AUTHOR=Berliner Aaron J. , Hilzinger Jacob M. , Abel Anthony J. , McNulty Matthew J. , Makrygiorgos George , Averesch Nils J. H. , Sen Gupta Soumyajit , Benvenuti Alexander , Caddell Daniel F. , Cestellos-Blanco Stefano , Doloman Anna , Friedline Skyler , Ho Davian , Gu Wenyu , Hill Avery , Kusuma Paul , Lipsky Isaac , Mirkovic Mia , Luis Meraz Jorge , Pane Vincent , Sander Kyle B. , Shi Fengzhe , Skerker Jeffrey M. , Styer Alexander , Valgardson Kyle , Wetmore Kelly , Woo Sung-Geun , Xiong Yongao , Yates Kevin , Zhang Cindy , Zhen Shuyang , Bugbee Bruce , Clark Douglas S. , Coleman-Derr Devin , Mesbah Ali , Nandi Somen , Waymouth Robert M. , Yang Peidong , Criddle Craig S. , McDonald Karen A. , Seefeldt Lance C. , Menezes Amor A. , Arkin Adam P. TITLE=Towards a Biomanufactory on Mars JOURNAL=Frontiers in Astronomy and Space Sciences VOLUME=8 YEAR=2021 URL=https://www.frontiersin.org/journals/astronomy-and-space-sciences/articles/10.3389/fspas.2021.711550 DOI=10.3389/fspas.2021.711550 ISSN=2296-987X ABSTRACT=

A crewed mission to and from Mars may include an exciting array of enabling biotechnologies that leverage inherent mass, power, and volume advantages over traditional abiotic approaches. In this perspective, we articulate the scientific and engineering goals and constraints, along with example systems, that guide the design of a surface biomanufactory. Extending past arguments for exploiting stand-alone elements of biology, we argue for an integrated biomanufacturing plant replete with modules for microbial in situ resource utilization, production, and recycling of food, pharmaceuticals, and biomaterials required for sustaining future intrepid astronauts. We also discuss aspirational technology trends in each of these target areas in the context of human and robotic exploration missions.