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Diffuse aurora is generated by the precipitation of hot electrons from the central plasma
sheet due to wave-particle interaction. Near magnetic local noon (MLN), the diffuse aurora
was often observed in structured forms, such as in stripy or patchy. In the magnetosphere,
when the hot electrons meet with a cold plasma structure, the threshold of resonance
energy for the electrons in the cold plasma region can be lowered, leading to more
electrons being involved in the wave-particle interaction and being scattered into the loss
cone. As a result, stronger diffuse aurora can be produced in the correspondent region.
Based on this mechanism, the structured dayside diffuse auroras have been suggested to
correspond to the cold plasma structures in the dayside outer magnetosphere. This brief
review focuses on showing that 1) the stripy diffuse auroras observed near MLN are
specifically informative, 2) there are two types of diffuse aurora near MLN, which may
correspond to cold plasmas originating from inside and outside the magnetosphere,
respectively, and 3) we can study the inside-outside coupling by using the interaction
between diffuse and discrete auroras observed near MLN.
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INTRODUCTION

Background About Diffuse Aurora
The auroras observed on the ground can be classified into two broad categories, i.e., discrete and diffuse
auroras, which are different in appearance and generation mechanisms. Discrete auroras are generally
characterized by intense auroral emission in both green (wavelength of 557.7 nm) and red (wavelength of
630.0 nm) lines and often appear as auroral arcs, bands, curls, and rays. It is believed that the discrete
auroras are produced by electrons accelerated by quasi-static electric field or Alfven waves and are
associated with the field-aligned current. Diffuse auroras generally appear at the equatorward edge of the
auroral oval (Lui et al., 1973) with relatively homogenous emission in the green line observations. Initially,
diffuse aurora studies mainly focused on where the source particles are from, whether these particles have
been accelerated, or how these particles are scattered into the loss cone. In the 1970s, thanks to the rapid
development of satellites, it was revealed that the electrons for producing the diffuse aurora originated
from the central plasma sheet (CPS) (Meng et al., 1979), and their energy did not significantly change
from the source region to the topside ionosphere. Therefore, the research on diffuse aurora after the 1980s
mainly focused on the scattering mechanism of particles. Now, it has been widely accepted that the
electron diffuse aurora are generated by precipitation of hot electrons (> 1.0 Kev) from the CPS through
wave-particle interaction by the whistler-mode chorus (Ni et al., 2011b; Nishimura et al., 2010; Thorne
et al., 2010) or electron cyclotron harmonic (ECH) (Horne and Thorne, 2000; Liang et al., 2011; Ni et al.,
2011a; Zhang et al., 2014) waves.
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The source particle of diffuse aurora is the earthward particle
injection during substorms. Because the injected electrons drift
from midnight toward dawn and noon sectors, the diffuse aurora
is the strongest on the post-midnight sector (Newell et al., 2009)
and is gradually weakening toward the dawn and noon sectors.
Dayside diffuse aurora has been early noticed (Newell and Meng,
1992; Sandholt et al., 1998). Sandholt et al. (1998) classified the
dayside optical auroras into seven types, in which the type 3
aurora was the diffuse aurora. For the electron scattering
mechanisms, a few studies suggested that dayside diffuse
auroras are associated with the chorus waves (Ebihara et al.,
2007; Ni et al., 2014; Nishimura et al., 2013). At the same time, it
has been noticed that ECH waves play a role in producing the
diffuse auroras on the dayside (Han et al., 2017; Lou et al., 2021).
Frey et al., 2019 summarized that dayside diffuse auroras show
various structures and suggested that the diffuse auroral structure
may correspond to low-energy plasma density structures in the
dayside outer magnetosphere.

This paper will not discuss the electron scattering mechanism
for producing the diffuse aurora but will focus on the implications
of structured dayside diffuse aurora on the cold plasma
structuring in the dayside outer magnetosphere.

Distribution of Structured and Unstructured
Diffuse Auroras in the Dayside
Although satellites have advantages in providing global coverage
in auroral observation, they generally have limitations on spatial
and temporal resolutions. In contrast, ground-based instruments
can easily overcome these disadvantageous factors. On making
dayside optical auroral observations on the ground, the
observation site is required to be under the aurora oval and, at
the same time, be dark on the dayside. Only a few places can meet
these requirements on Earth. Svalbard Island in the north of
Europe is one of such places in the Northern Hemisphere.
Chinese Yellow River Station (YRS) is situated at Ny-Alesund
in Svalbard, where is just fit for making dayside optical auroral
observations from the beginning of November to the middle of
February for each year. YRS has three individual all-sky imagers
equipped with narrowband filters centered at 427.8, 557.5, and
630.0 nm, respectively (Hu et al., 2009). YRS has carried out
auroral observations in the same mode, i.e., with 10-s time
resolution, since November 2003 up to the present. The long-
lasting and high-quality data accumulation provides an
unprecedented opportunity for the dayside auroral study. The
observational results discussed here are mainly obtained from the
YRS station.

Using observations from Svalbard, Sandholt et al. (1998)
suggested that the dayside diffuse auroras are caused by
precipitation of CPS electrons drifted from the nightside.
However, they did not do further studies on it. Using 7-years
observations from YRS, Han et al. (2015) carried out a statistical
survey on the dayside diffuse aurora. They found that the dayside
diffuse auroras can be classified into two broad categories:
structured and unstructured diffuse auroras. The structured
diffuse auroras are predominantly observed near magnetic
local noon (MLN), and the unstructured ones are in the

morning. The main results and the implications are illustrated
in Figure 1. The observational results were explained as follows
by considering the source particle properties of diffuse aurora and
the cold plasma structuring in the dayside magnetosphere (Han
et al., 2015; Han et al., 2017).

The source particles for diffuse auroras are hot electrons from
CPS (Horne et al., 2003). These particles originate from the
earthward particle injection during substorms on the nightside
(Newell et al., 2009) and drift around the Earth toward dawn and
local noon sectors. As drifting, a portion of the electrons can be
scattered into the loss cone and produce diffuse aurora. This leads
to the diffuse aurora being the most intense near midnight and
gradually weakening toward dawn and noon sectors (Newell
et al., 2004). At the same time, the electron density gradually
decreases from midnight toward the local noon.

The essential differences for the structured and unstructured
diffuse auroras lie in the size of the diffuse auroral region. If the
auroral region is large enough, it will be full of the field of view
and thus be observed as ‘unstructured’. Otherwise, if the diffuse
auroral region is not so large and its shape can be identified in the
field of view, it will be observed as “structured”. In the morning,
the diffuse auroras are predominantly observed as
“unstructured”. This can be understood as that the source
particle for diffuse aurora still has a high density in the
morning, so it can produce diffuse aurora in a large area,
which is often observed as “unstructured”.

Han et al. (2015) suggested that the reasons for the diffuse
auroras observed near MLN become much structured should be
related to cold-plasma structuring in the dayside outer
magnetosphere. In previous, both theoretical (Demekhov and
Yu., 1994; Ni et al., 2014) and observational (Nishimura et al.,
2013) works have shown that a structured diffuse aurora
corresponds to a cold plasma structure in the magnetosphere.
The cold plasma structure plays a crucial role in the generation of
the structured diffuse aurora by decreasing the energy threshold
and increasing the growth rate of whistler cyclotron instability
(Brice and Lucas, 2012; Li et al., 2011). This means that the
existence of the cold plasma structure will enable more particles
to be scattered into the loss cone and thus lead to a stronger
aurora. Based on this theory, because the density of the source
particle decreases toward local noon, even though some of them
still can be scattered into loss cone and produce diffuse aurora,
the auroral intensity may be too weak to be detected by a camera
in general. Under such a condition, if there is a cold plasma
structure in the magnetosphere, more electrons passing through
this structure will be scattered into the loss cone. Thus, the auroral
intensity conjugate to the cold plasma structure will be increased
and thus be observed as structured diffuse aurora. This well
explained why the structured diffuse auroras are predominantly
observed near local noon.

Stripy Diffuse Auroras Observed Near
Magnetic Local Noon
Satellite observations frequently detected cold plasma structures
in the dayside outer magnetosphere (Chen and Moore, 2006; Lee
et al., 2015). However, it is not easy to determine the three-
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dimensional (3-D) shape of the cold plasma even with
simultaneous observations from multiple satellites. Han et al.
(2015) noticed that the structured diffuse auroras observed near
MLN mainly show stripy and patchy forms. Importantly, they
found that the stripy diffuse auroras are convection-aligned and
show tapered at the end. Based on these properties, Han et al.,
2015 suggested that these stripy diffuse auroras should
correspond to wedge-like cold plasma structures radially
aligned from low to high L shells in the dayside outer
magnetosphere. Figure 1 shows a stripy diffuse aurora
example and schematically illustrates the projection of the
wedge-like structure on the equatorial plane.

The possible origin for the cold plasmas observed in the
dayside outer magnetosphere include ionospheric outflow,
plasma aspherical drainage plume, and solar wind penetration
(Delzanno et al., 2021). The 3-D shape of the cold plasma
structure is useful in inferring its generation mechanism.
Based on the convection-aligned orientation of the stripy
diffuse aurora, Han et al. (2015) suggested that the wedge-like
cold plasma structure in the magnetosphere should also be
convection-aligned, as indicated in Figure 1. This information
led Han et al. (2017) to suggest that the cold plasmas forming the
wedge-like structure are most likely from the ionospheric outflow.
It is well known that solar EUV ionization can produce dense
plasma in the midlatitude ionosphere. When these plasmas were
conveyed toward high latitudes by ionospheric convection, stripy
high-density plasma structures may be formed in the ionosphere.
These structures have been observed as the tongue of ionization
(Foster et al., 2005) or poleward moving plasma concentration
enhancement (PMPCE) (Zhang et al., 2013). Further, Zhang et al.
(2016) indicated that the PMPCE might be associated with
ionospheric outflows. Thus, from the convection-aligned

property of the stripy diffuse aurora, we infer that 1) the
correspondent cold plasma structure in the dayside outer
magnetosphere should be in a wedge-like form and be
convection-aligned, 2) these cold plasmas are originated from
the ionospheric outflow, and 3) it is the ionosphere that
determines the convection-aligned features for the wedge-like
cold plasma structure. We expect future observations to verify
these inferences.

Two Types of Diffuse Auroras Observed
Near Magnetic Local Noon
By examining the observations at Yellow River Station, Han et al.
(2017) revealed that there exist two types of structured diffuse
auroras near MLN, which are with obviously different dynamical
properties and are called Type 1 and Type 2 diffuse auroras. The
auroral movies provided in Supporting Information (SI) in Han
et al. (2017) showed the differences in the dynamic properties for
the two types of diffuse auroras in detail. Han et al. (2017) showed
that Type 1 diffuse auroras are generally in stripy or patchy forms
and show fast drifting or pulsating. Actually, Type 1 diffuse
auroras are the same as the structured patchy diffuse auroras
defined in Han et al. (2015). Thus, they may reflect the cold
plasma structuring in the dayside outer magnetosphere, as
discussed above.

On the other hand, Type 2 diffuse auroras are always adjacent
to the discrete aurora oval and drift together with the nearby
discrete aurora much slower than the drifting speed of Type 1.
This result naturally reminds us to consider the possible linkage
between the Type 2 diffuse aurora and the nearby discrete aurora.
Han et al. (2017) confirmed this linkage by coordinated
observations from Magnetospheric Multiscale (MMS) satellites

FIGURE 1 | The implications of the statistical results about dayside diffuse aurora. The convection-aligned stripy diffuse aurora observed near magnetic local noon
is very informative (revised from Figure 15 in Han et al., 2015).
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near the magnetopause and ground-based all-sky imager at
Yellow River Station. Han et al. (2017) found that Type1 and
Type 2 diffuse auroras correlate with the number density increase
of O+ and He2+ ions, respectively. It is generally accepted that
O+ ions are originated from the ionosphere. In contrast, highly
charged ion species, such as He2+ ions, are originated from the
solar wind. Therefore, Han et al. (2017) suggested that Type 2
diffuse auroras are related to cold plasmas originating from the
solar wind.

The possible mechanisms for the solar wind particles entering
the magnetosphere include the dayside reconnection (Fuselier
and Lewis, 2011), high-latitude reconnection (Song et al., 1994),
and impulsive plasma penetration (Lemaire, 1977). The solar
wind consists primarily of electrons and protons with the
temperature of the order of 10 eV flowing at around 400 km/s.
For ions, the flow kinetic energy is ∼ 1.0 keV and dominates over
the thermal energy. The total energy of the magnetosheath ions is
∼ 1.0 keV, while that of the electrons is even lower. Although solar
wind particles are traditionally not regarded as cold plasmas, their
temperature is about one order lower than that of the electrons in
the CPS. Therefore, once entering the magnetosphere, they can
also act as a cold plasma structure in producing the diffuse aurora
by decreasing the threshold energy of the electrons participating
in the wave-particle resonances.

In summary, Han et al., 2017 showed two types of diffuse
aurora near MLN, which may correspond to cold plasmas
originating from inside and outside the magnetosphere,
respectively. It provides a feasible method for inferring the
two-dimensional information of magnetosheath particles

penetrating into the magnetosphere near the dayside
magnetopause.

Using Diffuse Aurora to Analyze the
Magnetospheric Processes
The diffuse auroras are all on the closed field lines (inside the
magnetosphere). Near MLN, the discrete auroras are believed to
be on the open field lines (outside the magnetosphere)
(Lockwood, 1997). The diffuse and discrete auroras observed
near MLN often show close interaction (Han et al., 2015).
Therefore, we suggest that we can study the inside-outside
coupling by using the interaction between the diffuse and
discrete auroras observed near MLN. Han (2019) analyzed
such an event observed on November 27, 2008, as shown in
Figure 2.

In Figure 2, a yellow arrow on each image approximately
indicates the poleward edge of Type 1 diffuse aurora, and a red
arrow indicates the Type 2 diffuse aurora. From 08:22:30UT, the
Type 2 diffuse aurora split, and a black region appeared, as
indicated by the blue arrow. At the same time, a discrete
aurora started to appear in the center of the diffuse aurora, as
indicated by the white arrow. This discrete aurora is called throat
aurora (Han et al., 2015) and has been suggested to be associated
with magnetopause reconnection (Han et al., 2019; Feng et al.,
2020).With the throat aurora gradually brightened, a large area of
Type 1 diffuse aurora (indicated by yellow arrow) just drifted
poleward and surrounded the throat aurora from 08:23:30UT to
08:24:30UT. Most interestingly, the black region surrounding the

FIGURE 2 | A typical case observed on Nov. 27, 2008 for showing how the diffuse auroras can be used to analyze the dayside magnetospheric processes. Yellow
and red arrows indicate Type 1 and Type 2 diffuse auroras, respectively. Type 2 diffuse aurora is believed to be related to the penetrated magnetosheath particles. A
throat aurora is developed from the Type2 diffuse aurora from 08:22:30UT. At the same time, a black region is appeared. From 08:23:30, the Type 1 diffuse aurora drift
poleward but cannot come into the black region, which means the field lines threading the black region is opened.
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throat aurora kept dark all the time, i.e., the large area of Type 1 diffuse
drifting poleward but cannot enter into the black region. Because
diffuse auroras are caused by particles on the closed field lines, this
observational fact means that the electrons on the closed field lines
cannot reach the black region anyway. This can be explained by that
the black region was on opened field lines at that time. Because the
black region was initially covered by diffuse aurora, i.e., on the closed
field lines, Han [2019] suggested that the black region’s field lines are
newly opened by magnetopause reconnection. Further, because the
appearance of the black region is closely related to the throat aurora,
this indicates that the generation of throat aurora is associatedwith the
magnetopause reconnection. This example well demonstrates the
inside-outside magnetospheric coupling by taking advantage of the
two-dimensional continuous observations of aurora. The auroral
observations may also be used to study how the cold plasmas
affect the magnetopause reconnection (Borovsky and Denton,
2008; Borovsky et al., 2008).

CONCLUSION

Based on theoretical works of inferring cold plasma structuring
from the structured diffuse auroras, observational results about
the dayside diffuse aurora are well explained. Among the dayside
diffuse aurora structures, the north-south aligned stripy diffuse
auroras are the most informative. The convection-aligned feature

reminds us to consider that the related cold plasma structure
should be wedge-like in the magnetosphere and these cold
plasmas are most likely from the ionospheric outflow. These
outflowed cold plasmas may involve the dayside magnetopause
reconnection, although the details need further study. Near
magnetic local noon, two types of structured diffuse auroras
were resolved. Type 1 is suggested to be related to ionospheric
outflow, while Type 2 is believed to be involved in particles
penetrated from the magnetosheath. Based on these
understandings and combined with the advantages of two-
dimensional continuous auroral observation, we can infer
some physical processes near the dayside magnetopause.
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