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Anomalies in the cosmic microwave background (CMB) refer to features that have been
observed, mostly at large angular scales, and which show some tension with the statistical
predictions of the standard ΛCDM model. In this work, we focus our attention on power
suppression, dipolar modulation, a preference for odd parity, and the tension in the lensing
parameter AL. Though the statistical significance of each individual anomaly is inconclusive,
collectively they are significant, and could indicate new physics beyond the ΛCDM model.
In this article, we present a brief, but pedagogical introduction to CMB anomalies and
propose a common origin in the context of loop quantum cosmology.
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I INTRODUCTION

Observations of the cosmic microwave background (CMB) by the Planck satellite have revealed
that the ΛCDM model together with the inflationary scenario checks nearly all the right boxes
(Aghanim, 2018a; Akrami, 2018; Aghanim, 2020)—in the sense that it provides a detailed fit to the
CMB spectrum based on a few free parameters (Aghanim, 2018a; Aghanim, 2019). The nearly
scale-invariant power spectrum predicted by slow-roll inflation has been confirmed with a
significance of more than 7σ (Aghanim, 2018b; Akrami, 2018). Further, observations are
consistent with the near Gaussian nature of the primordial perturbations predicted by slow-
roll inflation (Akrami, 2020).

But in spite of this success, several open questions remain. A prominent one concerns the past
incompleteness of the inflationary scenario. As it is well known, general relativity, on which the
inflationary scenario rests, breaks down as we approach the Planck regime. Loop quantum
cosmology (LQC) uses the principles of loop quantum gravity to address this issue (Bojowald,
2001; Ashtekar et al., 2003; Mena Marugan, 2010; Ashtekar and Singh, 2011; Banerjee et al., 2012;
Agullo et al., 2014; Agullo et al., 2017a). In LQC, the big bang singularity is replaced by a bounce
(Ashtekar et al., 2006a; Ashtekar et al., 2006b; Ashtekar et al., 2007; Szulc, 2007; Szulc et al., 2007;
Bentivegna and Pawlowski, 2008; Martin-Benito et al., 2008; Ashtekar and Wilson-Ewing, 2009a;
Ashtekar and Wilson-Ewing, 2009b; Garay et al., 2010; Wilson-Ewing, 2010; Pawlowski and
Ashtekar, 2012) which is triggered by quantum gravitational effects. This bounce by itself is not
able to generate the primordial perturbations though, and it must be complemented with another
mechanism. A natural strategy is to maintain the inflationary phase in the post-bounce era. In such a
scenario, the goal of the bounce is, in addition to overcoming the difficulties arising from classical
general relativity, to bring the Universe to an inflationary phase. Interestingly, although the
inflationary phase is responsible for the primordial perturbations, certain features from the pre-
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inflationary bounce may survive if the inflationary era is not too
long, and be imprinted in the CMB. Numerous studies have
examined the way the bounce predicted by LQC modifies the
primordial power spectra of scalar and tensor perturbations
(Bojowald et al., 2009; Bojowald and Calcagni, 2011; Agullo
et al., 2012; Agullo et al., 2013a; Agullo et al., 2013b;
Fernández-Méndez et al., 2013; Fernández-Méndez et al.,2014;
Agullo and Morris, 2015; Barrau et al., 2015; de Blas and Olmedo,
2016; Martínez and Olmedo, 2016; Ashtekar and Gupt, 2017;
Agullo et al., 2017b; Castelló Gomar et al., 2017; Zhu et al., 2017;
Agullo, 2018; Agullo et al., 2020a; Agullo et al., 2020b; Li et al.,
2020a; Li et al., 2020b; Ashtekar et al., 2020; Navascués et al., 2020;
Navascués and Mena Marugán, 2020; Martín-Benito et al., 2021)
and the non-Gaussianity (Agullo, 2015; Agullo et al., 2018; Zhu
et al., 2018; Sreenath et al., 2019) at large angular scales, and
showed that at smaller scales in the CMB the predictions are
indistinguishable from those of standard inflation with Bunch-
Davies initial conditions. Hence, if at all early Universe scenarios
such as LQC were to leave any imprints on the CMB, they would
be expected at the longest observable scales, or equivalently, at the
lowest angular multipoles.

It is for this reason that certain puzzling signatures which have
been recently observed at large angular scales in the CMB become
relevant (Akrami et al., 2019). These signatures, generically
known as CMB anomalies, are features that are in conflict
with the almost scale invariance predicted by inflation, or with
the statistical isotropy and homogeneity assumed in the ΛCDM.
In more detail, the anomalies observed by Planck include a lack of
two-point correlations at large angular scales, a dipolar
asymmetry, a preference for odd parity, alignment of low
multipoles, a cold spot, etc. In addition, the Planck analysis
has also found a preference for a larger value of the lensing
parameter (Aghanim, 2018b) than it is expected. Some of these
anomalies were already observed by theWMAP satellite and even
by COBE. Hence, the consensus is that these signals are not due to
unaccounted systematics. Put it simply, there is no debate about
the fact that these are real features in the CMB [see e.g., (Schwarz
et al., 2016)]. However, the statistical significance with which
these features depart from the predictions of the ΛCDMmodel is,
though non-negligible, inconclusive, and the debate is rather
whether any of these features are significant enough to require
the introduction of new physics. Recall that the ΛCDM only
makes statistical predictions, and therefore none of these features
are actually incompatible with ΛCDM. But if we accept the
ΛCDM model, the observed features imply that we live in an
uncommon realization of the underlying probability distribution.
Another possibility is that some or all these features are signatures
of new physics, and they are in fact expected signals in a suitable
extension of the ΛCDM theory.

In recent work (Agullo et al., 2021a; Agullo et al., 2021b) we
proposed that a cosmic bounce before inflation naturally changes
the primordial probability distribution in such a way that, in a
statistical sense, the observed features are not anomalous. The
core of the idea is that a cosmic bounce generates strong
correlations (non-Gaussianities) between the longest modes we
observe in the sky and longer, super-horizon modes. We cannot
observe directly these correlations since some of the modes

involved have wave-lengths larger than the Hubble radius
today. But these correlations produce indirect effects in
observable modes, which can account for the observed
anomalies. The goal of this article is to apply the general ideas
introduced in (Agullo et al., 2021a; Agullo et al., 2021b) to LQC.
We will also take the opportunity to provide a succinct and
pedagogical introduction to CMB anomalies and the
phenomenon of non-Gaussian modulation, addressed to the
quantum cosmology community. See (Agullo and Morris,
2015; de Blas and Olmedo, 2016; Ashtekar and Gupt, 2017;
Agullo et al., 2020a; Ashtekar et al., 2020; Agullo et al., 2020b)
for other ideas to account for some of the features observed in the
CMB within LQC. In particular, the companion article (Ashtekar
et al., 2021) in this special issue, provides an interesting set of
complementary ideas and perspectives on the way LQC can
account for the CMB anomalies.

The plan of this article is as follows. In the next section, we
discuss the basic principles behind quantifying temperature
anisotropy and discuss the implications of statistical
homogeneity and isotropy for CMB anisotropies. Then, we
describe some of the anomalies observed by the Planck
satellite, which point to a violation of the underlying
assumption of statistical homogeneity and isotropy. In section
III, we describe the mechanism behind the phenomenon of non-
Gaussian modulation. In section IV, we provide a quick
description of the evolution of perturbations in LQC and
discuss the power spectrum and bispectrum generated therein.
We then apply non-Gaussian modulation to LQC in section V
and present our results. In this section, we describe how the
presence of non-Gaussian modulation in LQC makes these
anomalous features more likely to occur, in a way that they
are no longer anomalous. Finally, in section VI, we conclude with
a discussion of our results, its short comings, and future
directions.

II INTRODUCTION TO CMB ANOMALIES

The temperature T(n̂) of the CMB as a function of the direction n̂
is nearly uniform, making it convenient to split T(n̂) into an
isotropic part, the mean temperature T � 1

4 π ∫ dΩT(n̂), and the
anisotropic deviation from it

δT(n̂) ≡
T(n̂) − T

T
� ∑

ℓm

aℓm Yℓm(n̂), (2.1)

where in the last equality we have decomposed the function δT(n̂)
in spherical harmonics Yℓm. [see, for instance, (Durrer, 2008;
Weinberg, 2008)]. The mean temperature T is a free parameter of
the ΛCDMmodel, which is determined by observations. Our best
measurement of T comes from the FIRAS instrument in the
COBE satellite, and is measured T � 2.7260 ± 0.0013K (Fixsen,
2009).

TheΛCDMmodel predicts only the statistical properties of the
temperature map δT(n̂) or, equivalently, of the coefficients aℓm.
Therefore, the quantities we want to extract from observations are
the moments: 〈aℓmaℓ′m′〉, 〈aℓmaℓ′m′aℓ′m′ ,〉, etc. There are
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theoretical reasons, further supported by observations, to argue
that the probability distribution we are after is very close to
Gaussian, in which case the simplest non-zero moment,
〈aℓmaℓ′m′〉, is all we need (recall that a Gaussian distribution
is completely characterized by the mean and the variance).
Furthermore, the assumption of statistical homogeneity and
isotropy, on which the ΛCDM model rests, implies that
〈aℓmapℓ′m′〉 must be diagonal in ℓ and m, and m-independent

〈aℓm ap
ℓ′m′〉 � Cℓ δℓℓ′ δmm′ . (2.2)

In other words, homogeneity and isotropy imply that all
information contained in the second moments can be codified
in the m-independent coefficients Cℓ, for ℓ � 1, 2, 3, . . .. Cℓ is
known as the angular power spectrum.

The equivalent statement in angular space is that the second
moments of δT(n̂), C(θ) ≡ 〈δT(n̂) δT(n̂′)〉 can only depend on
the angle θ between the two directions n̂ and n̂′:

C(θ) ≡ 〈δT(n̂) δT(n̂′)〉 � 1
4π

∑
ℓ

(2 ℓ + 1)Cℓ Pℓ(cosθ). (2.3)

If the assumptions of statistical homogeneity and isotropy
break down, then the simple characterization of the two-point
correlations in terms of the simple quantity Cℓ or C(θ) becomes
insufficient, and one would have to work with the full covariance
matrix of aℓm or δT(n̂).

The angular power spectrum Cℓ is measured by averaging
the data from satellites. But, what is the correct notion of
average? Ideally, one would like to have different realizations
of the probability distribution (that is, different universes) and
take averages on them, which is closer to the way averages are
measured in quantum systems. Another possibility is to take
averages over the CMB temperature map observed from
different locations in the Universe. The ergodic theorem
relates both averages. Unfortunately, none of these two
strategies is available at the practical level. Rather, what is
done in practice is to take advantage of the m-independence of
the power spectrum Cℓ, and obtain it by averaging over its
value obtained from individualm’s (we actually observe δT(n̂),
but a simple computer code can translate the data to values of
aℓm). The limitation of this strategy is clear: we have 2ℓ + 1
values of m for each multipole ℓ, and consequently the
uncertainty about the value of Cℓ obtained in this way will
be large for small values of ℓ. This uncertainty is known as
cosmic variance, and it is quantified by ±

��������
2/(2ℓ + 1)

√
Cℓ . It is

not difficult to translate this uncertainty to angular space, and
the result is ± σ(C(θ)), with

σ2(C(θ)) � 1
8 π2

∑
ℓ

(2 ℓ + 1)C2
ℓ
P2
ℓ
(cosθ). (2.4)

Cosmic variance is an intrinsic limitation of cosmological
observations, and cannot be overcome by building more
precise instruments. Therefore, in making predictions for Cℓ

or C(θ), one needs to keep in mind this inherent uncertainty.
We now discuss the anomalous features that have been

observed in CMB. The Planck team has carried out several

tests to check the statistical isotropy of the CMB (Ade, 2014;
Ade, 2016a; Akrami et al., 2019). The CMB is a spherical shell of
radiation, which captures a spherical sample of the density
perturbations at the time of decoupling in the early Universe.
Hence, deviations from isotropy in the CMB sphere will signal
deviation from statistical homogeneity or isotropy in the early
Universe. Since, as emphasized above, the predictions from the
ΛCDM model are statistical, a key aspect of the analysis is to
quantify the statistical significance of any observed departure
from the theory. In statistical parlance, this is known as
hypothesis testing, wherein a null hypothesis, which in this
case is the ΛCDM model, is compared with observations. The
departure from the null hypothesis is often quantified in terms of
the so called p-value. Given a null hypothesis, the p-value is the
probability with which a certain phenomenon can occur. If the p-
value of an observed feature is zero, the null hypothesis is
automatically considered as incorrect. A very small value of
the p-value, would rather rule out the hypothesis with a
statistical significance given by 1 − p. The concept is visually
illustrated in Figure 1: the p-value corresponds to the area of the
shaded region.

In order to quantify an anomaly, the first step is to choose an
observable of interest, which will serve as the indicator of the
anomaly. Rather than analytically deriving the probability
distribution of the chosen observable out of the theory, a task
that may be difficult for some observables, in practice it is often
more convenient to estimate the p-value numerically. This can be
done by simulating a large number of random realizations of the
CMB temperature map from the probability distribution of the
ΛCDM model—using the best fit for the free parameters—and
computing the p-value of the chosen observable from them. This
is the way the Planck collaboration has evaluated the p-value of
the anomalies discussed below (Ade, 2014; Ade, 2016b). For

FIGURE 1 | Illustration of the concept of p-value. The figure shows the
probability distribution of a certain observable X according to the null
hypothesis in black. The value of X that is actually observed is shown in red.
Although the expected value of X is zero, the observation is not
incompatible with the theoretical prediction, given the statistical character of
the later. The shaded area gives us the p-value of the observed value of X. As it
is evident from the figure, a smaller p-value implies a larger departure from the
null hypothesis.
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example, if only five simulations out of a thousand lead to a value
of an observable which is at least as extreme as the observed value,
they would report a p-value of 0.005 for that observation, or
equivalently 0.5%. The anomalies considered in this article have
p-value ≤ 1% (Schwarz et al., 2016). In the remaining part of this
section, we briefly describe the anomalies that we consider in this
article.

A Power Suppression
Data from the satellites COBE (Hinshaw et al., 1996), WMAP
(Bennett et al., 2003) and Planck (Akrami et al., 2019), have
consistently found a lack of two-point correlations at low
multipoles, or at large angular scales, compared to what is
expected in the ΛCDM model. Visually, this lack of
correlations is evident in the real space two-point correlation
function C(θ), shown in the right panel of Figure 2: for angles
larger than 60°, the two-point function is surprisingly low. The
WMAP team had come up with an appropriate observable to
quantify this lack of power (Spergel et al., 2003). It is defined by

S1/2 � ∫1/2

−1
C(θ)2 d(cosθ). (2.5)

Its physical meaning is obvious: it captures the total amount of
correlations squared (to avoid cancellations between positive and
negative values of C(θ)) in angles θ > 60°. The ΛCDM model
predicts S1/2 ≈ 42000 μK4, while the Planck satellite has reported a
measured value1 of S1/2 � 1,209.2 μK4 (Akrami et al., 2019), which
corresponds to a p-value less than 1% [≤0.5% according to
(SchwarzSchwarz et al., 2016)]. Put in simpler terms, this p-
value tells us that if we were able to observe one thousand
universes ruled out by the ΛCDM model, only about a
handful will show such a low value of S1/2.

B Dipolar Modulation Anomaly
A second important anomaly that has been also observed by
multiple satellites, is the presence of a dipolar modulation of the
entire CMB signal (Akrami et al., 2019). This dipole should not be
confused with the multipole ℓ � 1. Rather, the anomaly makes
reference to correlations between multipoles ℓ and ℓ + 1, which
can be explained by a modulation of dipolar character, as we
further discuss below.

Such modulation was first modeled mathematically in
(Gordon et al., 2005), by adding a simple dipole to the
temperature map as follows

T(n̂) � T0(n̂) 1 + A1 n̂ · d̂],[ (2.6)

where T0(n̂) is the unmodulated (statistically isotropic)
temperature field, A1 is the amplitude of the modulation, and
d̂ its direction. It is easy to check that such modification affects
not only the ℓ � 1 angular multipole, but actually all multipoles
equally, and for this reason it is known as a scale-independent
dipolar modulation. Its main effect is to create correlations
between multipoles ℓ and ℓ + 1. Such correlations, as
mentioned above, violate isotropy [see Appendix B of (Agullo
et al., 2021b) for further details].

The Planck team has carried out a likelihood analysis of
such modulation of the CMB, and arrived at constraints on the
amplitude and direction of the dipolar modulation in different
bins of multipoles ℓ. Surprisingly, the analysis has revealed a
non-zero amplitude of the dipolar modulation only for low
multipoles, in the bin ℓ ∈ [2, 64]. The amplitude reported in
this bin is A1 ≈ 0.07 (Ade, 2016a), and the significance of the
detection is greater than 3σ. This reveals, not only a significant
deviation of the ΛCDM model, but also that the dipolar
modulation is scale-dependent, since it only appears for low
multipoles. Therefore, the simple model (Eq. 2.6) is
insufficient to account for the observed modulation. Finding

FIGURE 2 | The TT power spectrum in the multipole (A) and angular space (B) generated in the standard model corresponding to the best fit parameters provided
by Planck. The blue shaded region indicates the uncertainty due to cosmic variance. The black dots with error bars are the data from Planck. Note that the observed
quadrupole is quite low compared to the prediction from the standard model, although it is compatible with the prediction within 1σ when we account for cosmic
variance. The lack of power at large angular scales is more evident in the angular power spectrum, where the power is considerably low for angular scales greater
than 60°. Furthermore, the amplitude of the predicted power is larger than the observed one by more than 1σ for the largest angular scales and for angles between ≈60°

and 80°.

1The value of S1/2 varies a bit depending on the choice of map and the mask used.
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a mechanism to generate a scale-dependent dipolar
modulation, without introducing other undesired effects,
has challenged the imagination of theorists during the last
decade (Dai et al., 2013).

C Parity Anomaly
Observations from both WMAP and Planck have found a
preference for odd parity two-point correlations, as opposed
to the predictions of the standard ΛCDMmodel, which predicts
that the primordial perturbations generated in our Universe are
parity neutral. The parity of the primordial perturbations can be
studied by analyzing the multipoles in the range [2, 50], known
as the Sachs-Wolfe plateau. This range of multipoles
corresponds to long wavelength perturbations which entered
the horizon in the recent past, and hence have been relatively
unmodified by late time physics. The asymmetry in the parity
can be quantified using the estimator

RTT
ℓmax( ) � D+ ℓmax( )

D− ℓmax( ), (2.7)

where D±(ℓmax) quantify the sum of power contained in even (+)
or odd (−) multipoles, up to ℓmax. More specifically, D±(ℓmax) are
defined as

D± ℓmax( ) � 1
ℓ
±
tot

∑±
2,ℓmax

ℓ(ℓ + 1)
2 π

Cℓ (2.8)

where the + or − signs on the right refer to the fact that we include
only even or odd multipoles in the sum, respectively, and ℓ

±
tot

refers to the total number of multipoles in the sum. Figure 3
illustrates that CMB data in the multipole range of [2, 50] shows a
clear preference for odd parity compared to the parity neutral,
i.e., RTT(ℓmax) � 1, prediction of the standard model. Although
this anomaly, as well as the anomaly in the lensing amplitude
discussed in the next subsection, are not as severe as the previous
ones due to their lower statistical significance (≲ 2σ), we will later
argue that they may be related to the power suppression.

D Lensing Amplitude Anomaly
The cosmic microwave background radiation undergoes lensing
by the intervening distribution of matter, as it propagates from
the surface of last scattering to us. An important observable in
the CMB, in addition to temperature and polarization, is the
lensing potential. From the CMB maps, Planck has
reconstructed the lensing potential and computed its power
spectrum (Aghanim, 2018b). The effect of lensing is the
smoothing of CMB power spectrum at small angular scales.
The amount of smoothing observed in the CMB angular power
spectrum should be consistent with the smoothing derived from
the power spectrum of the lensing potential. In order to check
this consistency, (Aghanim, 2018a), considered a test-
parameter, known as the lensing parameter AL, that
multiplies the lensing power spectrum. Theoretically, the
value of lensing parameter should be AL � 1, and in fact
Planck assumes this value during the process of parameter
estimation. However, if AL is left as a free parameter, along
with the six parameters of the ΛCDM model, in the Markov
Chain Monte Carlo (MCMC) analysis, one finds that AL �
1.243 ± 0.096 for PlanckTT + lowE data, which is more than 2σ
away from one. If the reconstructed lensing data is also used,
along with Planck EE and TE data, then the lensing parameter is
consistent with 1 within 2σ.

A key feature of the anomalies discussed above, except perhaps
for the lensing anomaly, is that they appear clearly associated with
the largest angular scales we can observe. This suggests a common
origin in primordial physics for these diverse set of anomalies.
The next section introduces a proposal for a mechanism that can
provide such common origin, namely the phenomenon of non-
Gaussian modulation. Together with the scale dependence
introduced by the quantum bounce of LQC, this mechanism
constitutes a promising candidate for the origin of the anomalies
we have just described.

III NON-GAUSSIAN MODULATION

Temperature anisotropies in the CMB are a consequence of the
evolution of photons and other constituents of the Universe in a
perturbed spacetime. Since the observed anisotropies are small,
δT/T ∼ 10−5, perturbation theory is an appropriate tool. If the
primordial perturbations in the metric generated in the early
Universe were exactly linear,2 then only those perturbations
with wavelengths smaller than the radius of the Hubble horizon
today would be able to affect the CMB. On the contrary, non-
linear effects, generically known as non-Gaussianity, couple
modes of different wavelengths, and make it possible that
primordial perturbations with wavelengths larger than the
Hubble radius today can impact what we observe in the
CMB (Schmidt and Kamionkowski, 2010; Jeong and
Kamionkowski, 2012; Dai et al., 2013; Schmidt and Hui,
2013; Agullo, 2015; Adhikari et al., 2016). We will refer to

FIGURE 3 | RTT(ℓmax) generated in the standard model (blue) along with
2σ shaded contours arising from cosmic variance. Black points are the
observations by Planck. The observed value of RTT(ℓmax) for most points is
lower than the predictions of the standard model by more than 1σ.

2Strong non-linearities are important at late times in the Universe during structure
formation, but not to explain the CMB.
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this phenomenon as non-Gaussian modulation of the CMB.
Since long wavelength, super-horizon modes do not evolve with
time, we could treat them as spectator modes, whose role is to
influence, or bias, sub-horizon modes.

Primordial perturbations are random variables with zero
mean and a variance characterized by the two-point
correlations discussed in the previous section. We will
show that one consequence of the coupling between super-
horizon and sub-horizon wavelengths is to modify the two-
point correlation functions (Schmidt and Hui, 2013; Agullo,
2015; Adhikari et al., 2016). Though the mean value of the
primordial perturbations is not modified, the variance is, in
such a way that certain features in the CMB are more likely to
be observed than in the absence of non-Gaussian correlations,
and consequently they should not be considered as
anomalous. In this section, we will describe the essential
features of the mechanism of non-Gaussian modulation.
We will split the discussion in two parts: in the first one,
we will discuss the modulation of the primordial power
spectrum due to non-Gaussian correlations with a
spectator mode, and in the second part, we describe the
effect of such a modulation on the CMB TT angular power
spectrum.

A Non-Gaussian Modulation of Primordial
Perturbations
We are interested in computing the two-point correlation
function of the curvature perturbation Rk⃗ for a mode k⃗ that is
observable in the CMB, in the presence of a longer wavelength
mode Rq⃗ , when both modes are correlated.

A convenient and general way to model the effects of non-
Gaussian correlations, is to write the curvature perturbations at a
given time t in terms of a Gaussian field RG as follows (Schmidt
and Kamionkowski, 2010)

Rk⃗(t) � RG
k⃗
(t) + 1

2
∫ d3q

(2π)3 fNL(q⃗ , k⃗ − q⃗ )RG
q⃗ (t)RG

k⃗−q⃗(t).
(3.1)

The convolution in the integral is the Fourier transform of a
quadratic combination ofRG in position space, and is the source
of the non-Gaussian character of Rk⃗ (t), and the function
fNL(k⃗1, k⃗2) contains the information about the strength and
details of the non-Gaussianity. The goal of this equation is
simply to parameterize the non-Gaussianity in a simple and
tractable way, while the form of the function fNL(k⃗1, k⃗2) is
expected to come from a concrete microscopic model of the
early Universe.

Statistical isotropy and homogeneity implies that the function
fNL(k⃗1, k⃗2) depends only on the modulus of the two
wavenumbers involved, k1 ≡ |k⃗1| and k2 ≡ |k⃗2|, and on the
(cosine of the) angle between them, μ:
fNL(k⃗1, k⃗2) � fNL(k1, k2, μ). From it, the three-point correlation
function is given by 〈Rk⃗1

Rk⃗2
Rk⃗3

〉 � (2π)3

δ(k⃗1 + k⃗2 + k⃗3)BR(k⃗1, k⃗2, k⃗3), where the bispectrum
BR(k⃗1, k⃗2, k⃗3) is

BR(k⃗1, k⃗2, k⃗3) � fNL(k⃗1, k⃗2) [PR(k⃗1)PR(k⃗2) + PR(k⃗2)PR(k⃗3)
+ PR(k⃗3)PR(k⃗1)],

(3.2)
and PR(k⃗ ) is the power spectrum of RG, defined as

〈RG
k⃗1
RG*

k⃗2
〉 � (2π)3 δ(k⃗1 − k⃗2) PR(k⃗1). (3.3)

The dimensionless power spectrum is defined as PR(k⃗ ) �
k3 PR(k⃗ )/2π2.

Our goal is to compute the two-point function of Rk⃗ in the
presence of the spectator mode Rq⃗ . Using (Eq. 3.1), one obtains

〈Rk⃗1
Rp

k⃗2
〉|Rq⃗

� 〈RG
k⃗1
RGp

k⃗2
〉 + 1

2
∫ d3q′

(2π)3 fNL(q′⃗, k⃗2 − q′⃗)

× 〈RG
q′⃗ RG

k⃗1−q′⃗R
G*
k⃗2
〉 + 1

2
∫ d3q′

(2π)3 fNL(q′⃗, k⃗ 2 − q′⃗)

× 〈RG
k⃗ 1
RGp

q′⃗RGp

k⃗2−q′⃗〉 +O(f 2NL).
(3.4)

In order to evaluate the impact of the spectator modes RG
q⃗
, it

must be taken out of the statistical average

〈Rk⃗1
Rp

k⃗2
〉|Rq⃗

� (2π)3 δ(k⃗ 1 − k⃗ 2) PR(k⃗ 1)

+ fNL(k⃗1,−k⃗ 2) 12 PR(k⃗ 1) + PR(k⃗ 2)( )Rq⃗ +/ .

(3.5)

where the trailing dots indicate terms that are higher order in
non-Gaussianity, and will be subdominant.

It is interesting to note the following facts about the above
expression. First of all, non-Gaussianity leads to a modulation of
the primordial power spectrum, and the strength of modulation
depends on both the size and shape of fNL(k⃗1, k⃗2), as well as the
size of the spectator mode Rq⃗ . Secondly, statistical isotropy and
homogeneity constrain the wavenumber of the spectator mode to be
q⃗ � k⃗1 − k⃗2. In other words, this is the onlymode that can affect the
two-point correlation function between k⃗1 and k⃗2. Additionally, the
effect of themodulation is to introduce “non-diagonal” elements in the
two-point function, i.e., terms not proportional to δ(k⃗1 − k⃗2). But
recall that such non-diagonal terms break homogeneity and isotropy.
It is not surprising that we see deviations from these fundamental
symmetries, since we are not averaging over the spectator mode: such
average would make those terms disappear, since 〈RG

q⃗ 〉 � 0. But, as
it happens for the magnitude of the temperature anisotropies, the
quantity that is more interesting for observations is the typical value of
such term, and not only its statistical average.

B Non-Gaussian Modulation of CMB
The primordial perturbations Rk⃗ are related to the CMB
multipole coefficients aℓm through the relation

aℓm � 4π∫ d3k

(2π)3 (−i)
ℓ Δℓ(k)Yp

ℓm(k̂)Rk⃗, (3.6)

where Δℓ(k) are the CMB temperature transfer functions, which
encode the post-inflationary evolution of the perturbations from
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the re-entry of perturbations into the horizon during late
radiation domination till today. From this equation, one can
compute the covariance matrix

〈aℓmapℓ′m′〉 � (4π)2 ∫ d3k1
(2π)3 ∫ d3k2

(2π)3 (−i)
ℓ−ℓ′ Δℓ(k1)Δℓ′(k2)

Y *
ℓm(k̂1)Yℓ′m′(k̂2) 〈Rk⃗1

Rp

k⃗2
〉|Rq⃗

,

(3.7)

which is obtained from the two-point functions of the curvature
perturbations given in (Eq. 3.5). Upon expanding fNL in terms of
Legendre polynomials, fNL(k1, q, μ) � ∑LGL(k1, q) 2L+1

2 PL(μ), and
using the multipole expansionRG

q⃗ � ∑L′M′RG
L′M′ (q)YL′M′ (q̂), one

can write (Eq. 3.7) as (Agullo et al., 2021b)

〈aℓmapℓ′m′〉 � Cℓ δℓℓ′δmm′ + (−1)m′ ∑
LM

ALM
ℓℓ′ C

LM
ℓmℓ′−m′ . (3.8)

The above expression consists of two terms. The first term is
the usual temperature power spectrum that is diagonal in ℓ andm.
The second term arises from the non-Gaussian modulation and,
as before, introduces non-diagonal terms. CLM

ℓmℓ′m′ are Clebsch-
Gordan coefficients, and the information about the primordial
non-Gaussianity is encoded in the coefficients

ALM
ℓℓ′ � 4

(2π)3 ∫ dk1 k
2
1 dq q

2 (−i)ℓ−ℓ′ Δℓ(k1)Δℓ′(k1) PR(k1) GL(k1, q)RG
LM(q)

× CL0
ℓ0ℓ′0

��������������
(2ℓ + 1)(2ℓ′ + 1)

4π (2L + 1)

√
.

(3.9)

These coefficients are known as bipolar spherical harmonic
(BipoSH) coefficients (Hajian and Souradeep, 2003; Joshi et al.,
2010). As we shall see, the BipoSH coefficients provide a
convenient way to organize the effects of the non-Gaussian
modulation.

The Clebsch-Gordan coefficients present in the above
expressions enforce certain properties on the BipoSH
coefficients. In particular, Clebsch-Gordan coefficients
CLM
ℓ1 ,m1 ,ℓ2 ,m2

are nonzero only if ℓ1 + ℓ2 ≥ L ≥ |ℓ1 − ℓ2| and if
M � m1 + m2. This, together with properties of the Clebsch-
Gordan coefficient CL0

ℓ0ℓ′0, implies that, if

i. L � 0, then ℓ1 � ℓ2

ii. L � 1, then |ℓ1 − ℓ2| � 1
iii. L � 2, then |ℓ1 − ℓ2| � 0, 2, etc.

Thus, a non-zero value of ALM
ℓℓ′ for L � 0 can be absorbed in the

diagonal angular power spectrum Cℓ. A non-zero value ofALM
ℓℓ′ for

L � 1 induces correlations between multipoles ℓ and ℓ + 1, or in
other words, a dipolar modulation. L � 2 induces a quadrupolar
modulation, etc. The presence of a large dipolar or higher
multipole modulation would appear in the CMB as
correlations between multipoles ℓ and ℓ + 1, which implies a
departure from isotropy, as described in section II. This
departure from isotropy is a consequence of the concrete
realization of the spectator mode Rq⃗ in our local Universe.

One would need to average among the observation of the
CMB from distant places in the cosmos to conclude that such
violation of isotropy is not fundamental, but rather the imprint of
strong correlations with super-horizon modes Rq⃗ .

Two remarks are in order now.
i. The strength of non-Gaussian modulation is dictated by the

size of fNL(k1, q, μ). But it is the dependence of fNL on μ, the cosine
of the angle between k⃗ 1 and q⃗ , what determines the relative size
of the BipoSH coefficients for different L’s, i.e., the “shape” of the
modulation. On the other hand, the dependence of fNL on the
moduli k1 and q determines the ℓ-dependence of the modulation.
The two multipoles should not be confused: the L-dependence
dictates the shape of the modulation, while the ℓ-dependence
controls the variation of the amplitude of the modulation at
different angular scales in the CMB. The non-Gaussianity
generated in slow-roll inflation is small and nearly scale-
invariant. Hence, the strength of modulation generated is also
quite small. Since the anomalies observed in the CMB are scale
dependent, we need a scenario with a strongly scale-dependent
and large non-Gaussianity. Such scale dependence is also needed
to explain why we have not observed non-Gaussian correlations
directly in the CMB, since a strong scale dependence can make
these correlations large only when at least one super-horizon
mode is involved. In such situation, we could only observe the
indirect effects that the non-Gaussian correlations induce in
the CMB.

ii.ALM
ℓℓ′ given in (Eq. 3.9) depend on the modeRG

�q . Since,RG
�q is

a random variable, we cannot predict the exact value of ALM
ℓℓ′ . We

can only compute the standard deviation of the BipoSH
coefficients, i.e.��������

〈|ALM
ℓℓ′ |2〉

√
� 1

2π
∫ dq q2 PR(q) |CL

ℓℓ′(q)|2[ ]1/2
× CL0

ℓ0ℓ′0

��������������
(2ℓ + 1)(2ℓ′ + 1)

4π (2L + 1)

√
, (3.10)

where

CL
ℓℓ′(q) ≡

2
π
∫ dk1 k

2
1 (i)ℓ−ℓ′ Δℓ(k1)Δℓ′(k1) PR(k1)GL(k1, q).

(3.11)

These are the typical values that the BipoSH coefficients are
expected to take in the sky. If these values are large, the effects
they entail should be expected in the CMB or, more precisely, they
would have a large p-value and should not be considered
anomalous.

IV LOOP QUANTUM COSMOLOGY

LQC describes the spacetime geometry in the quantum language
of loop quantum gravity. As discussed before, we consider in this
paper an early Universe sourced by a scalar field, which drives the
Universe to an inflationary phase after the bounce. The bounce
introduces a new physical scale to the problem, which can be
defined either from the value of the energy density or from the
Ricci scalar at the bounce. Perturbations, both scalar and tensor,
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are sensitive to this new scale, and their propagation across the
bounce amplifies them, for the same reason that propagation
across the inflationary phase does. As a consequence,
perturbations reach the onset of inflation in an excited and
non-Gaussian state, rather than the Bunch-Davies vacuum
commonly postulated. These excitations lead to a strongly
scale-dependent power spectrum and bispectrum of primordial
perturbations. In this section, we will briefly review some of the
essential features of perturbations generated in LQC, and in the
next section we will describe how these features can account for
the anomalous signals observed in the CMB. For further details,
see (Ashtekar et al., 2006b; Agullo et al., 2012; Agullo et al., 2013a;
Agullo et al., 2013b; Agullo and Morris, 2015; Agullo, 2018).

ABackground Dynamics and Free Evolution
of Perturbations
Consider a spatially flat Friedmann-Lemaitre-Robertson-Walker
spacetime. We shall describe the perturbations following the
dressed metric approach. This approach has been discussed in
(Agullo et al., 2012; Agullo et al., 2013a; Agullo et al., 2013b;
Agullo and Morris, 2015; Agullo et al., 2018) [for a recent review,
see (Agullo et al., 2017a)] and we refer the reader to these
references for details omitted here. For the purpose of this
article, it suffices to say that we consider perturbations as test
fields propagating on the background described by the effective
equations of LQC (Taveras, 2008; Ashtekar and Singh, 2011;
Agullo et al., 2017a). The essential features of perturbations
generated in LQC can be summarized using Figure 4. The left
panel of this figure plots a

����|R/6|√
as a function of time, where a

refers to the scale factor and R is the Ricci scalar. In making this
plot, we have worked with a scalar field governed by a quadratic
potential, and minimally coupled to gravity. Similar results are
obtained for other potentials (Bonga and Gupt, 2016a; Bonga and
Gupt, 2016b; Zhu et al., 2017). Different solutions to the effective
equations of LQC with a scalar field as the dominant source are

parameterized by the value of the scalar field at the bounce. As we
further discuss below, different choices of this quantity translate
to different amounts of cosmic expansion from the bounce to the
end of inflation. The Ricci scalar attains its largest value at the
bounce, and its maximum value sets a characteristic scale in LQC
denoted by kLQC ≡ a(tB)

������
R(tB)/6

√
≈ a(tB)

����
κ ρB

√
, where tB

indicates the time of the bounce and ρB is the energy density
of the scalar field at the time of the bounce. As the inset in the plot
shows, inflation occurs at late time, when a

����|R/6|√
grows

exponentially fast. Regarding scalar perturbations, they are in
an adiabatic regime before the bounce, and we choose them to
start in an adiabatic vacuum at those early times [see e.g., (Agullo,
2015; Agullo and Morris, 2015; de Blas and Olmedo, 2016;
Ashtekar and Gupt, 2017; Elizaga Navascués et al., 2019;
Navascués et al., 2020; Martín-Benito et al., 2021) for other
choices of initial state]. As perturbations evolve across the
bounce, modes with wavenumbers k ≲ kLQC are excited. These
excitations get further amplified as they cross the curvature scale
during inflation. Wavenumbers that are ultraviolet compared to
kLQC, k > kLQC, are not excited during the bounce, and remain in
the adiabatic vacuum at the onset of inflation. Hence, only for
those modes one recovers the familiar Bunch-Davies vacuum at
the onset of inflation, while more infrared modes keep memory of
the bounce. Consequently, as shown in Figure 4, the power
spectrum of curvature perturbations shows a strong scale
dependence at infrared scales, while approaches the more
familiar scale-invariant shape for large k’s. In particular, we
see that the power spectrum for infrared modes k ≲ kLQC is
enhanced and oscillatory. In the extreme infrared limit, modes are
neither excited during bounce nor during inflation, and this leads
to a power spectrum which scales as k2. The scale at which these
effects appear in the CMB depends on the physical size of the
mode kLQC today, compared to the Hubble scale [recall that the
physical wavenumber scales with time as kLQC/a(t)]. This
depends on the expansion accumulated—i.e., the number of e-
folds N—from the time of the bounce until the end of inflation.

FIGURE 4 | Left: Evolution of the Ricci scalar in LQC. This plot corresponds to a solution of the effective equations with 71 e-folds of expansion between the bounce
and the end of inflation. Right: Primordial power spectrum of perturbations starting in an adiabatic initial state before the bounce in LQC. The gray dots correspond to
numerically-obtained data for individual values of k, while the continuous black line is the average of the grey dots. This plot is obtained for the background geometry
showed in the left panel.
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This is a free parameter in LQC. In this article, we investigate
whether there is a value of N for which this model can explain the
origin of the anomalies in the CMB.

B Generation of Primordial Non-gaussianity
The dressed metric approach was extended beyond linear
perturbation theory in (Agullo, 2018), and we provide here a
short summary. Primordial curvature perturbations whose
wavenumbers are comparable to or smaller than kLQC not only
get excited, as described above, but also become non-Gaussian as
they cross the bounce. The non-Gaussianity thus generated is
further enhanced as the perturbations cross the horizon during
inflation. Equal-time three-point functions are computed using
time dependent perturbation theory, generalizing the pioneering
calculations in (Maldacena, 2003) to bouncing geometries:

〈0|R̂k⃗1
te( ) R̂k⃗2

te( ) R̂k⃗3
te( )|0〉

� i ∫te

ti

dt′ 〈0| R̂k⃗1
(t) R̂k⃗2

(t) R̂k⃗3
(t), Ĥint t′( )]|0〉,[ (4.1)

where Ĥint is the interaction Hamiltonian [whose lengthy
expression can be found in (Agullo et al., 2018)], ti refers to
the time at which initial conditions are imposed and te is the time
at which the correlation is evaluated. Usually, te is chosen at the
end of inflation, after all the three modes have crossed the Hubble
radius. With the knowledge of the background dynamics and the
initial conditions, we can exactly evaluate the three-point
function and hence obtain the function fNL(k⃗ 1, k⃗ 2) which
characterizes the non-Gaussianity. Our exact computations
reveal that the non-Gaussianity generated in LQC is strongly
scale-dependent, large and oscillatory, similar to the power
spectrum. As for the power spectrum, the non-Gaussianity
quickly approaches the inflationary result for wave numbers
k > kLQC (Agullo, 2018; Sreenath et al., 2019), and in
particular they become negligibly small when the moduli of
the three wave numbers k⃗ 1, k⃗ 2 and k⃗ 1 − k⃗ 2 are larger
than kLQC, in such a way that they are too small to be
observed directly in the CMB. However, the non-Gaussianity
becomes large when at least one of the modes involved is infrared,
k < kLQC, or equivalently, when one of the modes has wavelength
larger than the Hubble radius today. These are the correlations
which can account for the CMB anomalies, as we argue in the
next section.

The strong oscillatory character of the non-Gaussianity
generated in LQC, makes it computationally difficult to obtain
an exact evaluation of (Eq. 3.10). For this reason, in this work,
rather than working with the exact numerically-evaluated non-
Gaussianity, we shall work with an analytical approximation
derived in (Agullo, 2018)

fNL k1, k2, k3( ) ≃ fNL e
−α k1+k2+k3( )/kLQC , (4.2)

where α � 0.647, fNL ≈ 2750, and k3 � k1

����������
1 + k22

k21
+ 2μ k2

k1

√
. The

value of α is determined from the behavior of the scale factor
around the time of the bounce, while the amplitude fNL is
determined from numerical simulations (Agullo, 2018). As
showed in (Agullo, 2018), this expression provides a good
approximation for the non-Gaussianity generated in LQC, and

is significantly easier to manipulate. This approximation,
however, neglects the oscillatory nature of fNL(k1, k2, μ) with
k1 and k2. The oscillations will generically reduce the size of the
effects we describe below. Therefore, the numbers obtained in the
next section should be understood as an upper bound for the
predictions of LQC, rather than an exact result. This is the main
technical limitation of our analysis, and it arises from the highly
oscillatory nature of the perturbations.

V RESULTS

In this section, we shall put the previous results together and
compute the root mean square value of the BipoSH coefficients
generated in LQC from (Eq. 3.10). We will show that the BipoSH
coefficients generated in this model are non-zero and have the
appropriate magnitude and scale dependence as demanded by
observations.

A Monopolar Modulation–Power
Suppression
We first consider the monopolar term (L � 0). The properties of
the Clebsch-Gordan coefficients for L � 0 impose the constraints
ℓ � ℓ′ and m � − m′. Therefore, the monopolar modulation
introduces an isotropic shift in the value of Cℓ, although the shift
can be different for different values of ℓ. More concretely, the
modulated power spectrum Cmod

ℓ
is given by

Cmod
ℓ

� Cℓ 1 − (−1)ℓ
Cℓ

A00
ℓ ℓ������

2 ℓ + 1
√( ). (5.1)

Note that A00
ℓ ℓ

can be either positive or negative, leading to an
enhancement or suppression of Cmod

ℓ
with respect to Cℓ. As

explained before, we cannot predict the exact value of A00
ℓ ℓ
.

The interesting quantity is rather the root-mean-square value
of the modulation:

FIGURE 5 | Root-mean-square of the monopolar modulation σ0(ℓ)
generated in LQC. Note the dependence of σ0 on ℓ. The scale dependence
introduced by the bounce in LQC makes the effects of the modulation
significant only for ℓ ≲ 30.
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σ20(ℓ) � 1

C2
ℓ

〈|A00
ℓ ℓ
|2〉

2 ℓ + 1
� 1

C2
ℓ

1
8π2

∫ dq q2 PR(q) |C0
ℓℓ
(q)|2,

(5.2)

where C0
ℓℓ
(q) was defined in (Eq. 3.11). This quantity determines

the typical size and scale dependence of the monopolar
modulation expected in the CMB. A large value of σ0 would
make deviations from the unmodulated power spectrum, Cℓ more
likely to be observed in the CMB. The result of our calculations,
using the power spectrum and the form of fNL(k1, q, μ) described
in the previous section, is plotted in Figure 5.

We will assume that the probability distribution for the
modulation is well approximated by a Gaussian, and hence
completely characterized by σ0(ℓ). This is a reasonable
approximation, since the deviations are expected to be of
second order in non-Gaussianity, and therefore very small.
With this probability distribution for the monopolar
modulation, we can now investigate the connection with the
power suppression observed in the CMB. In particular, we want
to answer the following question: what is the p-value given the
observed value of S1/2? We obtain that the probability to find S1/2
≤ 1,209.2 once the non-Gaussian modulation is taken into
account is approximately 16%. This is equivalent to saying
that the observed suppression is around one standard
deviation from the mean. Figure 6 shows the form of the T-T
power spectrum for a simulation for which the monopolar
modulation produces S1/2 in agreement with observation,
along with the 1σ confidence contour arising from cosmic
variance. For comparison, we provide the corresponding
quantities arising from the standard model, as well as data
from Planck (Aghanim, 2019).

These results show that, in presence of the LQC bounce
occurring before inflation, a power suppression as the one we
observe in the CMB should not be considered anomalous. It is
important to emphasize the precise sense in which the
suppression is explained: not because the theory predicts that
we should observe a suppression in the CMB, but rather because
the probability of observing such a suppression is much larger

than in the standard ΛCDM model with Bunch-Davies initial
conditions. In this sense, the resolution of the anomaly has
precisely the same character as its origin: probabilistic.

An important check is to confirm that the non-Gaussian effects
are not large enough to jeopardize the validity of the perturbative
expansion on which the calculations rest. This question was
explored in detail in Ref. (Agullo, 2018), confirming that, in
LQC, perturbation theory does not break down when non-
Gaussianity is included. Regarding the non-Gaussian
modulation discussed in this paper, we find that the correction
to the unmodulated angular power spectrum is not small, and it is
in fact a significant fraction of the final result, particularly for the
smallest multipoles. The relative contribution is, however, smaller
than one in all our calculations. In quantitative terms, the relative
contribution of the non-Gaussian modulation is of order
fNL

���PR
√

, which is smaller than one for fNL ∼ 103. More
importantly, higher order corrections introduce additional
powers of the power spectrum PR ≪ 1. So the next-to-leading-
order correction to the non-Gaussian modulation is of order
fNL(PR)3/2, which is negligible due to the smallness of PR.
Therefore, our results are robust under the addition of higher
perturbative corrections.

B Dipolar Modulation
Next, we discuss the effects of the L � 1, dipolar modulation,
induced by the BipoSH coefficients, A1M

ℓℓ+1, and compare the
results with those reported by Planck. As discussed in section
IIB, the Planck team quantifies the dipolar modulation in terms
of a scale-dependent amplitude A1(ℓ) (Ade, 2016a), which can be
related with the BipoSH coefficients A1M

ℓℓ+1 as follows. First, define
from A1M

ℓℓ+1 the multipole coefficients m1M by

A1M
ℓℓ+1 ≡ m1M G1

ℓℓ+1, where

G1
ℓℓ+1 ≡ Cℓ + Cℓ+1( )

��������������
(2ℓ + 1)(2ℓ + 3)

4π 3

√
C10

ℓ,0,ℓ+1,0
(5.3)

is called a form factor. The m1M(ℓ) defined above can take three
values corresponding to M � −1, 0, +1, and in general, they

FIGURE 6 | Form of the modulated power spectrum for a typical value of the suppression. The figure shows that the monopolar modulation can account for the
suppression of power at multipoles lower than ℓ ≈ 30 (A). In the (B), we also see that the suppression translates to a very low real space power spectrum C(θ) for θ ≥ 60°.
The shaded region shows cosmic variance, and the black dots data from Planck.
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depend on ℓ. From them, the amplitude of the dipolar
modulation is defined as

A1(ℓ) ≡
3
2

�������������������������
1
3π

|m1 −1|2 + |m1 0|2 + |m1 1|2( )√
. (5.4)

Hence, from the value of the root-mean-square ofA1M
ℓℓ+1 we can

obtain the root-mean-square of A1(ℓ). It is given by the
expression

A1(ℓ) � 3
2

1��
π

√ 1

Cmod
ℓ

+ Cmod
ℓ+1

�����������������������
1
2π

∫ dq q2 PR(q) |C1
ℓℓ+1(q)|2

√
,

(5.5)

where we have used the modulated (i.e., suppressed) Cmod
ℓ

since, as
emphasized in (Ade, 2016a), the dipole amplitude must be evaluated
relative to the observed angular power spectrum. Hence, the fact that
the observed Cmod

ℓ
are smaller than the ones predicted by ΛCDM,

increases the amplitude of the observed dipole. In this sense, the
power suppression and the dipolar modulation are not completely
independent. However, the amplitude of the dipole is ultimately
dictated from the angular μ-dependence of the primordial non-
Gaussianity fNL(k1, k2, μ).

The result for A1(ℓ) is plotted in Figure 7. We find that the
dipolar modulation is strongly scale-dependent, as a
consequence of the scale-dependent nature of the non-
Gaussianity. Although Planck observations for A1(ℓ) are
limited, in the sense that only its mean value in the range ℓ

∈ [2, 64] is reported, the order of magnitude and scale
dependence agree with our results.

We have also checked that higher order multipolar
modulations, L � 2, 4, . . . have amplitudes significantly
smaller than the dipolar one (Agullo et al., 2018), and
therefore additional modulations are not expected in the CMB
according to LQC, in agreement with observations. Hence,
interestingly, the form of fNL(k1, k2, μ) derived from LQC
produces a hierarchy in the amplitude of the modulations
which is dominated by a monopole, and a smaller dipole.

C Parity and Lensing Anomalies
In this subsection we briefly discuss the results for the parity and
lensing anomalies. As discussed in previous sections, the
statistical evidence for these two features is weaker than the
power suppression and the dipolar anomaly. Nevertheless, it is
interesting to see what the predictions of LQC are.

We find that the monopolar modulation induces also a
preference for odd parity multipoles ℓ, in agreement with
observations. After inspection, this fact is not surprising, and
it is a consequence of the simple fact that, in a power suppressed
angular power spectrum, the sum of ℓ(ℓ+1)

2 π Cmod
ℓ

starting from

FIGURE 7 | The dipole amplitude A1(ℓ) generated in LQC. Planck reports
a value of A1 ≈ 0.07 in the multipole bin ℓ ∈ [2, 64].

FIGURE 8 | RTT(ℓmax) for the modulated spectrum generated in LQC
(solid red). RTT(ℓmax) predicted in LQC shows a preference for odd parity for
low multipoles, unlike the one in the standard model (dashed, blue).

FIGURE 9 | Marginalised joint probability distribution of τ and AL

obtained fromMCMC simulation for the standard model and modulated LQC.
As we can see, AL � 1 lies within the 2σ contour for the modulated model, thus
bringing the lensing parameter closer to one.
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ℓ � 2 is larger for odd multipoles, precisely because the sum starts
at an even multipole—it would have been otherwise if the sum
starts at ℓ � 1. Therefore, we find that in LQC there is a preference
for odd-parity multipoles ℓ, as measured by RTT(ℓmax), and the
result is a consequence of the power suppression. We report our
result in Figure 8. For comparison, we provide the corresponding
values obtained in the ΛCDM model and the observations made
by Planck (Aghanim, 2019). Although the result for RTT(ℓmax)
from LQC is closer to the data, the value of RTT(ℓmax) observed by
Planck is smaller than what we find in LQC, but the significance
of the deviation is modest. In the absence of a better estimator for
the parity anomaly, it is not possible for us to make a more precise
comparison.

Yet another effect of the power suppression caused by the
monopolar modulation is the alleviation of the lensing tension.
The relation between a power suppression and the lensing
anomaly was discussed in (Ashtekar et al., 2020), also in the
context of LQC, and our analysis confirms the relation. The value
of AL is obtained from data by performing MCMC simulations
involving the standard six free parameters, together with the
lensing amplitude AL. We repeat the analysis with the modified
probability distribution obtained from LQC, using TT + lowE
data (Aghanim, 2019), and find that the marginalized mean value
of the lensing parameter is AL � 1.20 ± 0.092. This value is 3.5%
smaller than the result obtained from ΛCDM. This is a modest
change. However, as shown in Figure 9, the joint probability
distribution of τ-AL, with τ the optical depth, shows that the value
of AL � 1 is within 2 standard deviations, and it is in this
sense that the anomaly is alleviated. It should also be
noted, however, that the marginalized mean value of the χ2

statistic, which is a measure of the difference between the
predictions of the model and the data, scaled suitably by the
expected error (Barlow, 1989), is larger for the modulated model
by Δχ2 � 5.29. This lower value of the lensing parameter AL can be
explained due to the slightly larger value of τ. This is because a
larger value of τ implies a slightly larger value of the scalar
amplitude As, which in turn leads to a smaller value of AL

(Ashtekar et al., 2020).

VI DISCUSSION

The success of any theory seeking to describe the unknown rests
on two criteria: it should be consistent with known facts and at the
same time be able to make new predictions. Loop quantum
cosmology, as an effort to extend the ΛCDM model to the
Planck regime, has met the first criterion since, when
combined with inflation, it is able to overcome the limitations
of general relativity and to produce a nearly scale-invariant power
spectrum and bispectrum for almost all scales in the CMB. As far
as the second aspect is concerned, LQC predicts that, if we
consider adiabatic initial conditions for perturbations before
the bounce, the primordial power spectrum and bispectrum
deviate from scale invariance at wavenumbers k ≲ kLQC. The
question is whether these features occur at scales that are
observable today. If this is the case, then we may keep the
hope to use observations to confirm some of the predictions

of LQC, and to further refine the theory. It is with this second
aspect in mind that we investigate the link between the enhanced
and scale-dependent perturbations generated in LQC and the
CMB anomalies.

CMB anomalies, as we discussed in section II, include several
features that have been observed, mostly at large angular scales in
the CMB. The genuineness of these features is not under dispute.
However, if considered individually, the p-values of these features
are not small enough to unambiguously establish a statistically
significant departure from the standard model. In other words,
the possibility that some of these features appear in the CMB in a
Universe governed by the standard ΛCDM model is not
negligible. However, the fact that all these seemingly distinct
features occur together in our Universe imply that we either live
in a rare realization of the probability distribution of the ΛCDM
model, or that new physics is needed. In this paper, we have
explored the second possibility in the context of LQC.

In this scenario, the cosmic bounce modifies the initial state of
the Universe from which inflation and the ΛCDM model take
over. The most relevant aspect comes from the fact that the
bounce generates strong correlations between the longest
wavelengths we can observe in the CMB and longer, super-
horizon perturbations. These correlations, although cannot be
observed directly in the CMB—because they involve at least one
super-horizon mode—bias the form of the observed power
spectrum. This bias translates in a higher probability for
certain features to be realized in our CMB. We find it
interesting that such an effect can simultaneously produce a
suppression and a dipolar modulation in the sky, both
compatible with observations. These two features were thought
to be unrelated, and LQC provides a common origin for both of
them. It is important to keep in mind that the origin of the
anomalies is probabilistic, and the way LQC can account
for them is by modifying the probability distribution. For
instance, the dipole asymmetry does not arise in LQC as the
result of breaking isotropy at the fundamental level, but rather
because in a non-Gaussian Universe the size of the anisotropies
expected to be found by a typical observer are larger than in a
Gaussian theory.

In our calculation we have adjusted a free parameter in LQC,
which controls the amount of expansion accumulated from the
bounce to the end of inflation. The statement is, therefore, that
there exist a value of this parameter for which the observed
anomalies can originate from LQC (this value is ≈71 e-folds, and
it includes the expansion during both the inflationary and the
pre-inflationary epochs). Our calculations also involve some
approximations and limitations, and in particular we have not
been able to account precisely for the effects of the oscillations in
the bispectrum. It would be desirable to investigate the way these
oscillations convolve with the power spectrum and transfer
functions in order to understand their effect on CMB.
Furthermore, the data quantifying the anomalies is limited, as
it is based on simple estimators such as S1/2 and the binned value
of the dipolar amplitude A1(ℓ). Additional data, for instance
coming from tensor modes, would allow a more precise
comparison of our ideas with observations. But in spite of
these limitations, we find remarkable that the bounce of LQC
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can produce effects in the CMB which are in good consonance
with the observed anomalies, regarding both the order of
magnitude of the amplitudes as well as their scale dependence.
The possibility that the observed features are informing us about
the Planck era of the cosmos is mind-blowing, and certainly
deserves further attention. Our contribution should be
considered as a first step in this direction.

Finally, in this work we have assumed adiabatic initial
conditions for the scalar perturbations before the bounce,
wherein the unmodulated primordial power spectrum
generated in LQC is enhanced at super-horizon scales. There
has been a proposal in LQC (Ashtekar and Gupt, 2017; Ashtekar
et al., 2020) for different initial conditions, which leads to a
suppressed power spectrum even before considering the non-
Gaussian modulation. It would be interesting to combine both
sets of ideas and compute the effect of non-Gaussian modulation
in that model.
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