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We numerically calculate the quasinormal frequencies of the Klein-Gordon and Dirac fields
propagating in a two-dimensional asymptotically anti-de Sitter black hole of the dilaton
gravity theory. For the Klein-Gordon field we use the Horowitz-Hubeny method and the
asymptotic iteration method for second order differential equations. For the Dirac field we
first exploit the Horowitz-Hubeny method. As a second method, instead of using the
asymptotic iteration method for second order differential equations, we propose to take as
a basis its formulation for coupled systems of first order differential equations. For the two
fields we find that the results that produce the two numerical methods are consistent.
Furthermore for both fields we obtain that their quasinormal modes are stable and we
compare their quasinormal frequencies to analyze whether their spectra are isospectral.
Finally we discuss the main results.
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asymptotic iteration method

1 INTRODUCTION

The quasinormal modes (QNMs) are the oscillations of perturbed black holes that are purely ingoing
near the horizon. The boundary condition imposed at the asymptotic region depends on its structure,
for example, for asymptotically flat black holes the boundary condition usually imposed is that the
perturbation is purely outgoing as r → ∞, whereas for the asymptotic anti-de Sitter black holes
(asymptotically adS black holes, in what follows), a common boundary condition demands that the
perturbation goes to zero as r→∞ (Avis et al., 1978; Kokkotas and Schmidt, 1999; Berti et al., 2009;
Konoplya and Zhidenko, 2011). It is convenient to notice that in asymptotically adS spacetimes we
can impose a different boundary condition as r→∞. See Refs. (Breitenlohner and Freedman, 1982;
Burgess and Lütken, 1985; Dasgupta, 1999) for some examples. Associated with the QNMs we find a
set of complex frequencies called quasinormal frequencies (QNFs). It is well known that the QNFs of
black holes are determined by the geometry and the type of perturbation (Kokkotas and Schmidt,
1999; Berti et al., 2009; Konoplya and Zhidenko, 2011).

Two dimensional gravity allows us to analyze several physical problems in a simple framework.
The physical properties of two-dimensional black holes (2D black holes, in what follows) are studied
because some aspects of the analysis are simpler than in spacetimes with D ≥ 3 dimensions
(Grumiller et al., 2002; Grumiller and Meyer, 2006). Furthermore, in 2D spacetimes the equations of
motion for classical fields simplify and we can study in more detail several physical phenomena, for
example, the way in which a 2D black hole reacts when it is perturbed. The QNFs of 2D spacetimes
have been studied in recent times (Li et al., 2001; Kettner et al., 2004; Becar et al., 2007; Zelnikov,
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2008; López-ortega, 2009; Becar et al., 2010; López-ortega, 2011;
López-Ortega and Vega-Acevedo, 2011; Cordero et al., 2012;
Myung and Moon, 2012; Estrada-Jiménez et al., 2013; Stetsko,
2017; Jusufi et al., 2018; Sakallı et al., 2018; Mirbabayi, 2020;
Bhattacharjee et al., 2021; Kanzi and Sakallı, 2021; Sakalli and
Tokgöz Hyusein, 2021). Exact results for the QNFs have
previously found (Li et al., 2001; Kettner et al., 2004; Becar
et al., 2007; Zelnikov, 2008; López-ortega, 2009; Becar et al.,
2010; López-ortega, 2011; López-Ortega and Vega-Acevedo,
2011; Cordero et al., 2012; Myung and Moon, 2012; Estrada-
Jiménez et al., 2013; Stetsko, 2017; Jusufi et al., 2018; Sakallı et al.,
2018; Mirbabayi, 2020; Bhattacharjee et al., 2021; Kanzi and
Sakallı, 2021; Sakalli and Tokgöz Hyusein, 2021), but for some
asymptotically adS 2D backgrounds a numerical calculation is
necessary (Cordero et al., 2012).

We notice that the QNFs of asymptotically adS black holes
have attracted attention, since they are useful to study its classical
stability (Chan andMann, 1997; Chan andMann, 1999; Kokkotas
and Schmidt, 1999; Horowitz and Hubeny, 2000; Giammatteo
and Jing, 2005; Berti et al., 2009; Lopez-Ortega, 2010; Konoplya
and Zhidenko, 2011; Cordero et al., 2012) and to calculate the
entropy spectrum of the black hole horizon (Hod, 1998;
Maggiore, 2008; Wei and Liu, 2009; Kwon and Nam, 2010;
López-Ortega, 2010). Here we exploit the advantages that we
find in 2D gravity to implement two numerical methods to
calculate the QNFs of a 2D asymptotically adS black hole
(Lemos and Sá, 1994). Additionally, we carry out this work to
understand the properties of this 2D black hole of Lemos and Sá
(1994) and study its classical stability under small perturbations.
One of the numerical procedures is the widely used Horowitz-
Hubeny method (HH method in what follows) (Horowitz and
Hubeny, 2000) that is appropriate to compute the QNFs of
asymptotically adS spacetimes (Berti et al., 2009; Konoplya
and Zhidenko, 2011). The other numerical procedure is the
asymptotic iteration method (AIM in what follows) (Ciftci
et al., 2003), that is modified to determine the QNFs of black
holes (Cho et al., 2010). For the Klein-Gordon field the AIM is
exploited in the usual formulation for second order differential
equations (Ciftci et al., 2003; Cho et al., 2010), whereas for the
Dirac field we propose to use the formulation of the AIM for
coupled systems of first order differential equations (Ciftci et al.,
2005). As far as we know, this version of the AIM has not
previously used to calculate QNFs of black holes and we think
that the computation of the QNFs for 2D black holes is the
appropriate setting to test this method.

The rest of the paper is structured as follows. In Section 2.1 we
give the asymptotically adS 2D black hole that we study in this
work and we describe its main properties. In Section 2.2 we
simplify the equation of motion for the Klein-Gordon field in
the 2D black hole that we study. Furthermore, for the Klein-
Gordon field in Section 2.3 and Section 2.4 we describe the HH
method and the AIM for second order differential equations. For
the Dirac field we simplify its equation of motion in Section 2.5.
Also, for the Dirac field our implementations of the HH method
and the AIM for coupled systems of first order differential
equations are outlined in Section 2.6 and Section 2.7. In
Section 3.1 we numerically calculate the QNFs of the Klein-

Gordon field moving in the asymptotically adS 2D black hole
that we are studying and then the QNFs of the Dirac field are
numerically computed in Section 3.2. For the two fields we
compare the results that produce the two methods. In Section
4 we discuss the main results. For the Klein-Gordon and Dirac
fields, in Supplementary AppendixAwe give the numerical values
of the QNFs with more decimal places. For static 2D spacetimes
with diagonal metric in Supplementary Appendix B we simplify
the Dirac equation to a pair of Schrödinger type equations. The
simplification uses a basis of null vectors. This method can be
exploited in other 2D spacetimes, and as far as we know, it is not
already reported. In Supplementary Appendix C we extend the
discussion of the AIM for the Klein-Gordon field andwe show how
to use the formulation of the AIM for coupled systems of first order
differential equations to determine its QNFs. In Supplementary
Appendix D we give the so-called improved formulation of the
AIM for second order differential equations (Cho et al., 2010; Cho
et al., 2012) and we employ this improved version to calculate the
QNFs of the Klein-Gordon field. Furthermore, we develop an
improved version of the AIM for coupled systems of first order
differential equations. Taking as a basis this improved version we
calculate the QNFs of the Dirac field again and we compare with
the previous results. Finally in Supplementary Appendix E we
show that the AIM for coupled systems of first order differential
equations works for calculating the QNFs of the Dirac field moving
in a higher dimensional Lifshitz black hole.

2 METHODS

In this section we describe the main properties of the
asymptotically adS 2D black hole that we study in this work.
Furthermore we give the steps to simplify the equations of motion
for the Klein-Gordon field and the Dirac field in the black hole
under study. Finally, for both fields, we summarize the HH
method and the AIM.

2.1 Two-Dimensional Asymptotically
Anti-de Sitter Black Hole
In Lemos and Sá (1994) we find several 2D spacetimes
representing black holes. These black holes are solutions to the
equations of motion for the action

S � 1
2π

∫ d2x
���−g√

e−2ϕ[R − 4ρ(zϕ)2 + 4σ2], (1)

whereR is the scalar curvature, σ is a constant that we interpret as
a cosmological constant, ϕ is the dilaton, and ρ is a parameter that
we take as ρ � −1/2. For this value of ρ, a solution to the equations
of motion is the asymptotically adS 2D black hole that we study in
this work and whose metric is (Lemos and Sá, 1994).

ds2 � a2r2 − 1
ar

( )dt2 − a2r2 − 1
ar

( )−1
dr2, (2)

and the dilaton field is equal to

e−2ϕ � a2r2. (3)
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The event horizon of this black hole is located at r+ � 1/a, where a
is related to σ by a � �

2
√ |σ|/ �

3
√

. We notice that the scalar
curvature of this 2D black hole is equal to
R � −4σ2/3 + 4σ2/(3a3r3), hence it is positive inside the
horizon and negative outside the horizon (Lemos and Sá,
1994). The ADM mass of the 2D black hole (2) is equal to
M � |σ|/ �

6
√

(Lemos and Sá, 1994; Lemos, 1995). We observe
that the metric of the 2D black hole (2) is the (t, r) sector of the
metric for the flat horizon Schwarzschild adS black hole in four
dimensions (Lemos, 1995), but we point out that the behavior
of the scalar curvature is different in both solutions. Owing this
fact we choose to analyze the stability under perturbations of
this asymptotically adS 2D black hole.

As far as we know, the classical stability under perturbations of
this 2D black hole has not previously analyzed and to begin this
study we calculate its spectrum of QNFs. We have not been able to
find exact solutions to the equations of motion for the Klein-
Gordon and Dirac fields, hence, in what follows we use the HH
method (Horowitz and Hubeny, 2000) and the AIM (Ciftci et al.,
2003; Ciftci et al., 2005; Cho et al., 2010) to compute numerically
the frequencies of its damped oscillations. Furthermore, we
evaluate whether the AIM for coupled systems of first order
differential equations works to produce theQNFs of theDirac field.

As usual for asymptotically adS black holes, we define the
QNMs as the oscillations that satisfy the boundary conditions
(Chan and Mann, 1997; Chan and Mann, 1999; Kokkotas
and Schmidt, 1999; Horowitz and Hubeny, 2000; Giammatteo
and Jing, 2005; Berti et al., 2009; Lopez-Ortega, 2010; Konoplya
and Zhidenko, 2011; Cordero et al., 2012).

a) The field is purely ingoing near the horizon.
b) The field goes to zero as r → ∞.

Note that in the boundary condition b) we assume that the
coordinates of the line element (2) are used.

2.2 Equation of Motion for the Klein-Gordon
Field
In the 2D black hole (2) we first calculate the QNFs of a test Klein-
Gordon field whose equation of motion is

(□ +m2)Φ � 0. (4)

As shown in López-Ortega and Vega-Acevedo (2011), if we take a
separable solution

Φ � R(r)e−iωt , (5)

then the Klein-Gordon equation simplifies to a Schrödinger type
equation

d2R
dr2*

+ ω2R � VKG R, (6)

with r* denoting the tortoise coordinate of the 2D black hole (2)

r* � ∫ dr a2r2 − 1
ar

( )−1
, (7)

and the effective potential VKG is equal to (López-Ortega and
Vega-Acevedo, 2011).

VKG � m2 a2r2 − 1
ar

( ). (8)

From this expression for the effective potential VKG, we
note that for m � 0, it goes to zero. Therefore for m � 0 the
solutions of Eq. 6 are sinusoidal functions and since we are
interested in damped solutions, in what follows we consider a
test massive Klein-Gordon field withm > 0. Notice that for our
problem the physically relevant interval is r ∈ (r+, ∞). It is
convenient to comment that in the 2D black hole (2) we have
not been able to solve exactly the radial Eq. 6 and therefore we
numerically compute the QNFs of the Klein-Gordon field.
Furthermore, we assume the test field approximation for
calculating the QNFs of the asymptotically adS 2D black
hole (2).

We point out that near the event horizon at r+ � 1/a the
effective potential VKG goes to zero and therefore the radial
function near the horizon behaves as

R ≈ K1 e
+iωr* + K2 e

−iωr* , (9)

where K1, K2 are constants. Note that near the horizon the first
term of the previous formula is an outgoing wave and the second
term is an ingoing wave.

To satisfy the QNMs boundary condition near the horizon, we
impose that the field is purely ingoing near the horizon by taking
the radial function R as (Horowitz and Hubeny, 2000).

R(r) � e−iωr*R̃(r), (10)

to get that the function R̃ must be a solution of the differential
equation

f
d2R̃

dr2
+ df

dr
− 2iω( ) dR ̃

dr
− V
f
R̃ � 0, (11)

where we define f � a2r2 − 1/(ar).

2.3 Horowitz-Hubeny Method for the
Klein-Gordon Field
The numerical HH method proposed in Horowitz and Hubeny
(2000) is widely used to compute the QNFs of asymptotically adS
black holes (Berti et al., 2009; Konoplya and Zhidenko, 2011;
Cordero et al., 2012). Following Horowitz-Hubeny, to transform
the interval (r+, ∞) into a finite interval, we make the change of
variable.

x � 1
r
, (12)

to obtain that Eq. 11 transforms into a differential equation of the
form (Horowitz and Hubeny, 2000).

s ̃(x) d
2R̃

dx2
+ t ̃(x)
x − x+

dR̃
dx

+ u(x)
(x − x+)2 R

̃ � 0, (13)

where
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x+ � 1
r+

� a, (14)

and the functions s̃, t ̃, and u are equal to

s ̃(x) � x2(a2 + ax + x2),

t ̃(x) � 3x2

a
− 2iω( )x2a,

u(x) � am2(x − a).

(15)

Notice that the function u satisfies u(a) � 0.
To preserve the purely ingoing radial solution near the horizon, we

expand the function R
̃
in the form (Horowitz and Hubeny, 2000).

R̃(x) � ∑∞
k�0

ak(ω)(x − x+)k. (16)

Furthermore, we expand the function s ̃ as

s ̃(x) � ∑∞
k�0

s ̃k(ω)(x − x+)k, (17)

and we make analogous expansions for the functions t
̃
and u.

Substituting these expansions into the differential Eq. 13 we
obtain that the coefficients ak(ω) are given by the recurrence
relation (Horowitz and Hubeny, 2000).

ak � − 1

k(k − 1)s̃0 + kt ̃0
∑k−1
n�0

an(n(n − 1)s ̃k−n + ntk̃−n + uk−n). (18)

Since a0 is not determined by the method, in what follows we take
a0 � 1 (Horowitz and Hubeny, 2000).

As r → ∞ the QNMs boundary condition b) imposes that the
radial function goes to zero. From the Eq. 16, to fulfill this
boundary condition and to find theQNFs of the field wemust solve

∑∞
k�0

ak(ω)(−x+)k � 0. (19)

We see that the roots of this equation are the QNFs of the 2D
black hole (2). Note that we cannot compute the infinite sum of
the previous formula, therefore a commonmethod to solve Eq. 19
is to calculate the sum up to an integer value N and obtain the
roots of the resulting polynomial. We repeat the calculation for
another integer valueN1 >N and the common roots are the QNFs
of the Klein-Gordon field (Horowitz and Hubeny, 2000). In the
HHmethod the repeated roots for different values of N are called
stable roots.

2.4 Asymptotic Iteration Method for the
Klein-Gordon Field
The asymptotic iteration method is useful to study linear second
order differential equations that can be written in the form (Ciftci
et al., 2003).

ϕ′′ � λ0ϕ′ + s0ϕ, (20)

where λ0 and s0 are differentiable functions of the independent
variable x. As usual, we denote the derivative with respect to the

independent variable x with a prime. This method is widely used
to solve linear second order differential equations, to find its
eigenvalues (Ciftci et al., 2003), and more recently is taken as a
basis to calculate the QNFs of black holes (Cho et al., 2010).

We observe that the derivative of the previous equation takes
the form (Ciftci et al., 2003).

ϕ′′′ � λ1ϕ′ + s1ϕ, (21)

where

λ1 � λ0′ + s0 + λ20, s1 � s0′ + s0λ0, (22)

that is, for the differential Eq. 20, the structure of its first
derivative is similar when we define λ1 and s1 as previously
(Ciftci et al., 2003). Furthermore, we find that the n-th
derivative of Eq. 20 takes an analogous form (Ciftci et al., 2003).

ϕ(n+2) � λnϕ′ + snϕ, (23)

where

λn � λn−1′ + sn−1 + λ0λn−1, sn � s′n−1 + s0λn−1. (24)

To find a solution to Eq. 20, in Ciftci et al. (2003) is imposed the
asymptotic aspect of the AIM by proposing that for n sufficiently
large the following equation (Ciftci et al., 2003).

sn
λn

� sn−1
λn−1

� α, (25)

is satisfied. From the previous equation we obtain the
quantization condition1 (Ciftci et al., 2003).

δn � λnsn−1 − λn−1sn � 0. (26)

Usually the previous condition depends on the independent
variable x and the oscillation frequency. To get the QNFs from
this condition we evaluate the quantity δn in a convenient point and
the stable roots of the resulting equation are the QNFs (Ciftci et al.,
2003). In the AIM for stable roots we understand the common roots
of the quantization condition (26) for different values of N where N
is the number of times we iterate the expressions (24). Usually to
determine the stable roots we take values ofN that differ by five, that
is, we calculate the quantity δN of Eq. 26 for two values of N that
differ by 5 and we take the common roots of Eq. 26 as the QNFs.
We point out that to implement the AIM we scale out the behavior
of the field near the boundaries before we find the equivalent of Eq.
20 for our problem (Cho et al., 2010).

In the following we use the AIM to calculate the QNFs of the
Klein-Gordon field propagating in the 2D black hole (2). We take
as a basis Eq. 11 and we factor out the behavior at the asymptotic
region, since the behavior near the horizon is scaled out. As a first
step we study Eq. 11 as r → ∞ to get

d2R̃

dr2
+ 2
r
dR ̃

dr
− m2

a2
( ) R̃

r2
� 0, (27)

1In this work, for Eq. 26 we use the name of quantization condition (Ciftci et al.,
2003), but notice that here we explore the classical propagation of the Klein-
Gordon and Dirac fields. In the context of this paper a more appropriate name for
Eq. 26 could be discretization condition or termination condition.
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whose solutions are of the form

R̃ � K1r
q− + K2r

q+ , (28)

where K1, K2 are constants and the quantities q−, q+ are equal to

q− � −1/2 −
���������
1 + 4 m2r2+

√
/2,

q+ � −1/2 +
���������
1 + 4 m2r2+

√
/2. (29)

From the expression (28) we observe that the solution satisfying
the boundary condition of the QNFs as r→∞ is K1rq− . Therefore
we make the ansatz

R ̃ � rq−R̂
(30)

to get that the function R̂ satisfies the differential equation

f
d2R ̂

dr2
+ 2q−f

r
+ df
dr

− 2iω( ) dR̂

dr
+ q−(q− − 1)f

r2
+ q−

r
df
dr

− 2iωq−
r

− V
f

( )R ̂ � 0.

(31)

Owing to the radial variable is defined in a semi-infinite interval,
in a similar way to the HH method, it is convenient to use a new
independent variable with a finite range. For implementing the
AIM we find useful to define the variable

z � r+
r
, (32)

such that z � 1 for r � r+ and z � 0 as r → ∞. Taking as
independent variable to z, we obtain that Eq. 31 transforms into

d2R ̂

dz2
− 2q−

z
+ 2 + z3

z(1 − z3) −
2
z
− 2iωr+
1 − z3

( ) dR̂

dz
− m2r2+

z2(1 − z3) −
q−(q− − 1)

z2
(

− 2 + z3

z
− 2iωr+( ) q−

z(1 − z3))R
̂ � 0. (33)

The previous linear second order differential equation is of the form
Eq. 20 and for the Klein-Gordon field we take this equation as a basis
to implement theAIM. Thus, we identify the functions λ0, s0 as follows

λ0(z) � 2q−
z

+ 2 + z3

z(1 − z3) −
2
z
− 2iωr+
1 − z3

,

s0(z) � m2r2+
z2(1 − z3) −

q−(q− − 1)
z2

− 2 + z3

z
− 2iωr+( ) q−

z(1 − z3),
(34)

and we use the recurrence relations (24) to calculate the quantities
that appear in the quantization condition (26). The stable roots of the
condition (26) are the QNFs of the Klein-Gordon field.We note that
in Section 3.1 to calculate the QNFs of the Klein-Gordon field we
follow the procedure described in Ciftci et al. (2003) instead of the
improved AIM proposed in Cho et al. (2010), (but see
Supplementary Appendix D).

2.5 Equation of Motion for the Dirac Field
The equation of motion for a Dirac field is

i/∇Ψ � mΨ, (35)

where /∇ is the Dirac operator and m is the mass of the field.
In what follows we assume that m > 0. López-Ortega and

Vega-Acevedo (2011) shows that in a static 2D spacetime
whose metric is diagonal, the Dirac equation in the chiral
representation simplifies to a pair of Schrödinger type
equations with effective potentials

V± � m2f ∓ m
2

�
f

√ df
dr
. (36)

Owing to the factor
�
f

√
in these effective potentials, our numerical

code for the HH method converges slowly2. Thus, to get a
different pair of effective potentials for the radial equations of
the Dirac field, in what follows, to write the Dirac equation in the
2D black hole (2), we exploit a dyad of null vectors (see
Supplementary Appendix B for more details).

In this basis of null vectors, the Dirac equation simplifies to a
pair of Schrödinger type equations

d2Rl

dr2*
+ ω2Rl � VlRl, (37)

with l � 1, 2, and the effective potentials are equal to

Vl � m2f ∓ iω
2

df
dr

− f
4
d2f
dr2

+ 1
16

df
dr

( )2

. (38)

In the previous equation and in what follows, the upper (lower)
sign corresponds to l � 1 (l � 2). We notice that the two effective
potentials (38) do not contain square roots of the function f. Also
the system of coupled Eq. 69 for the components of the spinor is
an appropriate basis to use the AIM for coupled systems (see
Section 2.7).

Near the horizon of the black hole, the effective potentials (38)
simplify to

lim
r→r+

Vl � ∓ iω
2
df
dr

∣∣∣∣∣∣∣r�r+ + 1
16

df
dr

∣∣∣∣∣∣∣r�r+( )2

, (39)

and therefore near the horizon the radial functions Rl behave in
the form

Rl ≈ KI
l e

−i ω±iκ2( )r* + KII
l e+i ω±iκ2( )r* , (40)

where KI
l , K

II
l are constants and in the previous equation we

introduce the surface gravity of the 2D black hole (2) defined by

κ � 1
2
df
dr

∣∣∣∣∣∣∣r�r+ � 3a
2
. (41)

Also, we note that near the horizon the first term of the expression
(40) is an ingoing wave, whereas the second term is an outgoing
wave.

We have not been able to solve exactly the Schrödinger type Eq.
37 and therefore we use first the HHmethod to compute the QNFs
of the Dirac field in the 2D black hole (2). Thus, in the following
subsection, taking as a basis the Schrödinger type Eq. 37 with the
effective potentials (38) and the HH method, we calculate the

2We note that the effective potentials (36) are supersymmetric partners. The
superpotential is equal to W � −m �

f
√

(Cooper et al., 1995; López-Ortega and
Vega-Acevedo, 2011).

Frontiers in Astronomy and Space Sciences | www.frontiersin.org August 2021 | Volume 8 | Article 7134225

Hernández-Velázquez and López-Ortega Quasinormal Frequencies of Black Holes

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


QNFs of the Dirac field in the 2D black hole (2). Moreover, in
Section 2.7 we show how to use the AIM for coupled systems of
first order equations to compute the QNFs of the Dirac field.

2.6 Horowitz-Hubeny Method for the Dirac
Field
To use the HH method (Horowitz and Hubeny, 2000) for
calculating the QNFs of the Dirac field we make the following
transformations to the differential Eq. 37. Near the horizon, to
satisfy the boundary condition of the QNMs we take the functions
Rl in the form

Rl � e−i ω±iκ2( )r*R̃l(r), (42)

to get that the functions R ̃l must be solutions of the differential
equations

f
d2R̃l
dr2

+ df
dr

− 2iω ± κ( ) dR̃l

dr
+ κ2

4
∓ iκω − Vl( ) 1

f
R̃l � 0, (43)

that transform into

x4f
d2R̃l
dx2

+ x4
df
dx

+ 2x3f + 2iωx2 ∓ κx2( ) dR ̃l
dx

+ κ2

4
∓ iκω − Vl( ) 1

f
R̃l � 0,

(44)

when we use the variable x defined in the Eq. 12.
In a straightforward way we transform Eq. 44 to the form

Eq. 13, but the functions s̃l , t
̃
l , and ul for the Dirac field are

given by

s̃l(x) � 16x2(x2 + ax + a2)2,

t ̃l(x) � 16a(x2 + ax + a2) 3x4

a
− 2iωx2 ± κx2( ),

ul(x) � 9a4x2 ∓ 24iωa3x2 + 8a(2m2 − 3a2)(x3 − a3)
+ 8 x3 + 2a3( ) x3 − a3 ± iωax( ) − x3 + 2a3( )2.

(45)

We notice that ul(a) � 0. From these expressions and taking into
account the recurrence relation (18) we get the coefficients ak for
the Dirac field moving in the 2D black hole (2). As previously,
the QNFs of the Dirac field are the stable roots of the
corresponding equations that have the same mathematical
form as Eq. 19.

2.7 Asymptotic Iteration Method for the
Dirac Field
To compute the QNFs of the Dirac field moving in the
asymptotically adS 2D black hole (2) we can take as a basis
Eq. 43 and use the AIM for second order differential
equations as explained in the previous section for the
Klein-Gordon field. Nevertheless an alternative way can be
used. As described in Ciftci et al. (2005) the AIM can be
extended to calculate the eigenvalues for coupled systems of
first order differential equations of the form

ϕ1
′ � Λ0ϕ1 + S0ϕ2,

ϕ2
′ � Ω0ϕ1 + P0ϕ2,

(46)

where Λ0, S0, Ω0, P0 are functions of the independent variable x.
In a similar way to the usual AIM previously described in Sect.

2.4, we notice that the first derivative of Eq. 46 simplifies to (Ciftci
et al., 2005).

ϕ′′
1 � Λ1ϕ1 + S1ϕ2,

ϕ′′
2 � Ω1ϕ1 + P1ϕ2,

(47)

and we observe that the previous system of coupled differential
equations is of the same form as the system (46) with

Λ1 � Λ0′ + Λ2
0 + S0Ω0,

S1 � S0′ + Λ0S0 + S0P0,
Ω1 � Ω0′ + Λ0Ω0 + P0Ω0,
P1 � P0′ + P2

0 + S0Ω0.

(48)

As in the AIM for second order differential equations, we notice
that the (n + 1)-th derivative of the coupled system of first order
differential Eq. 46 takes the form (Ciftci et al., 2005).

ϕ(n+2)
1 � Λn+1ϕ1 + Sn+1ϕ2,

ϕ(n+2)
2 � Ωn+1ϕ1 + Pn+1ϕ2,

(49)

where

Λn+1 � Λn′ + Λ0Λn +Ω0Sn,
Sn+1 � Sn′ + P0Sn + S0Λn,
Ωn+1 � Ωn′ + Λ0Ωn + Ω0Pn,
Pn+1 � Pn′ + P0Pn + S0Ωn.

(50)

In contrast to the AIM for second order differential equations, for
which two recurrence relations are obtained [see the expressions
(24)], for a system of coupled first order differential equations we
find four recurrence relations (Ciftci et al., 2005).

Furthermore, for the coupled system of first order differential
equations, the asymptotic aspect of the AIM demands that for
sufficiently large n (Ciftci et al., 2005)

Sn+1
Λn+1

� Sn
Λn

� α, (51)

which is similar to the expression (25) of the AIM for second
order differential equations, but notice that in both expressions
the involved functions satisfy different recurrence relations. From
the previous formula we obtain that the QNFs are the stable
numerical solutions of the equation (Ciftci et al., 2005).

Δn � ΛnSn+1 − Λn+1Sn � 0. (52)

For exactly solvable systems the previous quantization condition
depends only of ω, but in general depends on the independent
variable and ω (Ciftci et al., 2005), hence to calculate the roots of
Eq. 52, we evaluate it in a convenient value of the independent
variable.

In what follows we use this implementation of the AIM
for coupled systems of first order differential equations to
calculate the QNFs of the Dirac field propagating in the 2D
black hole (2). As far as we know, this procedure is not used
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before to calculate the QNFs of the Dirac field. To this end we take
as a basis the coupled system of Eq. (S.9) of the Supplementary
Appendix B, but we notice that for the 2D black hole (2) the
functions P andQ defined in Supplementary Appendix B fulfill
(PQ)2 � 1. Therefore, taking the radial functions Rl in the form

R1 � (r − r+)1/4
r3/4

U1, R2 � U2

(r − r+)1/4r1/4
, (53)

from Eq. (S.9) of the Supplementary Appendix B we obtain that
the functions U1, U2 must be solutions of the coupled differential
equations

dU1

dr
+ 1/4

r − r+
− iω

f
+ 1
4f

df
dr

− 3/4
r

( )U1 � − imr1/2�
f

√ (r − r+)1/2
U2,

dU2

dr
+ − 1/4

r − r+
+ iω

f
+ 1
4f

df
dr

− 1/4
r

( )U2 � im(r − r+)1/2�
f

√
r1/2

U1.

(54)

To impose at the boundaries the required behavior of the QNMs
we propose that the functions U1, U2 are given by

U1 � h(r)V1, U2 � h(r)V2, (55)

where the function h(r) is equal to

h(r) � (r − r+)−iω/2κr−m/2+iω/(2κ). (56)

Substituting into Eq. 54 we find that the functions V1, V2 are
solutions of

dV1

dr
+ 1/4 − iω/(2κ)

r − r+
− iω

f
+ 1
4f

df
dr

+ iω/(2κ) −m/2 − 3/4
r

( )V1

� − imr1/2�
f

√ (r − r+)1/2
V2,

dV2

dr
+ −1/4 + iω/(2κ)

r − r+
+ iω

f
+ 1
4f

df
dr

+ iω/(2κ) −m/2 − 1/4
r

( )V2

� im(r − r+)1/2�
f

√
r1/2

V1.

(57)

As we already mentioned, the variable r is defined in the semi-
infinite interval (r+,∞), but in the implementation of the AIM, it
is convenient to have a finite range of the independent variable.
Therefore we use the variable z defined in the Eq. 32 to write the
previous coupled differential equations in the form

dV1

dz
� − iωr+

1 − z3
+ 2 + z3

4(1 − z3)z +
1/4 − iω/(2κ)

z(1 − z) + iω/(2κ) −m/2 − 3/4
z

( )V1

+ imr+
(1 − z)(1 + z + z2)1/2zV2,

dV2

dz
� iωr+

1 − z3
+ 2 + z3

4(1 − z3)z −
1/4 + iω/(2κ)

z(1 − z) + iω/(2κ) −m/2 − 1/4
z

( )V2

− imr+
(1 + z + z2)1/2zV1.

(58)

This coupled system is of the form Eq. 46 and we can identify the
functions Λ0, S0, Ω0, and P0 as follows

Λ0(z) � − iωr+
1 − z3

+ 2 + z3

4(1 − z3)z +
1/4 − iω/(2κ)

z(1 − z) + iω/(2κ) −m/2 − 3/4
z

,

S0(z) � imr+
(1 − z)(1 + z + z2)1/2z,

Ω0(z) � − imr+
(1 + z + z2)1/2z,

P0(z) � iωr+
1 − z3

+ 2 + z3

4(1 − z3)z −
1/4 + iω/(2κ)

z(1 − z) + iω/(2κ) −m/2 − 1/4
z

.

(59)

From these quantities and taking into account the recurrence
relations (50) we calculate the quantities Δn of Eq. 52, whose
stable roots are the QNFs of the Dirac field in the 2D black hole
(2). Also we notice that in the functions S0,Ω0 appear a factor that
includes a square root, but this factor is well defined at the
boundaries z � 0 and z � 1.

3 RESULTS

In what follows we describe our numerical results for the QNFs of
the Klein–Gordon field and of the Dirac field.

3.1 Numerical Results for the Klein-Gordon
Field
For a specific configuration, in Table 1 we show the values of the
QNFs for the Klein-Gordon field that produce the HH method
and the AIM. For the first ten QNMs, we observe that the two
numerical methods yield QNFs which agree to three decimal
places. We point out that for all the examples studied in the
present work the two methods produce values of the QNFs which
agree to three decimal places (see Supplementary Appendix A
where we present some numerical results with more decimal
places). We also notice that the two numerical methods yield
stable QNFs, that is, frequencies with negative imaginary part3.

In Figure 1 we plot the real part and the imaginary part of the
first ten QNFs for the Klein-Gordon field of mass m � 1/10
propagating in the 2D black hole (2) with radius of the horizon
equal to r+ � 70. We notice that the graph Im(ω) vs Re(ω) shows a
linear relation between the imaginary part and the real part of the
QNFs for the Klein-Gordon field as we change the mode number.
We notice that in Figure 1 appear twenty points, but we consider
as equivalent the QNFs with the same imaginary part, that is, we
find two QNFs with the same imaginary part, but the real part of
the first is the negative of the real part of the second.

We notice that in the Figures of this paper (except for Figures
1, 6) we label the modes of the field as follows: n � 0, red circle;

3In this work our convention for the QNFs is ω � Re(ω) + iIm(ω). Therefore a
complex frequency with negative imaginary part is related with a wave that decays
in time (see the time dependence in the Eq. 5).
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n � 1, blue square; n � 2, black diamond; n � 3, green triangle;
n � 4, inverted magenta triangle.

For r+ � 70, in Figures 2, 3 we present the variation of the
imaginary part and the real part of the first five QNFs when we
modify the mass of the Klein-Gordon field. In these figures we
observe that the imaginary part and the real part of the QNFs
change in a linear way as the mass varies. In Figures 2, 3 we
observe that the imaginary part decreases, whereas the real part
increases as the mass of the field increases, thus the QNMs of the
Klein-Gordon decay faster and make more oscillations per time
unit as the mass of the Klein-Gordon field increases.

Furthermore, in Figures 2, 3we show the plots of the linear fits
given in Table 2. From the linear fits of Table 2we see that for the
plots Im(ω) vs. m the absolute value of the slope decreases as the
mode number increases. For the plots Re(ω) vs. m we notice that
the slope increases as the mode number increases. In both cases
the change of slope with the mode number is small.

In Figures 4, 5 we draw the behavior of the imaginary part
and of the real part for the first five QNFs when the radius of the
horizon varies and the mass of the Klein-Gordon field is m � 1/
10. In these figures we see that the imaginary part increases,
whereas the real part decreases as the radius of the black hole
increases, thus, for a given mode the decay time increases and
the oscillation frequency decreases as the horizon radius

increases. In both figures we observe that the imaginary part
and the real part of the fifth QNFs have the larger variations,
whereas the imaginary part and the real part of the fundamental
frequency show the smaller changes as the horizon radius
increases.

In Figures 4, 5 we also notice that the QNFs of the Klein-
Gordon field in the 2D black hole (2) are more compactly
distributed in the ω plane for bigger values of the horizon radius.

TABLE 1 | First ten QNFs of the Klein-Gordon field produced by the HH method
and by the AIM. We take r+ � 70 and m � 1/10.

Mode number HH method AIM

0 0.078 − 0.136i 0.078 − 0.136i
1 0.095 − 0.168i 0.095 − 0.168i
2 0.112 − 0.200i 0.112 − 0.200i
3 0.129 − 0.232i 0.129 − 0.232i
4 0.147 − 0.265i 0.147 − 0.265i
5 0.165 − 0.297i 0.165 − 0.297i
6 0.182 − 0.329i 0.182 − 0.329i
7 0.200 − 0.362i 0.200 − 0.362i
8 0.218 − 0.394i 0.218 − 0.394i
9 0.236 − 0.427i 0.236 − 0.427i

FIGURE 1 | First ten QNFs of the Klein-Gordon field with massm � 1/10
propagating in the 2D black hole (2) of radius r+ � 70.

FIGURE 2 | For the first five QNFs of the Klein-Gordon field we show how
the imaginary part depends on the mass of the field. We consider a 2D black
hole (2) of radius r+ � 70.

FIGURE 3 | For the first five QNFs of the Klein-Gordon field we show how
the real part depends on the mass of the field. We consider a 2D black hole (2)
of radius r+ � 70.

TABLE 2 | For the Klein-Gordon field we give the linear fits for the points shown in
Figures 2, 3. We take r+ � 70.

Mode number Linear fit for Im(ω)
vs m

Linear fit for Re(ω)
vs m

0 −0.0192 − 1.1720 m 0.0090 + 0.6880 m
1 −0.0522 − 1.1586 m 0.0254 + 0.6936 m
2 −0.0855 − 1.1462 m 0.0420 + 0.6985 m
3 −0.1187 − 1.1363 m 0.0591 + 0.7021 m
4 −0.1520 − 1.1276 m 0.0768 + 0.7030 m
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3.2 Numerical Results for the Dirac Field
For the Dirac field propagating in the 2D black hole (2) we find
that, for the first ten modes, the two methods produce QNFs
that agree to three decimal places. This fact is observed in
Table 3 for a specific configuration (see Supplementary
Appendix A for some numerical results with more decimal
places). Furthermore, both methods yield QNFs with negative
imaginary part, hence the QNMs of the Dirac field are stable in
the 2D black hole (2).

Taking as a basis the HHmethod, for r+ � 70 andm � 1/10, in
Table 4 we observe that the QNFs produced by the effective
potentials V1 and V2 of Eq. 38 are equal. Also, see the end of
Supplementary Appendix B for another argument pointing out
that these effective potentials generate the same QNFs. At present
time we only have evidence that the effective potentials of Eq. 38
produce the same spectrum of QNF in the example studied in this
work, but we think it would be convenient to show amore general
result or find a case where they produce a different spectrum
of QNF.

For the Dirac field, in Figures 6–9 and Supplementary
Appendix Figure S1 we observe that the behavior of its QNFs
is similar to that previously obtained for the QNFs of the Klein-
Gordon field, hence we describe briefly the results for the Dirac
field.

• For the QNFs of the Dirac field, in Figure 6 we see that the
relation between the imaginary part and the real part of the
QNFs is linear as we change the mode number, in a similar
way to the QNFs of the Klein-Gordon field.

• In Figures 7, 8 we observe that the imaginary part and the
real part of the QNFs for the Dirac field change in a linear
way when we modify the value of the field’s mass. The linear
fits of the data given in Figures 7, 8 are written inTable 5. In
a similar way to the QNFs of the Klein-Gordon field we see
that the imaginary part of the QNFs decreases as the field’s
mass increases, whereas the real part of the QNFs increases
as the field’s mass increases. As for the Klein-Gordon field,
for the plots Im(ω) vs. m the absolute value of the slope
decreases as the mode number increases. For the plots Re(ω)
vs. m we find that the slope increases as the mode number
increases. We also see that in both cases, the changes of the
slope with the mode number are small.

• When we change the radius of the horizon, in Figure 9 and
Supplementary Appendix Figure S1 we notice that for the
QNFs of the Dirac field the imaginary part increases as the

FIGURE 4 | For the first five QNFs of the Klein-Gordon field we show how
the imaginary part depends on the radius of the 2D black hole (2). We consider
a Klein-Gordon field of mass m � 1/10.

FIGURE 5 | For the first five QNFs of the Klein-Gordon field we show how
the real part depends on the radius of the 2D black hole (2). We consider a
Klein-Gordon field of mass m � 1/10.

TABLE 3 | First ten QNFs of the Dirac field produced by the HHmethod and by the
AIM for coupled systems of first order differential equations. We take r+ � 70
and m � 1/10.

Mode number HH method AIM coupled

0 0.078 − 0.135i 0.078 − 0.135i
1 0.095 − 0.166i 0.095 − 0.166i
2 0.112 − 0.198i 0.112 − 0.198i
3 0.130 − 0.230i 0.130 − 0.230i
4 0.148 − 0.262i 0.148 − 0.262i
5 0.166 − 0.294i 0.166 − 0.294i
6 0.184 − 0.326i 0.184 − 0.326i
7 0.202 − 0.358i 0.202 − 0.358i
8 0.220 − 0.390i 0.220 − 0.390i
9 0.238 − 0.423i 0.238 − 0.423i

TABLE 4 | We show the QNFs of the Dirac field produced by the effective
potentials V1 and V2. We get these values for the QNFs using the HH method.
We take r+ � 70 and m � 1/10.

Mode number V2 V1

0 0.078 − 0.135i 0.078 − 0.135i
1 0.095 − 0.166i 0.095 − 0.166i
2 0.112 − 0.198i 0.112 − 0.198i
3 0.130 − 0.230i 0.130 − 0.230i
4 0.148 − 0.262i 0.148 − 0.262i
5 0.166 − 0.294i 0.166 − 0.294i
6 0.184 − 0.326i 0.184 − 0.326i
7 0.202 − 0.358i 0.202 − 0.358i
8 0.220 − 0.390i 0.220 − 0.390i
9 0.238 − 0.423i 0.238 − 0.423i
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horizon radius increases, while the real part decreases as the
horizon radius increases. These behaviors are similar to
those for the QNFs of the Klein-Gordon field.

As for the Klein-Gordon field, we also note that the QNFs of
the Dirac field are more compactly distributed in the complex ω
plane when the horizon radius is bigger.

4 DISCUSSION

As far as we know, the AIM for coupled systems of first order
differential equations has not previously used to calculate the
QNFs of black holes. We find that the AIM for coupled systems of
first order equations yields QNFs of the Dirac field in agreement
with those that produces the HH method (see also
Supplementary Appendices C, D). We believe that this
method is appropriate for computing the QNFs of the Dirac
field, since in many spacetimes its equation of motion simplifies
to a coupled system of first order differential equations (Gibbons
and Steif, 1993; Cotăescu, 1998; Lopez-Ortega, 2009), and in

general the proposed method may be helpful to compute the
QNFs of classical fields whose equations of motion simplify to a
pair of coupled first order differential equations. Also this method
for calculating the QNFs of the Dirac field may be useful to verify
the results that are obtained with other numerical procedures. We
notice that in Supplementary Appendix D, taking as a basis the
improved formulation of the AIM for second order differential
equations (Cho et al., 2010; Cho et al., 2012), we present an
improved formulation of the AIM for coupled systems of first
order differential equations.

FIGURE 6 | First ten QNFs of the Dirac field with mass m � 1/10
propagating in the 2D black hole (2) of radius r+ � 70.

FIGURE 7 | For the first five QNFs of the Dirac field we show how the
imaginary part depends on the mass of the field. We consider a 2D black hole
(2) of radius r+ � 70.

FIGURE 8 | For the first fiveQNFs of the Dirac fieldwe showhow the real part
depends on the mass of the field. We consider a 2D black hole (2) of radius r+ � 70.

FIGURE 9 | For the first five QNFs of the Dirac field we show how the
imaginary part depends on the radius of the 2D black hole (2). We consider a
Dirac field of mass m � 1/10.

TABLE 5 | For the Dirac field we give the linear fits for the points shown in Figures
7, 8. We take r+ � 70.

Mode number Linear fit for Im(ω)
vs m

Linear fit for Re(ω)
vs m

0 −0.0168 − 1.1818 m 0.0087 + 0.6876 m
1 −0.0489 − 1.1717m 0.0259 + 0.6890 m
2 −0.0816 − 1.1614 m 0.0433 + 0.6898 m
3 −0.1144 − 1.1524 m 0.0610 + 0.6901 m
4 −0.1472 − 1.1450 m 0.0789 + 0.6902 m
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For the two fields propagating in the asymptotically adS 2D
black hole (2), we find that the HHmethod and the AIM produce
the same values for their first ten QNFs (see also Supplementary
Appendices C, D). Furthermore, in the numerical results we
obtain QNFs with negative imaginary part, therefore the
asymptotically adS 2D black hole (2) is stable under the Klein-
Gordon and Dirac perturbations. A relevant fact is that its QNFs
are complex, in contrast to other asymptotically adS 2D black
hole in which purely imaginary QNFs are found (Cordero et al.,
2012). As discussed in Section 3.1 and Section 3.2, in the
numerical results we observe that the QNFs of the Klein-
Gordon and Dirac fields behave in a similar way as we change
the field’s mass or the radius of the horizon. As the mass
increases, both fields decay faster and the oscillation
frequencies increase. Furthermore, as the radius of the horizon
increases the decay time increases, whereas the oscillation
frequency decreases.

From the values presented in Tables 1, 3 we see that the QNFs
of the Klein-Gordon and Dirac fields are similar, even though one
field is bosonic and the other field is fermionic. Furthermore, in
Supplementary Appendix Table S3 we display the numerical
values of the QNFs for the Klein-Gordon and Dirac fields
propagating in the 2D black holes (2) with radii r+ � 30 and
r+ � 150. In this table we observe that for r+ � 150 the QNFs of the
two fields are essentially identical, also we note that for r+ � 30
their QNFs are similar but they show more differences than the
frequencies of the 2D black holes with radii r+ � 70 and r+ � 150.
We also notice that for r+ � 30 the fundamental QNFs are closer
in value than the tenth QNFs. Thus the numerical results show
that when the horizon radius increases the QNFs of the two fields
are more similar. From the viewpoint of the Schrödinger type
equations, these results are intriguing, because the analysis of the
problem shows that for the two fields their effective potentials are
very different. We also note that the effective potentials for the
Dirac field fulfill.

Vl � VKG ∓ iω
2

df
dr

− f
4
d2f
dr2

+ 1
16

df
dr

( )2

. (60)

Although these differences, for some values of the physical
parameters, the effective potentials Vl, VKG produce almost
isospectral QNFs in the asymptotically adS 2D black hole (2).
Furthermore, as we previously mentioned, the QNFs of the
effective potentials Vl, VKG behave in a similar way when we
change the physical parameters. Thus our numerical results

indicate that for the 2D black hole (2) the last terms in the
right hand side of the Eq. 60 have a small contribution to the value
of the QNFs for the Dirac field. To start understanding this fact
we notice the following facts. Near the horizon the last three
terms in the Eq. 60 only produce a shift in the effective frequency
that appears in the Schrödinger type equations, from ω for the
Klein-Gordon field to (ω ± iκ/2) for the Dirac field. Therefore,
near the horizon, for the Klein-Gordon field we get the radial
solutions (9) whereas for the Dirac field we obtain the solutions
(40). This fact does not prevent us from choosing the relevant
solution for the QNMs. As r → ∞, the last three terms in Eq. 60
produce that the dominant behavior of the effective potentials
change from VKG ∼ a2r2m2 for the Klein-Gordon field to
Vl ∼ a2r2(m2 − a2/4) for the Dirac field, that is, only produce
a shift in the value of the mass. In our case this change does not
prevent us from choosing the appropriate solution that satisfies
the boundary condition of the QNMs at the asymptotic region.
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