2020a) with
permission by APS.
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moment of inertia I or the compactness M/R. Thus, the latter
two can be further constrained by an observation of an f-mode
signal, as mass and potentially spin can be extracted from the
premerger and early postmerger analysis of the signal. The
situation becomes more attractive if both co- and counter-
rotating modes or other combination of modes are observed
since only the mass of the postmerger object will be needed to
constrain its parameters by using only the asteroseismological
relations (see Gaertig and Kokkotas (2011); Doneva and
Kokkotas (2015); Vretinaris et al. (2020)). This will be an
independent yet complementary constraint in the estimation
of the radius in addition to those based on the Love numbers
(see Dudi et al. (2018); Abbott et al. (2018); De et al. (2018);
Radice et al. (2018)).As a graphical illustration of the behavior of
the f-mode frequency across the entire parameter space of stable
equilibrium models, we present in Figure 4 the frequency of the
counter-rotating branch as obtained from the time evolutions
exemplary for EoS H4; the graph will be qualitatively similar for
other EoSs. We constructed several hundred neutron star
models across the entire M-Re plane along so-called
evolutionary sequences; those are sequences of differently fast
rotating neutron stars that share the same baryon mass. The
two-dimensional plane of equilibrium models has four distinct
boundaries: the static limit at the lower left along which the non-
rotating models are located; second, the mass-shedding limit
bounds the equatorial radius to the right; next, in the top left of
the graph, the limit of stability with respect to quasi-radial
perturbations connects the (non-rotating) maximummass TOV
model to (approximately) the heaviest model2; equilibrium
configurations that are located to the left of this line will
collapse to a black hole upon quasi-radial perturbation. Last,
in line with current theory and observations (Suwa et al. (2018);
Martinez et al. (2015)), we limit ourselves to neutron stars with
massesM ≳ 1.17M0. The dots in Figure 4 depict the considered
equilibrium models. The dash-dotted line slightly above M �
2.0M0 is the evolutionary sequence with the baryon massM0 �
2.3M0 and it separates the supramassive neutron stars (above
that line) which are merely supported by centrifugal force from
those (below that line) which may spin down ending up at a
stable non-rotating configuration. Other evolutionary
sequences can be imagined by combining the dots with lines
parallel to the dash-dotted one.

The graph shows that for this particular EoS each neutron star
model may become CFS-unstable if it is sufficiently spun up. For
heavier neutron stars, this happens considerably below the mass-
shedding limit and sufficiently heavy supramassive models
(approximately M ≳ 2.25M0) will inevitably be CFS-unstable
(with respect to the quadrupolar f-mode); i.e. those stars will be
stabilized merely by viscous mechanisms counteracting the CFS-
instability.

3.2 Universal Relations Involving
Long-Lived Remnants From BNS Mergers
Inspired by the works on universal relations for single neutron
stars (Andersson and Kokkotas (1998); Benhar et al. (2004); Yagi
and Yunes (2017)), the last 5 years have given rise to universal
relations for BNS: they relate the pre-merger neutron stars to the
early post-merger remnant, and have been developed using
numerical relativity simulations (Bernuzzi et al. (2015);
Rezzolla and Takami (2016); Kiuchi et al. (2020)).

These works have primarily focused on relating the tidal
deformability of the pre-merger stars, which impact the
dynamics of the pre-merger gravitational waves at leading
order through the reduced tidal deformability or binary tidal
deformability ~Λ (Flanagan and Hinderer (2008); Favata (2014)),
to various stellar parameters of the early remnant.

Recently, Vretinaris et al. (2020) investigated empirical
relations for BNS mergers based on the extensive CoRe data
set of numerical relativity gravitational wave simulations
(Dietrich et al. (2018)). Covering a wide range of mass
ratios, they find an extensive set of universal relations
involving the various peak frequencies of the post-merger
gravitational wave signal, involving, e.g., the chirp mass and
characteristic radius of a 1.6M0 neutron star. In particular,
they also find universal relations between the binary tidal
deformability and the primary f-mode frequency of the
post-merger signal (as in Kiuchi et al. (2020)), however, this
time involving the chirp mass of the BNS. Other established
universal relations connect the post-merger peak frequency to
the tidal coupling constant (Bernuzzi et al. (2015); Breschi
et al. (2019)).

The universal relation between the binary tidal deformability
of the BNS and the stable, co-rotating f-mode frequency σs of the
early, differentially rotating remnant proposed in Kiuchi et al.
(2020), led us in Manoharan et al. (2021) to derive a similar
relation for a potentially long-lived, uniformly rotating remnant:
the relation takes the form

log10σ̂
s � a(q) · ~Λ1

5 + b(q), (13)

where σ̂s � M
M0

σs

kHz is the normalized co-rotating f-mode
frequency, and q � M1

M2
≤ 1 the gravitational mass ratio of the

pre-merger stars. For rapidly rotating, long-lived remnants
(with rotation frequency �Ω≥ 800Hz), this relation achieves an
average relative error of 1.3%.

We also derive a relation for the potentially unstable, counter-
rotating f-mode frequency of the long-lived remnant, presenting
the possibility of predicting the onset of the earlier mentioned
CFS-instability.

Combining these results with the universal relation, Eq. 11, for fast
rotating neutron stars between the stable, co-rotating f-mode frequency

and the effective compactness η �
������
�M3/I45

√
(as defined in the

previous section), we also derived a combined relation of the form.

η �
10a(q)· ~Λ

1
5+b(q) − c1 + c2Ω̂ + c3Ω̂

2( )
d1 + d3Ω̂

(14)

2It is well-known that the uniformly rotating equilibrium models with the fastest
rotation rate, the highest angular momentum, or the largest gravitational mass may
be distinct and it depends on the EoS whether or not those are stable with respect to
quasi-radial perturbations (see Cook et al. (1994)).
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that relates the pre-merger binary tidal deformability of the BNS
with the effective compactness of the long-lived remnant. For
rapidly rotating remnants, this relation achieves an average
relative error of 2.4%.

Finally, by directly relating these quantities without going via
the f-mode, we obtain a universal relation of the form

log �M
5
η[ ] � a(q) �M

5 ~Λ−1
5( )2

+ b(q) �M5 ~Λ−1
5 + c(q). (15)

This relation achieves improved accuracy, reaching an average
relative error of ∼ 1.5% for remnants with any rotation frequency.
We show the quadratic fit in Figure 5 for the symmetric case
of q � 1.

We finally also consider a direct relation between the binary
tidal deformability and the compactness C � M/R of the long-
lived remnant. Such a relation would allow the direct estimation
of the remnant’s radius R using independent estimates of its
gravitational mass. We propose a relation of the form

�M
5
C � a(q) �M5 ~Λ−1

5 + b(q) (16)

which, however, only achieves an accuracy an order of magnitude
worse than for the effective compactness relation, reaching an
average relative error of ∼ 8.8%. A graphic representation of this
fit along with the data is shown in Figure 6.

The results presented in Manoharan et al. (2021) represent a
first step towards finding universal relations between the pre-
merger neutron stars and the potential long-lived remnant of a
BNSmerger using perturbative calculations. Our approach can be
freely extended to, e.g., hot EoSs, phase transitions, as well as
differential rotation for the remnant to, to cover, e.g., earlier parts
of the post-merger phase.

The various functional expressions for a(q), b(q) and c(q) used
in Equations 13 and 14, 15, 16 as well as the coefficients c1, c2, c3,
d1 and d2 are given in Manoharan et al. (2021).

4 APPROACHING THE INVERSE PROBLEM

Having laid out the procedure to extract fluid oscillation
frequencies from time evolution in a general relativistic
framework and having developed various universal relations
between bulk properties of neutron stars and their f-mode
frequencies, we now turn to one of the possible applications.
The field of gravitational wave asteroseismology attempts to
invert the above outlined procedure and aims to constrain
bulk properties of neutron stars such as mass and radius given
one or more oscillations frequencies. The above derived universal
relations are a valuable tool for this as they do not depend on the
underlying and hitherto poorly understood nuclear equation of
state. However, even without universal relations at hand, the
inverse problem can be approached.

We will summarise an approach of the inverse problem using
Bayesian methods as laid out by Völkel et al. (2021). Here, the
fundamental idea is tested on the f-mode frequency, but it may
easily be extended to other fluid modes or combined with their
damping times. The use of the Bayesian framework is
advantageous (compared to, e.g., an analytical inversion of the
non-linear universal relation) as it directly allows to incorporate
error bars of the measurement of the f-mode into the calculation.
Besides the Bayesian approach and universal relations, there are
in principle also semi-classical techniques, e.g., WKB theory,
which can be used to address the inverse spectrum problem in
simplified cases; see Völkel and Kokkotas (2019), for using axial
w-modes of spherically symmetric neutron stars and Völkel and
Kokkotas (2017) using a similar approach for ultra compact stars.

In a first step, we pick an EoS and a particular (rotating)
neutron star model for which we then calculate two f-mode
frequencies. We assume those to have a relative error of 3%
(Gaussian), while our prior knowledge on M and R is
uninformative. Two data points should in principle suffice to
uniquely pinpoint one neutron star model (assuming a cold EoS).
We show the result of the Bayesian analysis in Figure 7. The

FIGURE 5 | The quadratic fit between �M
5 ~Λ−1/5

and �M
5
C for q �1. The fit

corresponds to Eq. 15. Figure taken from Manoharan et al. (2021) with
permission by APS.

FIGURE 6 | The linear fit between �M
5 ~Λ−1/5

and �M
5
C for q �1,

considering only soft EoSs. The fit corresponds to Eq. 16. Figure taken from
Manoharan et al. (2021) with permission by APS.
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initially chosen model is depicted by the red cross atM � 1.8M0

and R � 15 km. The blue shaded area in the big panel shows the
correlations of mass and radius during sampling, whose posterior
distributions are shown in the side panels. While the radius of the
star can be reconstructed with fairly small error bars, the
reconstructed mass is considerably less constrained.
Nonetheless, the peak of the probability distribution nicely
resembles the initially chosen model. If the f-mode frequencies
were to be known more accurately, the corresponding error bars
of reconstructed mass and radius would be smaller, too.

This analysis required the assumption of a particular EoS and
so far we used the same EoS to reconstruct the model that we also
used to generate the underlying neutron star model. If we use a
different EoS to perform the Bayesian analysis, we will obviously
reconstruct a different model; this is shown in orange in Figure 7.
The reconstructed star in this case is considerably smaller and
lighter. Note that the apparent cut of theMPA1 EoS posteriors (in
particular for the mass) is not an indication that this EoS has not
been used for the injection, since a similar behavior can also be
found for the H4 EoS, if the injected parameters are closer to the
edge of the H4 EoS neutron star parameter space. One needs
further information, such as the precise mass, the tidal
deformability, or perhaps a damping time, in order to rule out
this EoS.

Instead of making an educated guess for the “correct” EoS and
reconstructing mass and radius as just described, we may also use
the universal relation proposed in Eq. 12. We will not need to
assume any EoS but the universal relation will provide us—given
two f-mode frequencies and a good estimate of the star’s
mass—with an estimate for the stars’s rotation rate Ω and its
effective compactness η.

We again use the Bayesian method to invert the universal
relation and we apply it to the same model as in the previous
analysis; the H4 model with M � 1.8M0 and R � 15 km. In
Figure 8 we show the results of the analysis. On the x-axis, we
show the star’s effective compactness and rotation rate, both
normalised to the actual value corresponding to the equilibrium
configuration. The two graphs then show the posterior
distributions. We ran the same analysis twice, once assuming
a 30% relative error on the prior mass (solid lines) and once
assuming a 10% relative error (dashed lines). As expected, with a
less informed prior on the mass, the posterior distribution for the
desired quantities have a considerably larger variance.

The blue and orange curves correspond to the previously
describe method where we assume a particular EoS. We have
described this above and here we show the posteriors for η and
1Ω. The green curves show the posterior distribution employing
the universal relation.

It is evident that the H4 EoS method (blue lines) and universal
relation (UR) method (green lines) yield very similar results for
the rotation rate Ω, while assuming the MPA1 EoS (orange lines)
indicates a value that is larger than the correct one. Note that both
observations hold independent of the specific prior knowledge of
M assumed here (30 and 10%).

The situation for the effective compactness η is qualitatively
different. First, the prior knowledge of M plays a big role for the
UR method, but is less important for the EoS methods. For those
we find that the correctly assumed H4 EoS is almost independent
of uncertainties inM, while the posterior distribution obtained by
the MPA1 EoS is shifted. Note that the rather different scaling
behavior of the UR method is in agreement with the findings
described above.

Finally, while the posteriors of Ω are very smooth, one
observes small “bumps” for the H4 EoS, e.g., at η/η0 ≈ 1.02.
We have verified that this likely is an artifact from the finite
resolution and particular range of the used H4 f-mode data that is
available to us. This directly sets the scale of how precise our
currently implemented EoS data can be used to resolve the
underlying parameters, which is of order percent level.

5 SUMMARY AND OUTLOOK

We report the first extraction of frequencies of the l � |m| � 2 f-
mode of general relativistic, rapidly rotating neutron starswithout
the commonly used slow-rotation or Cowling approximation to
an extent that allows us to generalize the findings into universal
relations. This concludes a long-standing open problem, building
upon the effort from numerous studies throughout the past 5
decades.

For this, we have derived a set of time evolution equations
governing the perturbations of the fluid of a rapidly rotating
neutron star as well as its surrounding spacetime, derived in a
perturbative framework in full general relativity. We have opted
for the Hilbert gauge in order to arrive at a set of fully hyperbolic
equations for the spacetime perturbations whose implementation
does not pose major obstacles.

FIGURE 7 | Here we compare the EoS method assuming the H4 EoS
(blue) and the MPA1 EoS (orange). The diagonal panels show the sampled
posterior distribution of M and R, while the off diagonal panel combines a
scatter plot with logarithmic contour lines. The red cross and red line
indicate the true H4 parameters that belong to the assumed 3% f-mode data.
For both cases we assume that the mass is known by 10%. Figure taken from
Völkel et al. (2021) with permission by APS.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org September 2021 | Volume 8 | Article 7369189

Krüger et al. Fast Rotating Neutron Stars

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Convergence tests to study the accuracy of our code reveal that in
a typical simulation, the obtained frequency usually deviates less
than 1–2% from the limiting value or has an accuracy of about
10 Hz. As we model axisymmetric configurations only, we can
reduce the problem to two spatial dimensions which drastically
lowers the computational expense of our numerical time evolutions
in comparison to non-linear codes that perform three-dimensional
simulations. The evolution of the perturbations of a neutron star for
15 ms on a grid with 3,120 × 50 points, which facilitates a decent
frequency resolution, requires only a few dozen of CPU hours; this
enables us to study broad ranges of parameters and various EoSs.We
expect to further reduce the computational cost even further by
deriving a simplified set of perturbation equations.

As a result, we provide different universal relations for the
frequencies of the l � |m| � 2 f-modes of uniformly rotating
neutron stars at zero temperature which are independent of the
EoS; the proposed formulae are calibrated to several hundred
neutron star models that are constructed using both polytropic
and realistic EoSs and are scattered across the entire parameter space
of equilibrium solutions. Furthermore, it is possible to link the pre-
merger binary tidal deformability to the effective compactness of the
late post-merger remnant in a universal manner, too. Such universal
relations will be an essential piece in the asteroseismological toolkit
once the third-generation GW observatories will be able to pick up
the ring-down and fluid ringing signal following the merger of a
binary neutron star system; they allow to solve the inverse problem,
leading to significantly tighter constraints for mass and radius of the
postmerger object. For this task, it is elementary to have a
smorgasbord of universal relations at hand, which allows to make
a practical choice, depending onwhich observables are available or in
which of the star’s properties one is interested. We will extend the
present list of such universal relations in future articles, utilizing
different combinations of bulk properties of the star; while we may
obviously be (and already have been) inspired by previously
published fitting formulae that were derived using different
approximative frameworks, we need to be open-minded about
models involving novel combinations of observables.

We also report the discovery of an accurate estimate for the
onset of the CFS-instability when the f-mode frequency of the

non-rotating member of the family is known and verified the
corresponding critical value of T/|W|.

A natural extension of the present study will be a more
comprehensive investigation of the spectrum of neutron stars
(i.e. higher multipole f-modes, low p-modes and g-modes as well
as w-modes) which may be excited in different astrophysical
processes. Furthermore, we are going to extend our code to
account for differentially rotating neutron stars and hot EoSs
that are particularly relevant for nascent neutron stars or
postmerger configurations in the immediate aftermath of a
binary merger, both of which will have a considerable impact
on the vibration frequencies or the onset of the CFS-instability
(and via two further scaling parameters also on the universal
relations) during a very short but dynamic interval of their lives.

Furthermore, a precise knowledge of the spectrum of compact
objects is invaluable as also isolated neutron stars as well as those
in inspiraling binary systems may possess high spin rates and
various oscillation modes, which may be excited, e.g., via glitches
or tidal coupling, may impact their electromagnetic emission or
the dynamic of the whole system.
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FIGURE 8 |Here we show the posterior distributions of the rotation rateΩ (top panel) and effective compactness η (bottom panel) normalized to the injected H4
values (Ω0, η0). Posteriors are obtained by using the EoS method with H4 EoS (blue), the MPA1 EoS (orange), as well as the universal relation method (green). Solid lines
correspond to 30% relative error on the prior mass M and dashed lines to 10%. We indicate each mean of the posteriors as vertical lines. The f-mode relative error is
assumed to be 3%. Figure taken from Völkel et al. (2021) with permission by APS.
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