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Bioregenerative life-support systems for space have been investigated for 60 years, and
plants and other photosynthetic organisms are central to this concept for their ability to
produce food and O2, remove CO2, and help recycle wastewater. Many of the studies
targeted larger scale systems that might be used for planetary surface missions, with
estimates ranging from about 40 to 50 m2 (or more) of crop growing area needed per
person. But early space missions will not have these volumes available for crop growth.
How can plants be used in the interim, where perhaps <5m2 of growing area might be
available? One option is to grow plants as supplemental, fresh foods. This could improve
the quality and diversity of the meals on the International Space Station or on the Lunar
surface, and supply important nutrients to the astronauts for missions like Mars transit, and
longer duration Martian surface missions. Although plant chambers for supplemental food
production would be relatively small, they could provide the bioregenerative research
community with platforms for testing different crops in a space environment and serve as a
stepping stone to build larger bioregenerative systems for future missions. Here we review
some of NASA’s research and development (ground and spaceflight) targeting fresh food
production systems for space. We encourage readers to also look into the extensive work
by other space agencies and universities around the world on this same topic.

Keywords: crop, nutrient, salad, veggie, greenhouse, sustainable, ECLSS, controlled ecological life-support
systems

INTRODUCTION

Bioregenerative life support systems (BLSS) have been one of the most enduring life science research
themes since the beginning of the space era in the 1950’s (Myers, 1954). The use of photosynthetic
organisms for food and oxygen production, along with CO2 removal and water processing is central
to this concept (Miller andWard, 1966; Salisbury et al., 1997) and in 1962 discussions began on what
crop plants to consider for space missions (Pilgrim and Johnson, 1962). But opportunities to test
BLSS at a relevant scale in space have been limited due to volume and mass constraints of the
spacecraft. Modest efforts at space crop production on board NASA’s Space Shuttle, the Russian Mir
station, and the International Space Station (ISS) have been underway since the 1990’s, but most have
been short duration studies and all have been limited due to volume, mass, and power constraints. To
date, life-support systems for spacecraft and space stations have been based on physico-chemical
(PC) principles, some of them regenerative, others relying on resupply (Shaw et al., 2020). For
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example, urine from the crew on the ISS is currently processed
through a vapor compression distillation system and purified to
recover potable water (Carter et al., 2018). Here we review only
plant related testing in space for food production and eventual
BLSS applications.

Food Production in Bioregenerative Life
Support Systems
To supply food on space missions, the only option to date has
been stowage and resupply of packaged, stabilized foods
(Perchonok et al., 2012). Currently, the ISS receives several
resupply missions of food each year, but this approach will be
more costly as mission durations and distances increase
(Perchonok et al., 2012). About 40–50 m2 of crops grown
under high light intensities would be needed to produce
enough dietary calories for one human, and when coupled
with insects to degrade inedible biomass and provide
supplemental protein, the area could be reduced to 35–40 m2

per person (Salisbury et al., 1997; Wheeler et al., 2008; Fu et al.,
2016). Plantings of this size would also supply all the O2

production and CO2 removal for one human. However, these
BLSS studies have all been ground-based, and opportunities to
test and implement them in space have been limited. A logical
approach might be to sequentially develop smaller BLSS
capabilities on space missions where PC life-support systems
are already in place; then as durations and distances increase,
expand BLSS components where applicable (Gitelson et al., 1995;
Wheeler, 2002; Morrow et al., 2004). While earlier approaches
focused on larger scale food production for more full life-support
(carbohydrate, fat, protein), micronutrients were not given as
high a priority (e.g., Mitchell et al., 1996; Salsibury and Clark,
1996). But supplying even smaller amounts of fresh produce
could supplement micronutrients such as vitamins C and B1,
which may degrade in the packaged diet, provide dietary anti-
oxidants, and improve the overall acceptability of meals for the
crew (Cooper et al., 2017). Extensive work has been done by other
space agencies and universities around the world to address these
same issues (Wheeler, 2017). For example, the 1970’s Oasis tests
on the Russian Salyut Space Station were the first attempts at a
human-monitored plant BLSS research in space (Porterfield et al.,
2003). Here we review some NASA sponsored ground-based and
space research with plants that could be used as supplemental
fresh foods on early missions.

Preparing Crops for Space: The Concept of
Crop Readiness Level
Space brings with it unique environmental constraints for crops.
This inspired the concept of a Crop Readiness Level or CRL
(Wheeler and Strayer, 1997), which is a maturation scale
analogous to technology readiness levels (TRL) but for crops
and BLSS. For example, short or dwarf growth, high harvest
index, high yields, organoleptic acceptance, good nutrient
content, and ability to control microbial contaminants are all
desirable traits for the selection and maturation of CRL for space
(Romeyn et al., 2019; Spencer et al., 2021). The current scale is

focused on ISS and Mars transit needs, but surface settings with
larger BLSS crop systems might consider different criteria or
factors appropriate for those settings, such as higher
macronutrient content, ability to grow in multispecies
plantings, or radiation tolerance. Like applying TRL for
aerospace hardware, a CRL approach provides a logical
progression of testing for future space crops.

Historical Context of Preparing Crops for
Spaceflight: Ground-Based Research
Decades of ground and flight research have gone into our current
supplemental crop growth systems on the ISS. Around 1980,
NASA started its Controlled Ecological Life-Support Systems
(CELSS) program (MacElroy and Bredt, 1984). The CELSS
Program focused largely on BLSS research for surface missions
and agronomic crops that might be grown in large plantings
(MacElroy et al., 1990; Wheeler, 2017), but CELSS also proposed
a smaller “rack” sized plant system for growing supplemental
food crops for near term and Mars transit missions. The term
“salad machine” or “vegetable production unit” was used for this
concept (Kliss and MacElroy, 1990).

Unlike the staple crops tested by NASA in the 1980’s and
1990’s (e.g., wheat, soybean, potato, peanut, sweet potato), leafy
greens and small fruit crops (e.g., tomato and pepper) can be
grown on the ISS and early missions to supplement the crew’s
diet. These supplemental food crops have a short shelf life but can
have a high impact on the diet (Cooper et al., 2012). NASA
ground testing included species such as spinach, lettuce, chard,
green onion, leafy mustards such as pak choi, mizuna, and
Chinese cabbage, radish, beet, dwarf tomato, dwarf pepper,
strawberry, and dwarf plum trees (Knight and Mitchell, 1983;
Gilrain et al., 1999; Subbarao et al., 1999; Goins and Yorio, 2000;
Richards et al., 2004; Massa et al., 2006; Hummerick et al., 2010;
Graham et al., 2015; Massa et al., 2016; Graham and Wheeler,
2016). To date, many of the leafy greens and “Red Robin” tomato
have performed very well in these studies (Spencer et al., 2019;
Spencer et al., 2020).

CROP PHYSIOLOGICAL CONCERNS

Impact of Atmospheric CO2 Concentrations
Significant vegetable crop testing by NASA focused on the effects of
CO2 on crop growth and development (McKeehen et al., 1996;
Spencer et al., 2019; Burgner et al., 2020). Elevating the CO2 from
ambient levels ∼400 ppm to 1,000–2000 ppm increased growth and
yield for most crops, as expected. But yields of some crops like
radish and lettuce dropped at super-elevated CO2 concentrations,
e.g., 5,000 and 10,000 ppm, compared to 1,000 ppm (Mackowiak
et al., 1994). Thus for typical CO2 levels on the ISS (∼3,000 ppm),
most of these crops should grow well. But for Chinese cabbage, cv.
Tokyo Bekana, the combination of moderately elevated CO2

(900 ppm) and LED lighting decreased growth compared to
lower CO2 levels (Burgner et al., 2020). This response highlights
the importance of conducting thorough ground testing prior to
spaceflight (Romeyn et al., 2019).
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Plant Lighting
Using light emitting diodes (LEDs) to grow plants was proposed
and patented through a NASA Commercialization Center at the
University ofWisconsin (Barta et al., 1992). LEDs were first used in
the Astroculture (ASC) plant chamber aboard the Space Shuttle
(Morrow et al., 1995) then the Advanced Astroculture Chamber
(ADVASC) (Link et al., 2003), and later the Veggie and Advanced
Plant Habitat for the ISS, both of which are currently flying aboard
the ISS (Massa et al., 2016; Morrow et al., 2016). To support the
development of LED lighting for space, NASA sponsored ground
testing from the early 1990’s through the mid 2000’s with leafy
greens and other crops (Goins et al., 1997; Kim et al., 2004; Massa
et al., 2008). These studies showed that both red and blue light
improved plant photosynthesis and growth (Bula et al., 1991;
Dougher and Bugbee, 2001; Yorio et al., 2001; Douglas et al.,
2016). Subsequent LED studies revealed important roles for
green and far-red light as well (Spencer et al., 2020). Recent
NASA research showed that supplementing with far-red LEDs
can act like adding more photosynthetically active radiation--
PAR (400–700 nm) (Zhen and Bugbee, 2020), and that LEDs
can achieve remarkable efficiencies (>3 µmol/J), which could
greatly reduce electrical power needs for BLSS (Kusuma et al.,
2020). This has far-reaching implications for future missions.
In addition to electric lighting systems, solar lighting
techniques that use concentrators and fiber optics were also
explored for growing crops (Cuello et al., 2000; Nakamura
et al., 2009).

Regardless of the lighting approach, nearly all these studies
showed greater yields in response to increased PAR (Knight and
Mitchell, 1983; Knight and Mitchell, 1988; Richards et al., 2004).
Although some leafy greens are prone to physiological disorders
like leaf tip burn at higher PAR (Barta and Tibbitts, 1991; Frantz
et al., 2004), this key relationship between PAR and yield becomes
a driving factor for planning crop systems for space. For NASA’s
Veggie plant chamber on the ISS, the PAR is adjustable up to
∼450 μmol m−2 s−1 depending on distance between the plants and
lights, but has typically been operated between 200 and
300 μmol m−2 s−1 (Massa et al., 2016).

NASA’S PAST, PRESENT, AND PLANNED
PLANT CHAMBERS FOR SPACE

The first attempt to test BLSS concepts in space was with the Orbital
Vehicle (OV-1) satellite mission in 1966, where NASA and the US
Air Force monitored photosynthetic and respiratory gas exchange
between duckweed (Spirodella) and Chlorella aglae (Ward et al.,
1970). The subsequent BioSatellite 2 experiments tested wheat
seedlings and pepper plants in microgravity (Conrad, 1968;
Johnson and Tibbitts, 1968), but these were short flights with
limited data recovery. NASA funded investigators F.B. Salisbury
and G.E. Bingham also collaborated with Russian colleagues for a
series of tests in the Svet plant chamber onMir space station through
much of the 1990’s with research focusing on wheat production
(Bingham et al., 1996, 2000). With the Shuttle program came more
frequent trips to space and more chamber options for plant growth,
such as the Plant Growth Unit (PGU) and subsequent Plant Growth
Facility (PGF) (Halstead and Dutcher, 1987; Paul et al., 2001). These
chambers were primarily for space and gravitational research. In
comparison, theAstroculture (ASC) and Plant Generic Bioprocessing
Apparatus (PGBA) were also used on the Shuttle but more focused
on BLSS concepts (Bula et al., 1991;Morrow et al., 1995; Hoehn et al.,
1997; Porterfield et al., 2003; Zabel et al., 2016) (Figure 1).

Compared to standard gravity, watering systems for µ-gravity
must deal with water containment, the lack of natural drainage
and impaired aeration of the rootzones (Bingham et al., 2000;
Steinberg et al., 2002; Jones et al., 2011). This began ground
testing of porous membranes, tubes, or plates to contain the water
and allow capillary movement to the roots (Wright et al., 1988;
Dreschel and Sager 1989; Koontz et al., 1990), as well as flight
testing of hybrid approaches that use porous tubes to sub-irrigate
a solid rooting matrix (Morrow et al., 1992; Bula et al., 1991). ASC
and PGBA also used porous thermo-electric plates to cool and
dehumidify the air, while recycling the condensate back to the
plants (Morrow et al., 1995; Hoehn et al., 1997; Conrad, 1968;
Dreschel and Sager 1989;Johnson and Tibbitts, 1968; Khodadad
et al., 2020; Koontz et al., 1990; Morrow et al., 1992; Schuerger
et al., 2021; Stutte et al., 2005; Wright et al., 1998).

FIGURE 1 | Timeline of projects. Spaceflight hardware for bioregenerative crop production from 1960–2030. Past (black), present (yellow), and future (green) are
indicated above the timeline. Platforms are indicated with a blue line while plant-specific hardware is indicated by a gray line. Length of the gray line represents the relative
length of time that the hardware was/has been in operation. Orbital Vehicle 1 (OV-1; US Air Force), BioSatellite I and II (NASA), Plant Growth Unit (PGU; NASA), Svet
(Roscosmos), Astroculture (ASC; Univ. Wisconsin/NASA), Plant Generic Bioprocessing Apparatus (PGBA; BioServe/NASA), Plant Growth Facility (PGF; NASA),
Advanced Astroculture (ADVASC; Univ. Wisconsin/NASA), Lada (Roscosmos), Biomass Production System (BPS; NASA), Veggie (NASA), Advanced Plant Habitat
(APH; NASA). Veggie and APH are currently in use on the International Space Station.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org November 2021 | Volume 8 | Article 7343433

Johnson et al. Supplemental Food Production With Plants

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


By 2000, plant growth systems were launched to the ISS. First
was the ADVASC (Link et al., 2003) and then the Biomass
Production System (BPS) (Stutte et al., 2005), both of which
were double, mid-deck, locker-sized chambers. In 2014 the
Veggie chamber was added to the ISS, with a second unit
added in 2017. The Advanced Plant Habitat (APH), a quad,
locker-sized chamber that provides a wide range of
environmental control, was based on Astroculture principles
(Zhou et al., 1998) and installed on the ISS in 2017 (Massa
et al., 2016; Morrow et al., 2016). Unlike the ADVASC, BPS, and
APH, Veggie was intended to be collapsible for stowage, open to
the cabin atmosphere, and easily accessible for the crew, much
like the Russian Svet and Lada systems (Bingham et al., 1996;
2000) To date, Veggie has been used more than any other
chamber in space to study fresh food production for astronauts.

Recent NASA Spaceflight Studies of
Supplemental Food Production
To date, the series of 12 leafy green tests in NASA’s Veggie
chamber on the ISS included lettuce (several cultivars), mizuna,
Chinese cabbage, wasabi mustard, red Russian kale, amara

mustard, and pak choi (Table 1). The first studies used
“Outredgeous” red romaine lettuce and an ornamental crop,
“Profusion” zinnia (Massa et al., 2015). Tests with Chinese
cabbage showed leaf chlorosis on some of the plants (Burgner
et al., 2020). Analyses of nutrient content of red romaine lettuce
grown in Veggie found no significant difference between the
ground control and spaceflight treatment of each experiment.
Some growth differences were found across the three studies, each
conducted a year apart, and are attributed to different
environmental conditions (Khodadad et al., 2020). The crop
microbiome did vary, with a considerably more diverse
microbial community found on space ground produce,
especially the leaves. Lettuce growth improved with better
approaches to watering by astronauts. Throughout most of the
Veggie tests, water management has been challenging, with
lettuce having insufficient water in some early tests, while
zinnia plants had too much, primarily due to a ventilation
system failure (Schuerger et al., 2021). The baseline Veggie
watering system is a passive wicking design, where water from
a reservoir wicks to plant pillows, which are filled with arcillite
media and controlled-released fertilizer (Massa et al., 2017a;
Massa et al., 2017b). The capillary watering approach has thus

TABLE 1 | NASA crops grown in spaceflight in Veggie and APH.

Crop Scientific Name Experiments Experiment
Flight Grow Dates

Red Romaine Lettuce Lactuca sativa cv. Outredgeous VEG-01A May 8, 2014–June 10, 2014
VEG-01B July 8, 2015–Aug. 10, 2015
VEG-03A Oct. 25, 2016–Dec. 28, 2016
VEG-03D Sept. 26, 2017–Nov. 23, 2017
VEG-03E Feb. 5, 2018–April 6, 2018
VEG-03F Feb. 9, 2018–April 9, 2018
VEG-03I Jan. 4, 2021–Feb. 2, 2021
VEG-03J Jan. 4, 2021–Feb. 2, 2021

Green Leaf Lettuce Lactuca sativa cv. Waldmann’s Green VEG-03D Sept. 26, 2017–Nov. 23, 2017
VEG-03E Feb. 5, 2018–April 6, 2018
VEG-03F Feb. 9, 2018–April 9, 2018

Dwarf Romaine Lactuca sativa cv. Dragoon VEG-03G Oct. 25, 2018–Nov. 28, 2018
VEG-03I Jan. 4, 2021–Feb. 2, 2021

Zinnia Zinnia hybrida cv. Profusion VEG-01C Nov. 16, 2015–Feb 14, 2016

Chinese Cabbage Brassica rapa var. Chinensis cv. Tokyo Bekana VEG-03B Jan. 20, 2017–May 31, 2017
VEG-03C April 3, 2017–May 31, 2017

Mizuna Mustard Brassica rapa var. japonica VEG-03D Sept. 26, 2017–Nov. 23, 2017
VEG-03E Feb. 5, 2018–April 6, 2018
VEG-04A June 4, 2019–July 9, 2019
VEG-04B Oct. 1, 2019–Nov. 28, 2019

Red Kale Brassica napus cv. Red Russian Kale VEG-03G Oct. 25, 2018–Nov. 28, 2018
VEG-03I Jan. 4, 2021–Feb. 2, 2021

Wasabi Mustard Brassica juncea cv. Wasabi VEG-03H March 9, 2019 - April 6, 2019
VEG-03I Jan. 4, 2021 - Feb. 2, 2021

Dwarf Pak Choi Brassica rapa var. Chinensis cv. Extra Dwarf VEG-03H March 9, 2019–April 6, 2019
VEG-03I Jan. 4, 2021–Feb. 2, 2021
VEG-03L Feb. 8, 2021–Apr. 13, 2021

Amara Mustard/Ethiopian Kale Brassica carinata VEG-03K Feb. 8, 2021–Apr. 13, 2021

Radish Raphanus sativus PH-02 Nov. 3, 2020–Nov. 30, 2020

Pepper Capsicum annuum cv. Española Improved PH-04 July 12, 2021
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far been inconsistent due to materials and design issues. These
issues have not been addressed to date so Veggie experiments
have relied largely on direct manual watering. The watering
system in APH consists of porous tubes surrounded by
arcillite media (Morrow et al., 2016), and to date it has
worked well. Recently the radish plants grown in APH were
consumed by astronauts (John et al., 2021). A second crop, chile
peppers (Spencer et al., 2019), began growing for the first time in
APH in orbit on July 12, 2021 (Table 1).

Ohalo III
NASA’s next step toward space crop production will be the
Ohalo III chamber, targeted for the ISS as early as 2024. This
rack-sized crop production system will be atmospherically
closed to recycle transpired humidity and will contain
various automation and sensing capabilities. Ohalo III is
designed to be evolvable and expandable and will initially
test different water delivery and volume optimization
concepts for growing plants in microgravity. As a permanent
addition to the ISS, Ohalo III should be able to investigate
operational challenges associated with the sustained production
of crops in space and will hopefully achieve the long desired
“vegetable production unit” for a Mars transit mission (Kliss
and MacElroy, 1990; Kliss et al., 2000).

DISCUSSION

NASA has sponsored extensive research on growing various
species of leafy vegetables and small fruits in controlled
environment chambers. This research revealed the
importance of managing water and nutrient supplies to the
plants, the effects of elevated and super-elevated CO2 on plants,
and the profound influence of light on crop growth and
development. This in turn has driven the development and
testing of LED lighting and other new technologies for space
crop production. Other key gaps exist in our knowledge base,
such as the effects of reduced gravity on the plants and their
support systems, such as water delivery, and the effects of space
radiation. Most of this testing occurred in “ground” settings, but
small plant chambers have been built and tested in space. These
chambers have become successively larger with better
environmental control, but none have been used with the
sole intent for providing fresh food for the astronauts.
Exploratory tests with the Veggie plant chamber are

beginning to do this, but a dedicated “vegetable production
unit” with better environmental control is still needed.

Concluding Remarks
BLSS using plants to generate food and oxygen while
recycling CO2 and water will help achieve more
autonomous living on other planets; however, developing a
large BLSS on surface settings could be decades in the future,
and this will be dictated in part by mission architectures of
the various space agencies. Nonetheless, continued ground
research on these systems is needed to understand their
integration with other environmental control technologies,
their sustainability, and their costs in terms of mass, power,
volume, and crew time. Part of the evolution toward these
BLSS systems will be testing smaller components or
subsystems in space settings like the ISS and early surface
missions. A logical stepping stone in this progression will be
using smaller plant chambers to provide supplemental, fresh
foods to augment stored foods. These fresh foods could
reduce diet fatigue and provide key nutrients that degrade
in the packaged food supplies. Understanding the operation,
cost, and sustainability of these smaller food-crop production
systems will provide critical information for evolving toward
a larger BLSS of the future.
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