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We review the properties of the established Scaling Relations (SRs) of galaxies and active
galactic nuclei (AGN), focusing on their origin and expected evolution back in time,
providing a short history of the most important progresses obtained up to now and
discussing the possible future studies. We also try to connect the observed SRs with the
physical mechanisms behind them, examining to what extent current models reproduce
the observational data. The emerging picture clarifies the complexity intrinsic to the galaxy
formation and evolution process as well as the basic uncertainties still affecting our
knowledge of the AGN phenomenon. At the same time, however, it suggests that the
detailed analysis of the SRs can profitably contribute to our understanding of galaxies
and AGN.
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1 INTRODUCTION

With the term “Scaling Relations” (hereafter, SRs) astronomers indicate a series of correlations
between the parameters describing the physical characteristics of galaxies. These can be radii, mean
velocities of stars and gas, stellar population proxies as colors or mass-to-light ratios, density and
total amount of gas and dust, black-hole masses, etc.

The study of SRs started when Edwin Hubble presented his famous tuning fork diagram for the
morphological classification of galaxy types (Hubble, 1936). Very soon this beautiful scheme
prompted the idea that the morphological sequence is driven by some physical parameters, such
as mass, luminosity, color, angular momentum, and gas content, that progressively change along the
sequence determining the observed types. Attempts to build a “physical” classification of galaxies
characterized the following years [see e.g. (de Vaucouleurs, 1962; Brosche, 1973; Bender et al., 1992;
Cappellari et al., 2011a; Kormendy and Bender, 2012a)].

The first questions arising from the morphological sequence concerned the different flattening
observed among galaxies (Sandage et al., 1970). In this work the authors tried to answer why some
galaxies have a flat disk while others do not and, in connection with this, why the spheroidal
components of all galaxies contain only old stars, why S0’s and early-type spirals have lost their spiral
arms and why up to 50% of galaxies are barred.

The basic idea was that the Hubble sequence is essentially an angular momentum sequence
(Brosche, 1970; Sandage et al., 1970), where star formation (SF) occurs at increasing gas density. The
spread of color within the morphological types was attributed to the different star formation rates
(SFR) inside galaxies (Searle et al., 1973) and to the different stellar populations inside them (King,
1971).
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Quite soon however, it was clear that the parameters
describing the properties of galaxies can be considered a
mathematical manifold (Brosche, 1973), because several
correlations among them are in place. If we consider for
example the galaxy luminosity (L), we observe that it
correlates with: the effective radius (Re; the radius enclosing
half the total luminosity) (Fish, 1964), the central velocity
dispersion of the stars (σ) (hereafter Faber-Jackson FJ relation
(Faber and Jackson, 1976)), the effective surface brightness (Ie; the
mean surface brightness inside Re) (Kormendy, 1977; Binggeli
et al., 1984), color (Sandage, 1972), and line-strength index (Mg2)
(Terlevich et al., 1981).

The great number of observed correlations promptly arose
other fundamental questions. What are the most fundamental
correlations?What parameters better describe their physics? How
do the SRs evolve with time?

In an attempt to answer these questions Guzman et al. (1993)
claimed that only three fundamental relations are necessary to
describe all global SRs among the spheroidal systems, while
Disney et al. (2008) found a striking correlation among five basic
parameters that govern the galactic dynamics (R50,R90,MHI,Md, and
L: respectively the 90%-light radius, the 50%-light radius, the H I
mass, the dynamical mass, and the luminosity) and the color. The
principal component analysis (PCA) further showed that the first
eigenvector dominates the correlations among the parameters and
can explain up to 83% of the variance in the data.

Unfortunately, the next investigations demonstrated that the
SRs cannot be used as a basis for a theoretical understanding of
galaxy formation and evolution. They can be used only “a
posteriori” to verify the ability of theories in reproducing the
observed correlations. Galaxies are complex and evolving systems
requiring much complex statistical tools than simple PCA (Fraix-
Burnet et al., 2019).

In other words the Hubble classification is only a qualitative
scheme, influenced by subjective decisions and difficult to use for
distant galaxies. The sequence rests only on the morphological
parameters measured in the visual bands, while galaxies are
complex systems that can be observed from X-rays to radio
wavelengths. In addition a lot of information, such as
chemical compositions, stellar populations, central black hole
masses, kinematics of stars and gas, etc., can be obtained from the
spectral analysis (Sandage, 2005).

Recently, new support to the study of the SRs was gained thanks
to the data of the large sky surveys, such as the Sloan Digital Sky
Survey (SDSS (Abazajian et al., 2003)), SAURON (Bacon et al.,
2001), WINGS (Fasano et al., 2006), ATLAS3D (Cappellari et al.,
2011b), CALIFA (Sánchez et al., 2012), SAMI (Croom et al., 2012),
MaNGA (Bundy, 2015), etc. These surveys have provided data for
thousands of galaxies permitting a more robust statistical analysis
of the physical drivers behind their formation and evolution.
Several SRs, such as the velocity-luminosity or Tully-Fisher
relation (hereafter TF (Tully and Fisher, 1977; Courteau et al.,
2007)), the Faber-Jackson (FJ) relation (Faber and Jackson, 1976),
the Ie − Re (hereafter Kormendy relation KR (Kormendy, 1977)),
the fundamental plane of galaxies (hereafter FP (Djorgovski and
Davis, 1987; Dressler et al., 1987; Bender et al., 1992; Bernardi et al.,
2003; Cappellari et al., 2006; La Barbera et al., 2008), the bulge

mass—black hole (BH) mass relation (Magorrian et al., 1998), the
mass-radius (MR) relation (Chiosi et al., 2019) are now robust for
the galaxies of the nearby Universe and have now well constrained
the physical laws governing the assembly of stellar systems.

On the theoretical side, despite the recent progresses, galaxy
formation models are still in difficulties with some basic
properties of galaxies. For instance colors, radii (D’Onofrio
et al., 2020), structural bimodalities [see e.g. (Dekel and
Birnboim, 2006; McDonald et al., 2009)], angular momentum
content (Fall and Romanowsky, 2013; Obreschkow and
Glazebrook, 2014), variations of the stellar initial mass
function (IMF), mass-to-light ratios (Dutton et al., 2011;
Cappellari et al., 2012; Smith, 2014), central versus satellite
distributions (Rodríguez-Puebla et al., 2015), and others
cannot be satisfactorily matched by the models. Some
fundamental dynamical tracers of galaxy structure (e.g. the
circular velocity of galaxies and stellar-to-halo mass ratio)
predicted by the models are still discrepant with observations.

Another remark to keep in mind is that the technical analysis
of the SRs must be considered with due caution. The observed
relations often depend on a number of factors, last but not least
the structural parameter definitions (Courteau, 1996; Courteau,
1997), the environment that could influence the general
distribution of galaxies (Mocz et al., 2012), the different fitting
algorithms (Courteau et al., 2007; Avila-Reese et al., 2008; Hall
et al., 2012) that provide different coefficients, redshift, and
peculiar motions of the galaxies in the sample used (Willick
et al., 1997; Fernández Lorenzo et al., 2011; Miller et al., 2011),
projection effects and bandpass (Aaronson et al., 1986; D’Onofrio
et al., 2008; Hall et al., 2012), the morphology of galaxies in the
sample (Courteau et al., 2007; Tollerud et al., 2011), the stellar
population content (Cappellari et al., 2006; Falcón-Barroso et al.,
2011; Cappellari, 2013), the metallicity (Woo et al., 2008a), and
the statistical properties of the dark matter (DM) halos [see e.g.
Chiosi et al. (2019)].

In general we want to stress that SRs are today universally
considered convenient tools to estimate quantities such as
distances and masses in an efficient way (when the data
sample is large), but most importantly, they permit a much
deeper understanding of galaxy structure, formation, and
evolution. For example Kassin et al. (2012), by examining the
Vrot/σ ratio across redshift, found that galaxies accrete baryons at
different rates during evolution. At the same time, Obreschkow
and Glazebrook (2014) pointed out the link between the FP and
FJ relations with the angular momentum (j), the stellar mass (Ms),
and the bulge fraction (β) of spiral galaxies [see also Peebles
(1969), Fall (1983)]. Lagos et al. (2017), using cosmological
simulations, confirmed the correlation between galaxy mass
and specific angular momentum, and the evolution of the Ms

− j relation in passive and active galaxies, while Ferrarese et al.
(2006a) showed that the correlation of the mass of the BHs and
the bulge mass is a key element in favor of the coevolution of the
AGN with their host galaxies. Desmond and Wechsler (2017)
used the FP to predict the amount of DM in the central regions of
elliptical galaxies, while Ouellette et al. (2017) found that the tilt
of the FP correlates with the DM fraction of each galaxy and
Chiosi et al. (2019) demonstrated that the DM halo growth
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function is able to shape the mass-radius relation. We will see
many other examples of the utility of SRs in this review.

The utility of SRs has not been recognized only for galaxies.
They are also very important to understand the central BHs in
galaxies and the nature of the active galactic nuclei (AGN). The
coevolution of the central black holes and galaxies has been
known for more than 20 years [see e.g. (Kormendy and
Richstone, 1995; Ferrarese and Merritt, 2000; Gebhardt et al.,
2000; Graham et al., 2001; Ferrarese, 2002; Hring and Rix, 2004)].
Even the active nuclei have shown to obey several SRs that are
useful to clarify their structure and evolution. We will therefore
address in these pages several of these correlations involving the
parameters that describe the properties of the central active
nucleus in galaxies. This analysis will permit us to conclude
that, even in this context, SRs are fundamental tools to infer
the physical mechanisms at work in galaxies and AGN.

In conclusion we can say that SRs are fundamental for any
theory of galaxy formation and evolution. The current view is that
the diversity of galaxies appears to increase rapidly with the
instrumental improvements so that a good understanding of
their physics requires sophisticated numerical simulations that
reproduce realistic objects. The physical processes that operate
together during galaxy evolution are numerous and imply that the
morphological Hubble sequence is only the first approach to the
complex problem of galaxy classification (Fraix-Burnet et al.,
2019). The SRs are the network of properties that the modern
statistical tools and theoretical simulations must be able to explain
and reproduce. How are their properties intertwined? How do they
evolve over time? This is the challenge of future investigations.

In this work we will review some of the established SRs of
galaxies and AGN, discussing our current understanding of their
origin and evolution. The first six sections are dedicated to the SRs
originating from the coupling of galaxies dynamics and stellar
population properties. We start in Section 2 with the FJ relation,
addressing next the TF (Section 3), the KR (Section 4), the MR
relation (Sections 5, 6), and the FP (Section 7). We have analyzed
the MR relation with more details because of its cosmological
implication. We go on with the color-magnitude (CM) relation
(Section 8), the relation between the star formation (and star
formation history) with themass and initial halo density in galaxies
of different morphological types (Section 9), the mass-metallicity
relation (Section 10). They all provide a useful insight of the stars
and gas evolutionary properties. Then, we address the correlation
among the DM halos and baryonic matter properties (Section 11)
and the angular momentum–mass relationship (Section 12).
Finally, we enter into the AGN domain, starting with a
discussion of the correlations of the black-hole masses with the
galaxy host properties (Section 13) and the most popular
correlations observed among AGN (Sectiond 14, 15). Some
conclusions are finally drawn in Section 16.

2 THE FABER-JACKSON RELATION

The FJ relation is by far the most misunderstood correlation
between galaxies parameters. Discovered by Faber and Jackson
(1976), it is a correlation between the total luminosity of early-

type galaxies (ETGs) L and the central velocity dispersion of their
stars σ. The authors themselves did not attribute any physical
significance to this relation, considering the observed trend a
byproduct of the virial theorem, i.e. a translation of the
correlation between mass and velocity dispersion, induced by
the strong link between mass and luminosity.

The first fit on a sample of 25 ETGs gave L∝ σ4, while further
investigations provided values of the FJ parameters (slope and
scatter) that depend on the magnitude range of the sample
considered (Nigoche-Netro et al., 2010) (as in the case of the
FP (D’Onofrio et al., 2008)). The slope varies from ∼ 2 to ∼ 5 and
the scatter of the residuals ( ∼ 0.30) correlates with the effective
radius Re (in the sense that smaller than average objects have
larger velocity dispersion) and with the mass-to-light ratio
(D’Onofrio et al., 2020; Cappellari et al., 2013). The
correlation however extends over 8 dex in luminosity, from
Globular Clusters to Galaxy Clusters. A small curvature seems
to exist at MV ∼ − 21.5 mag, separating bright and faint objects.
The bright galaxies have a slope of around 4–5, while the faint
ones have it much closer to 2–3 (Choi et al., 2014; D’Onofrio and
Chiosi, 2020).

The FJ is not one of the orthogonal projections of the FP
relation σ∝ IaeR

b
e (with a scatter of ∼ 0.09 in Re). In the FJ relation

the variable L includes both Re and Ie. We can better say that it is a
sort of 2D version of the FP1. The deep analysis of Nigoche-Netro
et al. (2011) concluded that the scatter of the FJ depends on the
history of galaxies, i.e. on the number and nature of the
transformations that have affected the galaxies along their life
times (collapse, accretion, interaction, and merging). The
investigations of ETGs from the ATLAS-3D survey have
indeed shown that many of these galaxies possess high
rotational velocities, while slow-rotating objects often present
counter-rotating cores. There are multiple channels of formation,
where secular processes, disk instability, mergers, and gas
accretion are possible mechanisms. Star formation events are
sometimes observed even in the brightest cluster galaxies (BCGs),
today almost quenched, down to low redshifts [see e.g. (Liu et al.,
2012; Oliva-Altamirano et al., 2015)].

Despite this complexity there is an ample consensus on the fact
that ETGs are approximately virialized object from a dynamical
point of view. Since luminosity is in general a quite good tracer of
stellar mass, the deviation from the expected virial slope of 2 was
explained with a smooth transition of the zero-point of the
relation, essentially due to a variation of the mean mass-to-
light ratio. This is the same explanation given for the observed
tilt of the FP (see Section 7).

The existence of a physical correlation between luminosity and
velocity dispersion of stars has never been considered a concrete
possibility. Why should the global stars emission be aware of the
mean stars velocity in a galaxy? This appears as an unphysical
possibility. Recently, however, D’Onofrio et al. (2020) have
opened the door to this remote possibility. The idea is that the
total luminosity of galaxies is essentially the result of the stars
assembly, of the SF history (SFH) and the stellar evolution.

1By the way the FP was discovered by studying the residuals of the FJ relation.
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Luminosity is a nonmonotonic function of star’s evolution. In
1973 Brosche (1973) first suggested a failing of the simple SF law
of Schmidt (Schmidt, 1959a), based only on the gas density ρ,
favoring a scenario in which the SF is a function ∼ f(ρvβ), where v
is the velocity of stars and β ∼ 3.6 for most of the galaxies. Stars
born in large gas aggregates have a characteristic velocity that
depends on the physical condition of the galaxy during the SF
event (collapse, shock, and merging, etc.). For this reason the
global SF might keep memory of the velocity of this gas. The SFH
could therefore preserve such information, leading to a “physical”
connection between L and σ.

The proof that such a physical link exists between luminosity
and stellar velocity dispersion is encrypted in the appearance of
some SRs. The way to demonstrate this is to write the FJ relation
in this way:

L � L0′σβ, (1)

where L0′ and β are now fully variable parameters that depend on
the complex channel of stars assembly inside galaxies (new SF,
accretion and removal events, etc.), in other words on the
complex SFH we mentioned above. The connection of this
empirical law (that is valid for a single galaxy and should not
be confused with the fit of the whole distribution of ETGs in the
FJ relation in which L0 and β are constant) with the virial theorem
is the key to understand the observed distribution of galaxies in
the SRs. The MR relation, the KR relation, and the FP relations
are in fact perfectly reproduced when the parameters β and L0′
change. The data of the Illustris simulation (Vogelsberger et al.,
2014) used by D’Onofrio et al. (2020) have shown that the values
of β have an ample spectrum, going from large positive values,
typical of star-forming objects, to large negative values, typical of
passive and quenched objects (quite often the more massive old
galaxies). The peak of the distribution is observed at β ∼ 3, i.e.
exactly coincident with the slope of the fitted FJ relation
(D’Onofrio et al., 2020).

In this new framework the slope of the classical FJ relation is
mainly driven by the channel governing the star assembly inside
galaxies. The bottom-up scenario of hierarchical merging gives
the imprint on the slope of the FJ. Simulations indicate that this
slope changes with time. The trend is from a slope equal to ∼ 5 at
high redshift to ∼ 3 observed today. In other words there is a
progressive convergence toward the value of 2 expected for the
virial dynamical equilibrium. This is valid for all SRs involving
mass, velocity, and luminosity.

Figure 1 shows the FJ plane, the KR plane, and the MR plane.
The gray dots mark the observational data extracted from the
WINGS database (Fasano et al., 2006; Moretti et al., 2014). Three
artificial galaxies simulated by Illustris are shown with different
colors marking their evolution in these planes from z � 4 (blue
dot) to z � 1 (green dot) and z � 0 (red dot). Note how the
simulation is able to follow the FJ relation, keeping small the
scatter of the relation despite the variations occurring in σ and L.
This happens because the relation is driven by mass. The classical
FJ is essentially a relation between mass and velocity dispersion.
Since galaxies are always close to the dynamical equilibrium, the
variation expected in luminosity and velocity dispersion, due to
SF or merging events, are never bigger than the scatter of the

relation ( ∼ 0.3 dex, which corresponds to a factor of 2). The DGs
are the systems that are much distant to the virial equilibrium,
probably for the strong feedback effects and SF activity still going
on in many of them (Chiosi et al., 2019).

Note how the distribution at z � 0 in the KR and MR planes
depends on the evolution of β. This parameter can be
approximately estimated by looking at the direction of the
lines connecting two redshift epochs (β is the slope of the
log(σ) − log(L) relation). Negative values of β in the FJ plane
are those allowed only to quenched galaxies in passive evolution
(where L decreases at nearly constant σ). As far as β becomes
progressively negative the distributions in the KR and MR planes
converge toward the slopes expected for virialized objects ( − 1 in
the KR plane and 1 in the MR plane). In particular the tails
observed in these two planes are that corresponding to the most
massive and bright galaxies now in a quenched state of passive
evolution [see Table 4 in D’Onofrio et al. (2020), for more details].
This means that the full virialization in a galaxy can be achieved
only when SF and feedback effects are stopped.

The emerging picture from the hierarchical model of
galaxy assembly is that the KR and MR relations, that is
the linear relations (in log units) visible when the samples
contain only massive and bright ETGs, are formed by the tails
of massive and large objects appearing after z ∼ 1.5. This is the
location of the objects that today are almost quenched and
passive. Their SF is over, the systems have reached a full virial
configuration.

3 THE TULLY-FISHER RELATION

As we have seen for the FJ relation, the complex process of galaxy
assembly has produced some regular SRs, which ultimately
suggest a tight connection between the stellar component and
the hosting DM halos. The Tully–Fisher relation (TF (Tully and
Fisher, 1977)) is another example of a scaling law involving the
luminosity of a galaxy [in this case of late-type galaxies (LTGs)
spiral galaxies] and the rotation velocities V of stars. The dust-
corrected TF relation has the form L ∝ V3 in the optical band,
with a slope that steepens toward redder passbands (L∝V4 in the
near-infrared (Verheijen, 1997; Tully et al., 1998)). The variation
of the slope with the passband indicates that there is a trend in
color and in the stellar M/L ratio with the galaxy mass. This
change constrains galaxy formation and evolution models [see
e.g. (Cole et al., 2000; Navarro and Steinmetz, 2000; van den
Bosch et al., 2000)].

The TF is almost linear in log units for disk galaxies with well-
ordered rotation, while objects with disturbed morphology and
compact galaxies do not follow the main relation, exhibiting
lower rotations at a given stellar mass (Kassin et al., 2007; Kassin
et al., 2012). The velocity fields are affected by major merging
events or tidal disruptions (Rampazzo et al., 2005; Kronberger
et al., 2007; Covington et al., 2010; De Rossi et al., 2012), by
accretion of external angular momentum (Brooks et al., 2009;
Elmegreen and Burkert, 2010) and/or by disruptive feedback
events (Mac Low and Ferrara, 1999; Lehnert et al., 2009).
With spirals of the local Universe the TF relation is tight
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(Verheijen, 2001; Bekeraité et al., 2016; Ponomareva et al., 2017).
Galaxies with rising rotation curves and those with declining
rotation curve are differently distributed in the TF relation [e.g.
(Persic et al., 1996)].

The TF was used to measure the distance of spiral galaxies [see
e.g. (Giovanelli et al., 1997)] and to test cosmological models,
arguing that its slope, zero-point, and tightness are set by the
cosmological evolution of the galactic DM halos (Cole et al., 1994;
Eisenstein and Loeb, 1996; Avila-Reese et al., 1998; Mo et al.,
1998; Courteau and Rix, 1999; Navarro and Steinmetz, 2000). The
properties of these halos were often derived from the rotation
curves of galaxies. However, the ignorance of the values of the
stellarM/L ratio (the gas contribution is typically well understood
and relatively small (Verheijen, 1997; Swaters et al., 2000))
determines a degeneracy: many rotation curves can be equally

well fitted by models in which the central part is dominated by
stellar mass or by DM (van Albada et al., 1985; Swaters et al.,
1999). To resolve the degeneracy, some independent constraints
on M/L ratios are required.

The TF relation is considered a product of the virial theorem
and the almost constant mass-to-light ratio of spiral galaxies. Its
origin has been discussed by Silk [e.g. (Silk, 1997)], Mo et al. [e.g.
(Mo et al., 1998)]. In their semi-analytical approach, Mo et al.
(1998) reproduced the TF relation assuming a constant mass-to-
light ratio and an empirical profile for disks and halos. Heavens
and Jimenez (1999) used a similar approach, including an
empirical star formation model, and successfully reproduced
the TF relation in four pass-bands simultaneously. However,
the exponential profile and the flat rotation curves of these
galaxies were not constructed as the results of simulations, but

FIGURE 1 | Left panel: the log(σ) − log(L) FJ plane. The gray dots mark the observational data extracted from the WINGS database. The colored bigger points
connected by lines are three objects extracted from the Illustris simulation respectively at redshift z � 4 (blue dot), z � 1 (green dot) and z � 0 (red dot). The lines show the
evolution of these objects across the cosmic epochs. Right upper panel: the log(Re) − log(Ie) KR plane. TheWINGS galaxies are in gray and the colored dots are the same
objects of the left panel. Right lower panel: the log(Ms) − log(Re) MR plane. The symbols used are the same as before. The number of galaxies changes in each
panel because masses and velocities are not available for the whole set of ETGs, in particular for the faint objects.
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assumed a priori. Steinmetz and Navarro (1999) provided the first
numerical simulations within a cosmological context and
explained the slope and scatter of the TF relation. They
considered a volume much larger than the scale of galaxies,
and some environmental effects (e.g., tidal field and infall/
outflow of mass). Koda et al. (2000) also reproduced the slope
and scatter of the TF relation. In their approach the slope
originates from the difference of mass among galaxies, while
the scatter from the difference in the initial spin.

A breakthrough was the discovery that the baryonic mass
better correlates with rotational velocity than luminosity
(McGaugh et al., 2000). The baryonic TF relation (BTF) is
remarkably tight (Bell and de Jong, 2001; Verheijen, 2001;
Pizagno et al., 2005; Kassin et al., 2006; Courteau et al., 2007;
Masters et al., 2008; Reyes et al., 2011), but the exact slope still
depends on the filters used (Courteau et al., 2007; Ponomareva
et al., 2017; Schulz, 2017).

The parametrization of the BTF gives important constraint for
models of disk galaxy formation (Mo et al., 1998; Somerville and
Primack, 1999; Navarro and Steinmetz, 2000; Dutton et al., 2007).
Using a semi-analytic model, Dutton (2012) predicted a
minimum intrinsic scatter of ∼ 0.15 dex for the BTF while Di
Cintio and Lelli (2016) had a scatter of 0.17, using semi-empirical
models that were able to reproduce the mass discrepancy
acceleration, i.e. the ratio of total-to-baryonic mass at a given
radius that anticorrelates with the acceleration due to baryons
(McGaugh, 2004). According to Bullock et al. (2001) most of the
scatter comes from the mass–concentration relation of DM halos
well constrained by cosmological simulations. The scatter of the
BTF is therefore a key test for the ΛCDM model. The scatter is
minimum when the velocity is measured in the flat part of the
rotation curve well beyond the optical extent of the galaxies
(Verheijen, 2001; Noordermeer and Verheijen, 2007), probably
because such velocity is close to the virial velocity.

As remarked before, one possible application of the BTF is to
constrain the properties of the DM halos. Übler et al. (2017) by
investigating the stellar mass and BTF relations of massive star-
forming disk galaxies at redshift z ∼ 2.3 and z ∼ 0.9 (using the data
of the KMOS3D integral field spectroscopy survey), found that
the contribution of DM to the dynamical mass increases toward
lower redshift. Their comparison with the local relations reveals a
negative evolution of the stellar and baryonic TF zero points from
z � 0 to z ∼ 0.9, no evolution of the stellar TF from z ∼ 0.9 to z ∼
2.3, and a positive evolution of the BTF from z ∼ 0.9 to z ∼ 2.3.

A useful progress came with the demonstration by Weiner
et al. (2006) and Kassin et al. (2007) that, accounting for
disordered motions (σ) and ordered rotation (V) in a new
parameter S0.5 �

���������
0.5V2 + σ2

√
, it is possible to get a tight S0.5 −

− Ms relation (Aquino-Ortíz et al., 2018). This relation is
independent of the morphology of galaxies and is coincident
with the FJ relation of ETGs, when σ dominates over V, and
coincident with the TF when the opposite occurs. Numerical
simulations seem to indicate that S0.5 traces the potential well of
the DM halos even in the case of merger events (Covington et al.,
2010). The inclusion in the TF of galaxies with disordered velocity
components (often due to major mergers) has been addressed by
several people (Lemoine-Busserolle and Lamareille, 2010; Puech

et al., 2010; Catinella et al., 2012; Vergani et al., 2012; Cortese
et al., 2014; Wisnioski et al., 2015). The scatter of the relation
seems mainly due to merger events as we have seen for the FJ
relation.

Galaxy morphology is another possible source of scatter being
a strong function of stellar mass and the less luminous systems
quite often exhibit an irregular morphology [see e.g. (Roberts and
Haynes, 1994; Bothwell et al., 2009; Mahajan et al., 2015)]. In
general disturbed galaxies are increasingly more common at low
masses in the early Universe (Mortlock et al., 2013). The
kinematic surveys are often biased against galaxies with
disturbed morphology, because their aim is to study the DM
content (Bershady et al., 2010). Dwarfs galaxies (DGs) show
rotational signatures in both their HI and stellar components
(Swaters et al., 2002; McConnachie, 2012) and when irregular
galaxies, compact galaxies, and close pairs are analyzed in their
kinematics the presence of peculiar velocity fields and thick disks
are found [see e.g. (Barton et al., 2001; Kannappan et al., 2002;
Vaduvescu et al., 2005; Cortese et al., 2014; Kirby et al., 2014)]
together with high star-forming dwarfs (van Zee et al., 1998;
Cannon et al., 2004; Lelli et al., 2014). However, only few studies
have placed large samples of these disordered systems on the TF.

In the future, it will be interesting to study the TF relation in
the same perspective of the FJ, distinguishing the relation valid for
a set of galaxies, which is a translation of the virial theorem (once
the variations in the stellar population are taken into account),
and the relation valid for single galaxies, where the luminosity
and the rotational velocity are the result of the mass assembly
history and of the stellar evolution. The work of D’Onofrio et al.
(2020) has demonstrated that it is important to look at the
variations of the positions of each galaxy in the different SRs
if we want to understand the origin of the observed distributions.

4 THE KORMENDY RELATION

The Ie − Re relation of ETGs (often known as KR (Kormendy,
1977)) is a projection of the FP. In this case the variables are the
effective radius and the mean surface brightness inside it. It is the
most easily accessible correlation of galaxies parameters even at
high redshift. First discovered by Kormendy in 1977, the linear
relation visible in log units between these variables, soon showed
an ample curvature toward faint and dwarf objects, suggesting the
existence of two different populations of ETGs, the “ordinary”
and the “bright,” following two different relations and therefore
possibly originating from two different channels of evolution
(Capaccioli et al., 1992). The “ordinary” family is bi-parametric
(L∝ IeR2

e), its members are fainter thanMB ∼ − 19, and their radii
are smaller than Re ∼ 3 kpc. The “bright” family is mono-
parametric (Ie depends only on Re), it hosts only the brightest
cluster galaxies (BCGs), and their members have radii exceeding
Re � 3 kpc. The bulges of spirals belong to the “ordinary” family.

The curved distribution visible in the Ie − Re plane has been
used (among other correlations) several times to argue for distinct
formation mechanisms of dwarfs and giants ETGs (Capaccioli
et al., 1993; Kormendy et al., 2009; Tolstoy et al., 2009; Kormendy
and Bender, 2012a; Somerville and Davé, 2015; Kormendy, 2016).
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Many authors believe that there is a physical difference between
elliptical and spheroidal galaxies. Elliptical and spheroidal
galaxies exhibit different parameter correlations. Spheroidals
are not low-luminosity ellipticals but rather the result of
transformations induced in late-type galaxies by internal and
environmental processes. Furthermore, there are possibly two
distinct kinds of elliptical galaxies, whose properties differed
during the last major mergers, wet or dry, according to
whether cold gas dissipation and starbursts occurred or not.

The existence of two physically distinct families of ETGs has
been at the center of an ample debate. Other researches did not
use the effective half light radius parameter, advocated for a
continuity among the ETG population (Caldwell, 1983a; Binggeli
et al., 1984; Bothun et al., 1986; Caldwell and Bothun, 1987).
Graham (2019) explored a range of alternative radii, showing that
the transition at MB ∼ − 19 mag is likely artificial and does not
imply the existence of two different types of ETGs.

The shape of the light profiles of ETGs has been also used to
claim a difference between dwarfs and ordinary ETGs: dwarfs
have in general exponential light profiles (similar to the disks of
LTGs), while ordinary ETGs have R1/n Sérsic profiles (Sersic,
1968), with n ≥ 3. However, exponential light profiles are
reproduced by the Sérsic law when n � 1. According to
Graham (2019) the curved distribution of ETGs in the KR is
likely associated with the continuous change of the Sérsic index n
with the absolute magnitude (the MB − n relation (Caon et al.,
1993; D’Onofrio et al., 1994)). Along this view Graham and
Guzmn (2003) argued that the only magnitude of importance in
the Ie − Re plane is atMB � − 20.5 mag, where they see a division
between ETGs with Sérsic profiles and core-Sérsic profiles. This
magnitude corresponds to a mass of ∼ 2 × 1011M⊙.

There are indeed two linear scaling relations involving the
structural parameters of ETGs: the MB − μ0 (i.e. total luminosity
vs central surface brightness) and theMB − n (total luminosity vs
Sérsic index). These relations do not show evident signs of
curvature. The first one is a restatement of the concentration
classes introduced by Morgan (1958), later quantified by the
concentration index C (Fraser, 1972; Binggeli et al., 1984; Kent,
1985; Ichikawa et al., 1986). The second is a consequence of the
first, being the Sérsic parameter a measure of the radial
concentration of galaxy light. Further examples of the MB − n
diagram can be found in the literature (Caon et al., 1993; Young
and Currie, 1994; Graham et al., 1996a; Jerjen et al., 2000;
Ferrarese et al., 2006b; Kormendy et al., 2009). The lack of
curvature in these diagrams does not support the view of
different formation mechanisms at work for ETGs. This
debate is controversial: the original “nature” (Eggen et al.,
1962) (monolithic collapse) versus “nurture” (formation
through mergers) (Toomre and Toomre, 1972; Searle and
Zinn, 1978; Schweizer, 1986) idea is still open.

Another interesting feature of the Ie − Re diagram, well visible
in Figure 2, is the presence of a zone of exclusion (ZoE). Note that
there are no galaxies in the upper part of the diagram. The
distribution of galaxies seems limited in the maximum surface
brightness at each Re. The slope of this line of avoidance is
approximately − 1 in these units, i.e. very close to the slope of the
fitted KR for the brightest galaxies ( ∼ − 1.5). First noted by

Bender et al. (1992) in the k-space version of the FP, the ZoE was
written as k1 + k2 ≤ 7.8.

Recently, D’Onofrio and Chiosi (2020) demonstrated that the
FJ relation (with L0 and β nearly constant) is incompatible with
the distribution observed in the KR plane. On the contrary the use
of the modified FJ relation expressed by Eq. 1 is perfectly
compatible with the data (see Figure 2). This means that the
parameters L0′ and β must be variable factors depending on the
mass assembly history of galaxies. Note how the complex
distribution of galaxies in the Ie − Re plane is well reproduced
by assuming different values of L0′ and β. The negative values in
particular are able to explain the tail formed by bright and
massive objects in a quenched state of evolution.

Under this perspective the appearance of the Ie − Re plane is
also connected to the mass assembly and stellar evolution history
of galaxies. The tail of bright galaxies appears only at recent
cosmic epochs, when some big objects start to quench their star
formation and their luminosity begins to slowly decrease.

5 THE MASS-RADIUS RELATION: A PATH
TOWARD VIRIAL EQUILIBRIUM

A considerable number of works have been dedicated in the past
years to the MR relationship, i.e. the plot of the stellar mass of the
galaxies Ms versus the effective radius Re in log units [see e.g.
(Bernardi et al., 2011; Graham et al., 2011; Shankar et al., 2013a;
Graham, 2013; Bernardi et al., 2014; Agertz and Kravtsov, 2016;
Kuchner et al., 2017; Huang et al., 2017; Somerville et al., 2018;

FIGURE 2 | The KR plane. The gray dots mark the observational data of
the WINGS survey. The red and green dots mark the values of Ie and Re

obtained starting from Eq. 1 [see D’Onofrio and Chiosi, 2020] using different
values of β. The dashed line represents the ZoE. The dotted lines the
locus of constant luminosity, respectively at MV � − 21.5 and MV � − 15.5.
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Genel et al., 2018; Almeida, 2020; Terrazas et al., 2020)]. The
increasing interest for the MR relation is due to the difficulty of
explaining the observed distribution with the virial theorem and
the various models of galaxy assembly predicted by the
monolithic and hierarchical scenarios, in particular the curved
shape, progressively steeper for the high masses, and the zone of
exclusion (ZoE), that is, a region empty of any object on the side
of the high masses (see Figure 1, lower right panel, and Figure 3).
This nontrivial distribution is well apparent even when globular
clusters (GCs) and clusters of galaxies (CGs) are added to the
diagram (Chiosi et al., 2019).

Many papers have already emphasized that the distribution of
galaxies in this plane depends on several factors, such as age
(Valentinuzzi et al., 2010), mass-to-light ratio (Cappellari et al.,
2015), color, Sérsic index, and velocity dispersion [see e.g.
(D’Onofrio et al., 2020; Almeida, 2020)]. The distribution of
the sizes has been approximated with a log-normal function
(Shen et al., 2003), noting that it is clearly different for late-
and early-type galaxies. TheMR relation is roughly a single power
law for the bright ETGs (Ms > 1010M⊙), while for the LTGs and
DGs the relation is significantly curved, with brighter galaxies
showing a faster increase of Re with Ms. For low-mass LTGs the
trend is Re∝M0.14, while for the high-mass galaxies we have Re∝
M0.39. The dispersion around the mean relation is high for low-
mass galaxies ( ∼ 0.5) and smaller for big objects ( ∼ 0.3). For the
ETGs the mean relation is Re ∝ M0.56, with a slope going
progressively toward 1 for galaxies more massive than ∼
1010M⊙. Spirals do not seem to have objects along this linear
tail (D’Onofrio et al., 2020).

According to Shen et al. (2003) the observed MR relation for
LTGs can be attributed to the specific angular momentum (AM)
of the stars, if it is similar to that of the halo and if the fraction of
baryons that form stars is similar to that predicted by the standard
feedback models. For ETGs, the observed MR relation is not
consistent with the hypothesis that they are the remnants of
major mergers, while it seems consistent with that of multiple
mergers. One possibility is that the spheroids below a
characteristic mass Ms ∼ 1010M⊙ grow from disk instability
and mergers, while galaxies above it from dry mergers. Gas
dissipation, if present, contributes efficiently to shrink the size
of the galaxies (Shankar et al., 2013a).

The pronounced curvature of the MR relation suggests again a
dichotomy between “bright” and “ordinary” ETGs as in the case
of the MB − 〈μ〉e diagram and the KR plane. A possible
explanation invokes the role of supernova-driven winds
blowing out the gas from the DGs (Mathews and Baker, 1971;
Saito, 1979; Dekel and Silk, 1986). This feedback effect is one of
the most efficient ways of puffing up galaxies sizes. However,
these studies do not take into account the gravitational binding
energy of the DM halo (Mac Low and Ferrara, 1999), so that other
mechanisms should be sought to explain the discontinuity
present in these relations. The discontinuity is not seen in fact
in the luminosity-metallicity relation (Dekel and Silk, 1986;
Mateo, 1998; Tremonti et al., 2004; Veilleux et al., 2005) and
is only marginally visible in the L − σ relation.

More recently, D’Onofrio et al. (2020) found a unique
explanation for the curved shape of the MR and KR relations
in combination with the almost linear trend of the L − σ relation.
They used the modified FJ relation L � L0′σβ introduced above
that is able to reproduce the curved MR relation and Ie − Re
distribution once coupled with the virial equation. In this case one
gets the relation:

Re � 1

kv
G

2π〈Ie〉
L0′

( )2/β

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1/(4/β+1)

M1/(4/β+1). (2)

and should accept the idea that the parameters L0′ and β are
variable factors for each galaxy depending on the mass assembly
history, with β that can assume both positive and negative values
(see Figure 3). The advantage of this approach is that, in addition
to the almost perfect reproduction of the observed SRs, it
naturally predicts the existence of the ZoE as the locus of
virialized and passively evolving quenched objects. Look at the
red dots obtained by Eq. 2. The slope of the MR progressively
changes from DGs to giants, converging toward the value of 1 for
the bright and massive quenched objects in full virial equilibrium.

In this framework the key role of shaping the SRs is played by
the merging and stripping events at play during galaxy
encounters. These events may change either the luminosity or
the radius of a galaxy (increasing or decreasing them). However,
while luminosity rarely increases (decreases) by a factor of two ( ∼
0.3 in log units), the radius may change considerably (up to a
factor of 10). This explains why the L − σ relation does not change
its linear shape and scatter (that is approximately ∼ 0.4). On the
contrary in the SRs where the effective radius Re is an explicit

FIGURE 3 | The MR plane. The black dots mark the observational data
of the WINGS survey. The blue dots are the Illustris data of the TNG release
shifted by a constant value in log(Re) of − 0.45 (simulations still provide
systematically larger radii). The red dots mark the values of Re obtained
from Eq. 2 (see the text).
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parameter, a strong curvature distinguishing DGs and giants is
clearly present. Sánchez Almeida (Almeida, 2020) well showed
that the MR relation changes its shape and scatter when different
radii (probably much closer to the virial radius) are used instead
of Re.

When galaxies encounter result in significant stripping of
stars and gas, the total luminosity of the galaxies and the velocity
dispersion decrease. The same effect is induced by the quenching
of SF and passive stellar evolution, producing values of β that can
be negative. Notably this scenario is confirmed by numerical
simulations (D’Onofrio and Chiosi, 2020). These also predict
that the MR relation evolves with the cosmic epochs, since
galaxies are much more dense and smaller in size at earlier
epochs. The galaxy size-luminosity relation and the MR relation
were then used to argue that the compact (Re < 2 kpc) massive
(Ms > 1011M⊙) spheroidal-shaped galaxies at high-redshifts (z ∼
2 ± 1)—known as “red nuggets” (Damjanov et al., 2009)—
evolved into the large massive ellipticals in the local (z � 1)
Universe (Daddi et al., 2005; Kriek et al., 2006; Trujillo et al.,
2006; van Dokkum et al., 2008). These massive galaxies (with
stellar massMs > 3 × 1010M⊙), evolving passively at redshifts z ≥
1, have average sizes smaller by a factor of ∼ 3 with respect to
local ETGs with similar stellar mass. Such small sizes are
expected if dissipative collapses occur.

The small objects seen at high redshift are 2 ÷ 6 times more
compact than local galaxies of similar stellar mass (van Dokkum
et al., 2010a; Saracco et al., 2011), but observations have now
established that many ETGs at high redshifts are not compact and
that similar fractions of large and compact galaxies could coexist
(Mancini et al., 2009; Valentinuzzi et al., 2010), with a variety of
bulge-to-disk ratios (van der Wel et al., 2011).

From the analysis of the spectra of 62 ETGs at high redshifts
Saracco et al. (2011) found that compact galaxies have most of
their stars formed before z � 5, while larger objects at fixed stellar
mass are generally younger. Graham et al. (2015) identified
24 “compact massive spheroids” as the bulge component of
local lenticulars. These bulges have a similar distribution of
size, mass, and Sérsic indices as the high-z compact massive
galaxies, and comparable number densities (per unit volume) (de
la Rosa et al., 2016). This similarity strongly suggests that the
current evolutionary scenario does not explain the complete
picture.

Another possibility is that the evolution of the red nuggets is
driven by the growth of disks (Caldwell, 1983b; Morganti et al.,
2006; Sancisi et al., 2008; Stewart et al., 2009; Pichon et al., 2011;
Moffett et al., 2012; Stark et al., 2013; Graham et al., 2015; Kleiner
et al., 2017). Gas accretion plays a key role for massive galaxies
(Feldmann et al., 2016), while less massive objects accrete a small
quantity of gas with time (Cowie et al., 1996; Graham et al.,
2017).

The rapid stripping or ejection of baryonic matter (BM) might
inflate galaxies to larger dimensions. The idea came from
Biermann and Shapiro (1979), who linked the formation of
S0s to that of disk galaxies. Recently, Ragone-Figueroa and
Granato (2011) explained the existence of red-nuggets with
this mechanism. The loss of BM could be triggered by quasars
(QSO) and/or starburst-driven galactic winds or can be quiet for

stars at the end of their evolution. In this scheme compact galaxies
could transform into less massive and larger systems. Numerical
models only approximately follow this scheme: the models show
intense episodes of SF and significant galactic winds but, on

FIGURE 4 | The Mass-Radius plane. Comparison between data and
theory. Radii Re and stellar masses Ms are in kpc and M0, respectively. The
pale-blue filled circles are the observational data, the sea-green filled circles
the models of Illustris. The stellar masses of the observational data that
refer to objects from GCs to CoGs span the range 104–1014M0 while the
theoretical data that are designed to represent galaxies span the mass range
108–1012M0. The theoretical data overlap the observational ones for ETGs
and partly also for DGs. The linear best fit of normal ETGs (MT ≥ 1010 M0)
given byEq. 4 is the dark-red thick crossed line that we prolonged down to the
region of GCs and upward to that of CoGs. The four solid lines labeled A (zf � 5,
blue), B (zf � 1, red and zf � 2, dark green), and C (zf � 10 black) are the
analytical relationships of Eq. 19. They show the loci of galaxy models with
different masses but constant initial density for different values of redshift of
galaxy formation zf. These lines are the best fit of the models by Chiosi and
Carraro (2002), Merlin et al. (2012), and Chiosi et al. (2012). The magenta solid
lines visualize the locus of virialized objects on theMR-plane for different values
of the stellar velocity dispersion (50, 250, 500 km/s from left to right). The
dashed black lines for different values of zf are the MRRs expected for galaxies
with total mass equal to 50 ×MCO(z), the cut-off mass of the Press-Schechter
at varying zf according to relation (20). The large empty squares mark the
intersections between the lines of constant initial density and the MRRs for 50
× MCO galaxies for equal values of the redshift. All the intersections lie very
close to the relation of Eq. 4 shown by the dark-red crossed line. This is the
linear interpretation of the observed MRR. Finally, the curved blue dotted line
shows the expected MR relation for the baryonic component of DM halos
whose mass distribution follows the cosmological HGF by Lukić et al. (2007).
The curve has been extended to include the GCs and the CoGs. Note the
changing slope of the MRR passing from CoGs to ETGS and GCs.
Remarkably, the curved line first runs very close to the large empty squares,
second to linear fit of the data (crossed line), and third accounts for the
observed MRR passing from GCs to CoGs (about ten orders of magnitude
difference in the stellar mass). Finally, the horizontal blue line gives the interval
for Ms corresponding to initial masses MCO(z) < MT < 10 × MCO(z) (the
percentage amounts to ≃ 15%). It highlights that at each redshift the high-
mass edge of the MRR has a natural width.
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average, the trend is toward larger masses and almost
constant radii.

Guo et al. (2009) and van Dokkum et al. (2010a) investigated
the possibility that the MR relation, at least for the most massive
galaxies, is linked to a systematic variation of the Sérsic index n,
parameterizing the surface density profiles with the redshift.
According to van Dokkum et al. (2010a) the variation of the
effective radius Re (50% of the light) is:

d log(Re)
d log(M) ≈ 3.56 log(n + 3.09) − 1.22 (3)

which is accurate to 0.01 dex for 1 ≤ n ≤ 6. This means that the
radius might increase linearly with the mass if the projected
density follows an exponential law, going as M1.8 for the de
Vaucouleurs profile with n � 4. A strong evolution in Re is
expected in all inside-out growth scenarios, unless the density
profiles are close to exponential.

6 THE MR RELATION IN COSMOLOGICAL
CONTEXT

A new explanation of the existence and curvature of the MR
relation (thereinafter MRR) has been given recently by Chiosi
et al. (2019) in the cosmological context of galaxy formation and
evolution. They started from the empirical hint that a unique
MRR seems to connect objects from Globular Clusters (GCs) to
dwarf galaxies (DGs), early-type galaxies (ETGs) and Spiral
Galaxies (LTGs), and finally Clusters of Galaxies (CoGs), the
stellar massesMs and radii Re of which span about twelve and four
orders of magnitude, respectively.

The data used by Chiosi et al. (2019) are those of Burstein et al.
(1997) for GCs, galaxies in general, and CoGs, of Bernardi et al.
(2010) for ETGs, and of WINGS for ETGs and CoGs. The
situation is visible in Figure 4, where the pale-blue filled
circles show the observational data with no distinction among
the different sources. The sea-green filled circles are the Illustris
models. Note that the minimum mass of the Illustris galaxies at
z � 0 is 109M⊙, so the comparison with the observational data
should be restricted to this mass limit. The figure shows the
region of the MR plane populated by real objects of different
mass, size, and morphological type. Let us quickly summarize the
main features of the MR plane:

1) The family of GCs is well detached from that of normal/
giant ETGs (with mass larger than about 1010M⊙). The region in
between is populated by DGs and at the top of the distribution
there are the CoGs with the largest radii and masses. The ETGs
are the most numerous and the LTGs occupy more or less the
same region, but are not visible in the bright tail. The relative
number of objects per group is not indicative of the real number
frequencies because severe selection effects are present. The best
fit of the three samples of data yields linear relations with much
similar slopes and zero points (they differ by 0.1 and 1.2,
respectively). Therefore, one can consider them as fully
equivalent and adopt the one derived from the sample of
Bernardi et al. (2011) as the reference case for his richness

logRe � (0.537 ± 0.001) logMs − (5.26 ± 0.01). (4)

2) Extrapolating the relation for massive ETGs, Eqn. 4,
downward to GCs and upward to CoGs, one notes that it
provides a lower limit to GCs, passes through ωCen and M32,
marks the lowest limit for the distribution of DGs, and finally
reaches the region of CoGs.

3) There are no objects in the semi-plane for radii Re smaller
than the values fixed by relation (4), independently of mass, but
for the “compact galaxies” [see Chiosi et al., 2012].

6.1 The MRR of Theoretical Models
The situation is more complicated for galaxy models. The
monolithic hydrodynamic models by (Chiosi and Carraro,
2002), shortly indicated CC-A and CC-B and the early-
hierarchical models by (Merlin et al., 2012), shortly indicated
M-M] provide the following MRRs:

logRe � 0.331 logMs − 3.644 CC − A (5)

logRe � 0.273 logMs − 1.994 CC − B (6)

logRe � 0.241 logMs − 1.750 M −M (7)

We recall that the three groups of models (identical in the
input physics) are calculated with different formation redshift zf
(hence initial density): CC-A have zf ≃ 5, CC-B zf ≃ 1, and M-M zf
≃ 1 − 2. In the MR plane they lay on lines with similar slope but
different zero points. This suggests that the slope is linked to the
physical structure of the models while the zero-point is
reminiscent of the initial density. Surprisingly, the slopes of
the above relations are not identical to that of ETGs (Eq. 4),
but close to that of DGs. Furthermore, along the sequence of each
group, the duration of the star formation activity is long and in a
burst-like mode of low intensity in low mass galaxies and short
and intense (often a single burst of activity) in the high mass ones.
Remarkably, only the most massive galaxies formed in redshift
interval 5 ≥ zf ≥ 2, in which star formation has ceased long ago,
may fall into the region of ETGs.

The Illustris hierarchical models provide similar relationships,
once they are split into two groups:

logRe � 0.297 logMs − 2.513 for logMs ≤ 10.5, (8)

logRe � 0.519 logMs − 4.492 for logMs ≥ 10.5. (9)

The first relation holds for the vast majority of models and
reminds that of normal DGs, while the second one holds for a
small group of objects and is close to the case of ETGs. In the
hierarchical scheme themodels of the first group (in Eq. 8) are the
seeds of those in the second group located along the MRR
of Eq. 9.

Finally, there is the MRR proposed by Fan et al. (2010). This is
derived in the following way. Independently of the monolithic or
hierarchical scheme, the seeds of galaxies are perturbations of
matter made of DM and BM. These collapse when the density
contrast with respect to the surrounding medium reaches a
suitable value. Assuming spherical symmetry and indicating
with MT and RT the total mass and associated radius, and
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making the approximationMT �MD +MB ≃MD and RT ≃ RD, the
mass-radius relation for each individual galaxy is

R3
D � 3

4π
( ) MD

λρu(z)
→RD ∝

M1/3
D

1 + zf
(10)

where ρu(zf)∝ (1 + zf)3 is the density of the Universe at the
collapse redshift zf, and λ the density contrast of the DM halo.
This expression has a general validity, whereas λ depends on the
cosmological model of the Universe, including the ΛCDM case.
All details and demonstration of it can be found in Bryan and
Norman [Bryan and Norman (1998), their Eq. 6]. The collapse
increases the mean density of DM and BM so that, when a critical
value of the BM density is reached, stars can form at the center of
the system under suitable star formation rates. In the context of
the ΛCDM cosmology, Fan et al. (2010) have adapted the general
relation (10) to provide an equation connecting the halo mass
MD, the stellar massMs, the half light (mass) radius Re, the shape
of the BM SS(nS) related to the Sérsic profile index nS, the velocity
dispersion fσ of the BM component with respect to that of DM,
and finally the ratio m � MD/Ms. The expression is

Re � 0.9
SS(nS)
0.34

( ) 25
m

( ) 1.5
fσ

( )2
MD

1012M0

( )1/3
4

(1 + zf). (11)

where fσ yields the three dimensional stellar velocity dispersion as
a function of the DM velocity dispersion σs � fσσD (here we adopt
fσ � 1). The typical value for SS(nS) is 0.34. For more details see
Fan et al. (2010) and references therein.

The most important parameter of Eq. 11 is the ratio m �MD/
Ms. Using the Illustris data Chiosi et al. (2019) investigated how
this ratio varies in the mass interval 8.5 < log MD < 13.5 (masses
are inM⊙) and from z � 0 to z � 4 (see Section 11). They find that
the following relation is good for all practical purposes

logm � log
MD

Ms
� 0.062 logMD + 0.429. (12)

The slope of the Fan et al. (Fan et al., 2010) relation, which
visualizes the position on the MR plane of systems born at the
same redshift once their stars are formed, is 0.333. This is very
similar to that of theoretical models, i.e. Eqs. 5–8.

The most intriguing question to answer is “Why is the
observational MRR for ETGs so different from the theoretical one?”

6.2 The MRR From the DM Halo Growth
Function n(MD, z)
The observed distribution of astrophysical objects in the MR
plane, going from GCs to galaxies of different mass and
morphological type and eventually to CoGs, suggests that a
unique relation could exist for all of them and that such a
relation likely owes its origin to the cosmological growth of
DM halos. The distribution of the DM halos and their
number density as a function of redshift has been the subject
of several studies which culminated with the large-scale
numerical simulations of the Universe. We cite here one for
all, the Millennium Simulation (Springel et al., 2005). In parallel
the studies of the halo growth function, HGF, as the integral of the

halo mass function, HMF, appeared in literature [see, for instance,
Lukić et al. (2007), Angulo et al. (2012), Behroozi et al. (2013)].
The HGF gives the number density of halos of different mass per
(Mpc/h3 emerging at each epoch by all creation/destruction
events and consequently yields the halos that nowadays
populate the MR plane and generate the observed galaxies.
Chiosi et al. (2019) adopted the HGF of Lukić et al. (2007)
who, using the ΛCDM cosmological model and the HMF of
Warren et al. (2006), derived the number density of halos n(MD,
z) over ample intervals of halo masses and redshifts. Since the
n(MD, z) of Lukić et al. (2007) refers to a volume of 1 (Mpc/h)3,
before being compared with the observational data, it must be
scaled by a suitable factor to match the volume sampled by
observations. Anyway, the following characteristics of the HGF
are worth being noted: 1) for each halomass (or mass interval) the
number density is small at high redshift, increases toward the
present, and reaches a maximum at a certain redshift. The peak is
either followed by a descent (for low mass halos) or a plateau (for
high mass halos). In other words, first the creation of halos
outnumbers the destruction, whereas the opposite occurs in
general for low mass halos after a certain redshift. 2) At any
epoch high mass halos are much less numerous than the lowmass
ones. This implies the existence of a cut-off mass at the high mass
side. 3) The HGF also implies that halos of different mass have a
given probability of existence at any redshift [see for more details
Chiosi et al. (2012, 2019)].

Assuming a certain number density of halos Ns derived from
the observational data, Chiosi et al. (2019) set up the equation n
(MD, z) � Ns whose solution yields the mass of the halosMD(z) as
a function of the redshift and vice-versa the redshift for each halo
mass. In practice for any value Ns one gets a function MD(z). To
each value ofMD along this function, with the aid of Eqs. 11–12),
one can associate a value of Ms and Re. The MRR of luminous
galaxies is the result.

Notably for the Ns corresponding to 10−2 halos per (Mpc/h)3
(roughly the volume surveyed by the SDSS [see Chiosi et al., 2019,
for details]), the curve Re(Ms) falls at the edge of the observed
distribution of ETGs in the MR plane. Higher Ns would shift the
curve to larger halos, the opposite for lower Ns. One can therefore
draw in the MR-plane the locus of the most massive MD and
associatedMs imposed by the halo HGF. The equation n (MD, z) �
NswithNs � 10−2 or equivalently 106 halos per 108Mpc3 rewritten
to derive the halo mass MD as a function of z is

logMD � 0.0031546 z3 − 0.006455 z2 − 0.183 z + 13.287. (13)

Starting from this, Chiosi et al. (2019) associate Ms and Re to
eachMD for any value of the redshift. The best fit of the resulting
MR relation, limited to the mass interval of normal ETGs, 9.5 ≤
log Ms ≤ 12.5 (Ms in solar units), is

logRe � 0.048562(logMs)3 − 1.4329(logMs)2 + 14.544(logMs)
− 50.898.

(14)

Note that 1) the locus on the MR-plane predicted by Ns � 10−2

halos per (Mpc/h)3 nearly coincides with the observational MRR;
2) the slope gradually changes from 0.5 to 1 going from low
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masses to high masses in agreement with the observational data
[see van Dokkum et al. (2010b), and references therein]; 3) finally,
Eq. 14 is ultimately linked to the top end of the halo masses (and
their associated baryonic objects) that might exist at each redshift.
Chiosi et al. (2019) named this locus the Cosmic Galaxy Shepherd.

The extrapolation of the Cosmic Galaxy Shepherd downward
to GCs and upward to CoGs yields the relation

logRe � 0.007584[log(m ·Ms)]3 − 0.1874 [log(m ·Ms)]2
+ 1.908[log(m ·Ms)] − 9.027 (15)

where Re andMs are in the usual units andm is the ratiom �MD/
Ms, for which a mean value ofm � 25 is adopted 2. As already said
this equation represents the cut-off mass of the HDF at different
redshift, however translated into the Re vs Ms. This gives a
profound physical meaning to the line splitting the MR-plane
in two regions, i.e. the region where galaxies are found, and that of
avoidance, the so-called Zone of Exclusion (ZoE) found by
Burstein et al. (1997).

Along the Cosmic Galaxy Shepherd, cut-off masses and
redshift go in inverse order: low masses (and hence small
radii) at high redshift and vice-versa. More precisely, halos
and their luminous progeny that are born (collapse) at a
certain redshift and are now located along the theoretical
MRR of Eq. 11 associated to that redshift. Along each MRR
only masses (both parent MD and daughter Ms) smaller than the
cut-off mass are in place, each of these with a different occurrence
probability. Clearly the low mass halos are always more common
than the highmass ones.We will argue that in theMR-plane, only
the most massive GCs, DGs, and ETGs are expected to fall along
the Cosmic Galaxy Shepherd. All other objects of lower mass, the
DGs in particular, are expected to lie above this limit. This
suggests that there are other physical processes concurring to
shape the observed MRR. In other words, the question is “what
really determines the position of each galaxy on the MR-plane?”

To answer the above question Chiosi et al. (2012, 2019) argue
what follows. The gravitational collapse of a proto-cloud
generating a luminous galaxy is surely accompanied by star
formation, energy feed-back, gas cooling and heating, loss of
mass and energy by winds, acquisition of mass and energy by
mergers, etc. Therefore, the result of all these processes taking
place together may largely differ from one case to another and
also differ from the ideal case of a dissipation-less collapse. For
this latter (Gott and Rees, 1975; Faber et al., 1984; Burstein et al.,
1997) derived the relation

RD ∝M0.53
D . (16)

Inside this halo a galaxy with stellar mass Ms and a half-mass
radius Re is built up over the years. Chiosi et al. (2019) take the
dissipation-less collapse as the reference case. Using the data of
the Illustris models, they derive the following MRRs

logRe � 0.541 logMs − 4.702 + km for logMs > 10.5 (17)

logRe � 0.102 logMs − 0.017 + kd for logMs < 10.5 (18)

where the constants km and kd can be determined by fixing the
initial conditions of the collapsing proto-halo. The slope of Eq. 17
does not significantly differ from that of the dissipation-less
collapse, Eq. 6 and that of the empirical MRR of ETGs, Eq. 4.
Along each MRR of the theoretical manifold, the agreement
between data and theoretical models seems to be possible only
for the most massive galaxies. For smaller masses, the slope of the
theoretical MRR, Eq. 18, is much flatter than the observational
one (about a factor of two).

From the above considerations one could suggest that the
Cosmic Galaxy Shepherd and Eq. 4 represent the locus in the
MR-plane of galaxies formed by quasi dissipation-less collapses.
In contrast, special conditions ought to hold for all other objects
that deviate from this condition. The explanation is different for
the monolithic and hierarchical scenarios:

a) In the monolithic view, in addition to star formation, galactic
winds are the key ingredient to consider, in particular for low
mass galaxies, because DGs show the largest deviation from
the observed MRR, Eq. 4 or Eq. 16. The analysis of the
problem made by Chiosi et al. (2019) shows that: (i) the
stronger the galactic wind the larger is the final Re. Galaxies
depart from the locus represented by Eq. 4 and/or Eq. 16 at
decreasing mass and increasing galactic wind, the low mass
ones having the strongest effect; (ii) the efficiency of winds
tends to decrease at increasing initial density. This means that
the inflating effect of galactic winds in low mass galaxies of
high initial density is low and the final radius of these galaxies
will be close to the value predicted by Eq. 4 and/or Eq. 16. In
conclusion the flatter slope of the theoretical MRR is likely
produced by galactic winds.

b) In the hierarchical scenario the situation is more entangled
because both mergers and galactic winds concur to inflate a
galaxy. To clarify the issue Chiosi and Carraro (2002)
discussed the merger between two disk galaxies calculated
by Buonomo (2000). In this case an elliptical galaxy is
generated with twice total mass of the component galaxies,
but with stellar mass and effective radius smaller and higher,
respectively, by ΔMs/Ms ≃ − 0.9 and ΔRe/Re ≃ 0.5, with respect
to the case of an elliptical of the same mass generated during a
monolithic collapse. The reason for that is identified in the
enhancement of galactic winds caused by the interaction.
More gas is lost, less stars are formed, and the resulting
body is in a state of weak gravitational energy.

When does the MRR develop in the course of time and
evolutionary history of galaxies? In Figure 5 we show the Re
vsMs distribution of the Illustris models at four cosmic epochs. At
high redshifts, the distribution is clumpy and irregular. However,
starting from z ∼ 1.5 and more clearly at z � 0, a tail-like feature
develops on the side of large masses, say for masses ≳ 2 · 1011M⊙.
The best fit at redshift z � 0, using the relationship log Re � ϵ log
Ms + η (masses and radii are inM⊙ and kpc), yields the following
values: for log Ms > 11.3 ϵ � 0.651 and η � − 6.557, while for log

2In Chiosi et al. (Chiosi et al., 2019) the same expression is written as
logRe � 0.007584(logMs)3 − 0.1874 (logMs)2 + 1.908(logMs) − 9.027, in which
by mistake the term (log Ms) does not contain the factor m.
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Ms < 11.3 ϵ � − 0.005 and η � 0.592. What are the causes of the
cloud-like and tail-like distributions? Why a cloud dominates the
low mass range? Why the tail is well visible only for the high
masses at low redshifts? Which is the physical meaning of this
distribution? To cast light on this Chiosi et al. (2019) examined
the history of Re andMs for several individual galaxies. The main
conclusion of their analysis is that mergers among objects of low
and comparable mass can generate galaxies with larger masses
and radii, but exceptions are possible in which either the mass or
the radius or both decrease. In general the galaxies do not leave
the cloud region. All this does not contradict the previous case of
Buonomo (2000) because the monolithic counterparts to
compare with are not available. The cloud region is instead
roughly coincident with the distribution of DGs of different
types (see the discussion by Chiosi and Carraro, 2002). At the
same time mergers among galaxies with different masses and/or
comparable masses can generate objects that shift outside the
cloud producing the MR-sequence (actually they define it), the
locus of which agrees with the observed distribution for ETGs [see
e.g. Chiosi et al. (2019), and references therein]. The stellar
content of massive ETGs suggests that star formation has
ceased long ago so that strong energy feedbacks are absent
and the systems are close to the virial equilibrium. This
implies that important mergers do not longer occur. At
variance DGs are still undergoing frequent mergers, active star
formation episodes, and strong galactic winds. They cannot be
therefore in this ideal condition of equilibrium and so they depart
from the observed MRR. Nevertheless, there are some DGs that
fall along the MRR of massive ETGs and therefore are likely in a
similar dynamical and star-forming condition, e.g. ωCen and
M32 [see Chiosi et al. (2019), for more details].

On consideration of these premises, Chiosi et al. (2019) argued
that the observed distribution of ETGs, inactive DGs and GCs,
represents the locus of objects that have reached the ideal
situation of mechanical equilibrium and pure passive
evolution. They cannot go beyond this limit. Their MRR is
therefore in the boundary between the permitted and
forbidden regions of the MR-plane.

6.3 Genesis of the True MRR
Putting the many tessarae of the mosaic together, the conclusion
is that the observational MRR is the intersection of the theoretical
manifold of the MRRs (each curve being labeled by the collapse
redshift from the past to the present) with the Cosmic Galaxy
Shepherd, along which objects in mechanical equilibrium and
passive evolutionary state are located. To prove this statement
Chiosi et al. (2019) resorted to the method proposed long ago by
Chiosi and Carraro [see Chiosi and Carraro (2002)], however
updating it with recent theoretical and observational data. In the
MR-plane of Figure 4 they draw two loci and a mass interval as a
function of the initial density (redshift):

1) The first locus is the MRR traced by models of different
mass but same initial density and formation redshift. Using all
models to disposal (Chiosi and Carraro, 2002; Merlin and Chiosi,
2006; Merlin and Chiosi, 2007; Merlin et al., 2010; Chiosi et al.,
2012; Merlin et al., 2012; Chiosi et al., 2019), this locus is
described by the relation

logRe � [−1.172 − 0.412 (1 + zf)] + [0.244
+ 0.0145 (1 + zf)] logMs. (19)

This expression is robust thanks to the regular behavior of the
models and the density-mass-radius relationship of Eq. 16.
Relation (19) is compatible with the MRRs predicted by Fan
et al. (2010) and the models of Illustris by Vogelsberger et al.
(2014). The cases shown in Figure 4 are: zf ≃ 1, zf ≃ 2, z ≃ 5 and
zf ≃ 10.

2) The second locus is the Cosmic Galaxy Shepherd. Among
the various HGFs in literature (Lukić et al., 2007; Angulo et al.,
2012; Behroozi et al., 2013), we adopt the HGF of Lukić et al.
(2007) and make use of the analytical expression for the Cosmic
Galaxy Shepherd extending across the whole MR-plane given by
Eq. (15). However, to better illustrate this issue, we present here
an analytical approach based on the classical halo mass
distribution of Press and Schechter (1974) that is supposed to
trace also the mass distribution of luminous galaxies (assuming
one galaxy per halo). At each redshift, the HGF of Press and
Schechter (1974) provides the relative number of galaxies per
mass bin. The cut-off mass MCO

D of the Press and Schechter
(1974) function yields themaximum limit for the galaxymasses at
each redshift. In the Press and Schechter (Press and Schechter,
1974) formalism, the cut-off mass varies with redshift
according to:

MCO
D � MN × (1 + z)− 6

n+3 (20)

The exponent n represents the slope of the power spectrum
perturbations and MN is a suitable mass scale normalization. At
any redshift, most galaxies have total masses smaller than MCO

D ,

FIGURE 5 | The stellar half-mass radius Re plotted vs the total stellar
massMs of galaxy models from the Illustris database at different values of the
redshift, i.e. z � 4 (blue), z � 2 (green), z � 1 (yellow), and z � 0 (red).
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even if higher values cannot be excluded. It can be easily shown
that the fractional mass in (or the fractional number of) galaxies
with mass greater than MCO

D is a function of n. For n � −1.8, the
percentage of galaxies in the interval MCO

D <MD < 10 ×MCO
D is

about 15% while in the range 10 ×MCO
D <MD < 100 ×MCO

D is
about 1%. Therefore, at any redshift galaxy masses up to say 50 ×
MCO

D have a significant occurrence probability. Their radius is
derived with the aid of theMs vs MD and Re vs MD relationships.
For MD � c MCO

D , c � 50, and n � − 1.8, one gets:

Re � 16.9 × 10−12 × c−0.79 × (1 + z)3.96 ×Ms, (21)

where Re andMs are in kpc andM0. These are shown in Figure 4
with the dotted lines labeled by the redshifts z ≃ 1, ≃ 2, ≃ 5 and ≃
10. On the MR-plane, they give the rightmost extension of the
lines of constant density and hence they identify the maximum
galaxy mass. At decreasing redshift this boundary moves
progressively toward higher masses. Similar results can be
obtained by means of the HGFs of Lukić et al. (2007), Angulo
et al. (2012), Behroozi et al. (2013), the first of which is the Cosmic
Galaxy Shepherd.

3) Finally, the third locus gives the expected interval forMs for
objects with total mass MT between MCO

D and 10 ×MCO
D as a

function of redshift. Here the relation Ms (MT) has been plugged
into Eq. 20 for MCO

T . The permitted intervals are visible in
Figure 4 by the horizontal lines labeled MCO

s . The interval for
Ms going from 1010M⊙ to 1012M⊙ is fully compatible with the
redshift interval for the formation of the majority of stars in a
galaxy, i.e. from 2 to 1. This is also the mass range over which at
any epoch the probability for the occurrence of massive galaxies
falls to a negligible value. In different words, the right-hand
border of the MRR has a natural width.

In this context, the relationship for ETGs, see Eq. 4, extended
to the whole mass range from GCs to CoGs should correspond to
the intersection between the lines of constant initial density and
the lines where cMT � MCO

T (z) for equal values of the redshift
(at least for all values of redshift > 1). This is what we see in
Figure 4, i.e. the straight line marked by the large empty squares.
This line nearly coincides with the Cosmic Galaxy Shepherd
derived from the HGF of Lukić et al. (2007) that is marked by the
crossed dark-red line in Figure 4, i.e. Eq. 14 and/or (15). Finally,
this line is also coincident with the locus traced by objects that
underwent a dissipation-less collapse (or very close to it) and are
nowadays in mechanical equilibrium and passive evolutionary
state. This is mainly traced by GCs, few DGs (the large majority of
DGs lie above it), ETGs, and a number of CoGs. This confirms the
result by D’Onofrio et al. (2020): only passive galaxies (strongly
decreasing today in their luminosity) trace the MRR with a slope
varying from 0.5 to 1, the highest value being reached by galaxies
that suffered the strongest luminosity decrease with the redshift,
i.e. those that long ago ceased their stellar activity, i.e. the most
massive ones. Spirals occupy approximately the same location of
ETGs in the MR-plane, thus suggesting that their ongoing star
formation is not affecting the overall situation of mechanical
equilibrium. Furthermore, it is worth noting that the slope of
MRR derived from the HGF is about 1 in the range of massive
galaxies (say above 1012M⊙), i.e. formally identical to the MRR

derived from the virial theorem. This coincidence might suggest a
dependence of the observed MRR slope from the virial condition.
The true driver is instead the HGF, more precisely its fall off
toward high values of the halos’ masses at any redshift. To
conclude, all the objects along the MRR are in virial
conditions and passive evolutionary state (all mechanical
process and star formation activity are at rest).

7 THE FUNDAMENTAL PLANE

In the local Universe ETGs are seen to lie along a plane, the so-
called fundamental plane (FP (Djorgovski and Davis, 1987;
Dressler et al., 1987)), connecting the surface brightness within
the effective radius 〈Ie〉, the effective radius Re, and the velocity
dispersion of stars (central or within the effective radius σe). The
intrinsic scatter around the FP is small ( ∼ 0.05 dex) (Bernardi
et al., 2003; Saulder et al., 2013)) and the relation appears to
extend across all ETGs, DGs, GCs, and CGs (Misgeld and Hilker,
2011; D’Onofrio et al., 2013a).

The FP is tilted with respect to the virial prediction. The origin
of the tilt has been debated for several years. The first attempts to
explain it invoked a progressive change of the mass-to-light (M/
L) ratio of the stellar population with galaxy luminosity, but even
systematic changes of the DM fraction and the structural and
dynamical nonhomology of galaxies can be responsible for the
observed tilt [see e.g. (Bender et al., 1992; Cappellari et al., 2006;
Ciotti, 1991; Renzini and Ciotti, 1993; Jorgensen et al., 1996;
D’Onofrio et al., 2013b)].

Recently, D’Onofrio et al. (2017) proposed another
explanation for the tilt of the FP. In their work they
demonstrated that the FP can originate from the combination
of the virial theorem with the modified FJ relation given by Eq. 1.
In this case the small scatter of the plane can be obtained if it
exists a fine-tuning between the zero-points of the two relations.
In other words it must exist a connection between the shape and
structure of galaxies and their stellar population content [see also
D’Onofrio et al. (2011)].

The FP evolves with redshift [see e.g. (Treu et al., 2005; Holden
et al., 2010; Saglia et al., 2010; Fernández Lorenzo et al., 2011; van
de Sande et al., 2014)]. Beifiori et al. (2017), using a sample of 19
massive red-sequence galaxies at 1.39 < z < 1.61 observed by the
K-band Multi-object Spectrograph (KMOS) Cluster Survey, find
that the ZP of the FP in the B-band evolves with redshift, from
0.44 (for Coma) to − 0.10 ± 0.09, − 0.19 ± 0.05, and − 0.29 ± 0.12
for clusters at z � 1.39, z � 1.46, and z � 1.61, respectively. Similar
results are obtained by Prichard et al. (2017). The properties
observed for the high redshift FP suggest an increase of the
dynamical-to-stellar mass ratio by ∼ 0.2 dex from z � 2 to the
present. Consequently these data seem to indicate that the
fraction of DM contained within Re, compared to that seen in
likely descendants objects at low-redshift, was increased by a
factor > 4 since z ∼ 2 (Mendel et al., 2020). The same work
suggests the use of the dynamical-to-stellar mass ratio as a probe
of the stellar IMF, finding that high-redshift data can constrain
the IMF law.
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While the debate is still open on whether the FP coefficients
are constant up to z ∼ 1 [see (Holden et al., 2010; Saglia et al.,
2010; S. di Serego Alighieri et al., 2005; Jorgensen and Chiboucas,
2013)], there is more consensus about the variation of these
coefficients with the magnitude interval of the sampled
population [see e.g. (D’Onofrio et al., 2008)] and on the
variation of the zero-point with redshift as a result of an
evolving M/L (Faber et al., 1987) caused by the younger stellar
population at high-z (Dokkum and Franx, 1996; Bender et al.,
1998; Kelson et al., 2000; Gebhardt et al., 2003; Wuyts et al., 2004;
S. di Serego Alighieri et al., 2005; Holden et al., 2005; Jørgensen
et al., 2006; van Dokkum and van der Marel, 2007; Holden et al.,
2010; Toft et al., 2012; Bezanson et al., 2013) and by the structural
evolution of galaxies with redshift (Saglia et al., 2010; Saglia et al.,
2016). Other authors claim that there is not only a dependence of
the zero point on redshift, but even the slopes of the structural
relations are steeper for high redshift galaxies than for objects of
the local Universe (Treu et al., 2005; Jørgensen et al., 2006; Fritz
et al., 2009).

As discussed in the previous section, several papers have
shown that a fraction of intermediate and high-redshift
galaxies have smaller sizes (Trujillo et al., 2007; Houghton
et al., 2012; Newman and Genzel, 2012; Beifiori et al., 2014;
van der Wel et al., 2014; Chan et al., 2016) and higher stellar
velocity dispersions (Cappellari et al., 2009; Javier Cenarro and
Trujillo, 2009; van Dokkum et al., 2009; van de Sande et al., 2013;
Belli et al., 2014) compared to their local counterparts of the same
mass (Brammer et al., 2011; Muzzin et al., 2013; Patel et al., 2013).
Part of this difference might be attributed to environmental
effects and can be observed in the FP. The environment may
have a role in accelerating the size evolution in clusters with
respect to the field at z > 1.4 (Lani et al., 2013; Strazzullo et al.,
2013; Delaye et al., 2014; Newman et al., 2014; Saracco et al.,
2014), while in the local Universe there seem to be no significant
differences between the mean galaxy sizes in different
environments (Cappellari, 2013; Huertas-Company et al.,
2013). The reason for that is not clear; is it because there is
not enough time for evolution? In clusters central and satellite
galaxies seem to lie on average above and below the FP, possibly
for a higher and lower than average mass-to-light ratio (Joachimi
et al., 2015).

Several studies (e.g. (Franx et al., 2008; Cimatti et al., 2012))
have also suggested that the size evolution with redshift is
stronger for massive galaxies ( > 1011M⊙). This behavior is
consistent with the idea that high-density environments play a
major role in size evolution. Galaxies in denser environments
probably evolve earlier as indicated by the observed color–density
relation (e.g. (Chuter et al., 2011)). It is not clear yet if the
environment itself influences the size evolution, since merging
events alone do not seem to explain the observed size evolution of
ETGs (e.g. (Damjanov et al., 2009; Nipoti et al., 2012)) or other
growth mechanisms are at work, such as the adiabatic expansion
due to mass-loss, that could indirectly lead to a correlation of size
with environment (if it occurs at earlier epochs within the most
massive dark matter halos). There is also the possibility of trends
driven by faster quenching in high-density environments (e.g.
(Cassata et al., 2013)). Whatever the reason of the size evolution,

the underlying correlation is likely connected to the halo mass
that is strongly related to the number of satellites (e.g. (Skibba and
Sheth, 2009; Muldrew et al., 2012)). A full investigation of this
problem requires a careful decoupling of large-scale clustering
and small-scale halo occupation (e.g. (Hartley et al., 2013)).

The presumed universality of the FP makes it an appropriate
tool for cosmology, e.g. for the Tolman test (Kjaergaard et al.,
1993; Pahre et al., 1996; Moles et al., 1998), or to assess the
evolution ofM/L with z (Bender et al., 1992; Guzman et al., 1993;
Dokkum and Franx, 1996; Kelson et al., 1997; Bender et al., 1998;
Jorgensen et al., 1999; Ziegler et al., 1999; Kelson et al., 2000). The
usefulness of the FP was recently demonstrated in the context of
weak lensing magnification (Huff and Graves, 2014), and to map
out the peculiar velocity field of galaxies (Springob et al., 2014).
These are examples of the exploitation of the FP as cosmological
probe. In such applications generally one measures the observed
galaxy size and predicts it using the FP. The comparisons between
predictions and observations are used to get the size changes due
to lensing magnification, or the line-of-sight peculiar velocities
that modify the redshift and the angular diameter distance used to
obtain the physical sizes.

Again we should note that hierarchical numerical simulations,
like Illustris, correctly predict a tilt of the FP and an evolution of
its coefficients with redshift (Lu et al., 2020).

8 THE COLOR–MAGNITUDE RELATION

The color–magnitude relation (CMR) is an important tool used to
understand the physical properties of stellar systems. Its first
original application started with the studies of star clusters
(Hertzsprung, 1908; Russell, 1914), followed by the analysis of
our Galaxy and the Local Group (Baade, 1944; Sandage, 1957;
Blaauw and Greenstein, 1959) and by the analysis of the integrated
light of galaxies in clusters, in particular in Virgo and Coma
(Chester and Roberts, 1964; Chiosi, 1967; Visvanathan and
Sandage, 1977; Sandage and Visvanathan, 1978). The modern
CCD instrumentation has provided much richer CMRs [see e.g.
(Bower et al., 1992; Kodama et al., 1998; Terlevich et al., 2001; Bell
et al., 2004)] allowing the study of the past history of galaxy
clusters themselves [see e.g. (Cariddi et al., 2018; Sciarratta et al.,
2019)] up to distances of cosmological interest.

Since colors are independent of distance and are very similar
for all cluster members, the CMRs have been considered good
cosmological probes (Tully et al., 1982; Bower et al., 1992), in
particular when we look at the fraction of blue and red galaxies
and their morphological ratios, the so-called galaxy color
bimodality (Baldry et al., 2004). Both seem to be different in
clusters and in the field (Butcher and Oemler, 1978; Dressler,
1980).

In the CMR three main loci are of interest: the first is the red
sequence (first noted by de Vaucouleurs (1961)), a linear band
throughout a broad interval of luminosities mainly occupied by
evolved ETGs. The others two are the blue cloud, in which gas-
rich galaxies still form stars at high rates, and the green valley in
between, where a complicated interplay between gas conversion
and passive evolution is at work (Menci et al., 2005).
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Thanks to the large-scale surveys, magnitudes, colors,
morphological types, and redshifts for thousands of galaxies
are now available. One example is the Galaxy Zoo, derived
from the SDSS (Blanton et al., 2003; Lintott et al., 2008; Wong
et al., 2012). These data have amply confirmed the existence and
the evolution of the red sequence of galaxy clusters (Stott et al.,
2009; Head et al., 2014). More recently, the faint end of the red
sequence has been also investigated (Boselli and Gavazzi, 2014;
Head et al., 2014; Roediger et al., 2017).

The theoretical analysis of the CMR is difficult because of the
age–metallicity degeneracy: stars become red when age and
metallicity increase [see e.g. (Tinsley, 1980; Silk and Mamon,
2012)]. Understanding the origin of the red sequence, its slope,
and width has been the subject of several studies [see e.g. (Baum,
1959; Faber et al., 1977; Dressler, 1984; Bower et al., 1992;
Burstein et al., 1995; Burstein et al., 1997; Gallazzi et al., 2006;
Menci et al., 2008; Valentinuzzi et al., 2011)]. The general
properties of the CMR have been investigated (Gladders et al.,
1998; Tran et al., 2007; Mei et al., 2009), within the classical
scenario of galaxy formation and evolution with supernova-
driven winds (Larson, 1974; Arimoto and Yoshii, 1987;
Tantalo et al., 1996; Kodama and Arimoto, 1997; Tantalo
et al., 1998a; Chiosi et al., 1998), within semi-analytical models
in the hierarchical scheme (White and Frenk, 1991; Kauffmann,
1996; Kauffmann and Charlot, 1998), and within N-body-Tree
Smooth Particle Hydro-dynamics simulations [see e.g. Chiosi and
Carraro, 2002].

The most accepted view is that the red sequence is more
affected by metallicity than by age, even if the CMR has an age
dispersion that increases at decreasing galaxy masses.
Reproducing the slope requires a correct treatment of the
chemical evolution (Kauffmann, 1996; Nelson et al., 2018). A
crucial element is the knowledge of when and how the red
sequence is formed. The downsizing phenomenon, discovered
by spectroscopic analyses of nearby ETGs (Nelan et al., 2005;
Thomas et al., 2005; Choi et al., 2014), implies that the red
sequence was built over an extended period of time ( ∼ 5 Gyr),
beginning with the most massive systems (Tanaka et al., 2005).
Efforts to directly detect the formation of the red sequence have
observed the color bimodality up to z ∼ 2 (Bell et al., 2004;
Willmer et al., 2006; Cassata et al., 2008). The data of the legacy
surveys GOODS, COSMOS, NEWFIRM, and UltraVISTA have
also shown that massive quiescent galaxies (Ms ≥ 3 × 1010M⊙)
begin to appear as early as z � 4 (Fontana et al., 2009; Muzzin
et al., 2013;Marchesini et al., 2014) and stop assembling by z � 1 −
2 (Ilbert et al., 2010; Brammer et al., 2011). Roediger et al. (2017)
found that the red sequence flattens in all colors at the faint-
magnitude end (starting between − 14 ≤Mg ≤ − 13, aroundMs ∼
4 × 107M⊙), with a slope decreasing to ∼ 60% or less of its value at
brighter magnitudes. This could indicate that the stellar
populations of faint dwarfs share similar characteristics (e.g.,
constant mean age) over ∼ 3 mag in luminosity, suggesting that
these galaxies were quenched coevally, likely via preprocessing in
smaller hosts.

In recent times, large-scale numerical simulations of
hierarchical galaxy formation in ΛCDM cosmogony, i.e.
including DM and BM, appeared on the scene. In these

simulations, much efforts have been made to include star
formation, chemical enrichment, radiative cooling/heating, and
feedback processes of different nature. With these simulations,
the variation of the cosmic SF rate density (SFRD) with redshift
(Madau and Dickinson, 2014; Katsianis et al., 2017) has been
addressed and largely explained [see e.g. (Katsianis et al., 2017;
Pillepich et al., 2018)]. Some of these take into account the
photometric evolution of the stellar content of galaxies,
permitting the analysis of the CMR, in particular for galaxies
belonging to clusters. As shown by Sciarratta et al. (2019) these
simulations nicely reproduce the red sequence, the green valley,
and the blue cloud, the three main regions of the CMR.

The major drawback of these massive numerical simulations is
their complexity, high cost in terms of time and effort, and lack of
flexibility and prompt response to varying key input physics.

Since broadband optical colors are not good discriminants of
stellar populations because of the age-metallicity degeneracy,
attempts have been made to break the degeneracy by using
stellar absorption line indexes (Worthey, 1994; Thomas and
Maraston, 2003). Recent results suggest that metallicity,
α-enhancement, and age vary along the mass or velocity
dispersion sequence (Caldwell et al., 2003; Nelan et al., 2005;
Thomas et al., 2005), and also vary as a function of environment
(Thomas et al., 2005; Smith et al., 2006). The general impression,
however, is that the age-metallicity degeneracy cannot be broken.

Finally, we want to remark a notable fact: as shown by Cariddi
et al. (2018), galaxy clusters share with galaxies in clusters a red
sequence that has a similar slope. The mean color of clusters
correlates with their total absolute magnitude, in the sense that
small and faint clusters are in general bluer than big and luminous
clusters. This aspect of the CMR has never been addressed by
dedicated studies up to now. It is interesting to note that,
independently on the scale of the stellar systems, the behavior
of the stellar population seems connected with the structural and
dynamical properties of the system, a proof that gravity works in
the same way at all scales. In general we can say that the global
understanding of the CMR for clusters of galaxies is still in its
infancy.

Great progresses are expected in this field with the new
generation of ground and space telescopes, like ELT, JWST,
etc., that will reach the faintest galaxies at high redshifts.

9 STAR FORMATION IN GALAXIES

In a galaxy’s evolutionary history, SF is the starring actor. Thanks
to it, gas is continuously turned into stars by a number of not yet
fully understood processes, so that within the potential well of
DM and BM a shining object is built that is populated by many
generations of stars of different mass, age, and chemical
composition. In the following we limit ourselves to mention
only the most popular laws for the star formation rate that are
customarily used in models of galaxy formation, leaving aside the
much wider subject of the physical processes by which gas can be
turned into stars. From an observational point of view, looking at
the stellar populations in GCs, DGs, LTGs, and ETGs, the
dominant history of SF changes a lot passing from one type to
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another: it is sharply peaked in one or a few initial episodes
followed by quiescence in GCs, DSphs, and DEs, a series of bursts
and quiescent periods in dwarf Irr, ever continuing in LTGs
however showing a spatial and temporal grand design, and an
initial dominant episode of high intensity and relatively long
duration followed by minor activity or quiescence in ETGs. Can
theoretical models reproduce and physically explain this variety
of behaviors that apparently is related to the mass and
morphological type? To answer the question one has to
assume a general law of star formation and look for the
physical situations in the history of star formation can change
with the morphological type of the host galaxy.

9.1 Star Formation in ETGs: Mass and/or
Initial Density?
In the case of ETGs the best tool highlighting the main driver of
the SF and the SFH is the NB-TSPH hydrodynamic simulations,
in which the rate of star formation is usually expressed by the
Schmidt (Schmidt, 1959b) law

dρs
dt

� −dρg
dt

� cp
ρkg
tg

(22)

where ρs is the current mass density of stars, ρg is the current mass
density of gas, tg is a characteristic time scale (typically the free-
fall), k is a suitable exponent (typically k ≃ 1), and cp is the so-
called dimensionless efficiency of star formation (typically cp �
0.01 ÷ 0.1).

Based on simple arguments, there are at least three
prerequisites for gas (likely in the form of molecular clouds)
to be eligible to star formation: the gas has to be in convergent
motion, i.e. the velocity divergence must be negative; the gas must
be gravitationally unstable, i.e. it must satisfy the Jeans condition
tsound ≥ tff (where tsound is the time scale related to the local sound
velocity); the gas must be cooling, i.e. it has to verify the relation
tcool ≪ tff. Normally, SPH codes treat star formation simply
implementing the Schmidt law in the computational language
and transforming part of the gaseous particles that satisfy the
three conditions above in new, collisionless particles of different
mass (“stars”). The characteristic time scale is chosen to be the
maximum between tcool and tff time-scales; however in most
situations tg � tff is also a good choice. Knowing ρg and ρs and
integrating upon the current volume of the system one gets the
current values of Mg and Ms. Nowadays there are numerous
galaxy models whose stellar content has been calculated with the
above prescription. However they differ in a number of important
assumptions, chief among others the cosmological model of the
Universe and the scenario in which galaxy formation and
evolution is framed. In the following, for the sake of
illustration we will summarize here the results of three
paradigmatic cases, i.e. the pure monolithic scheme of Chiosi
and Carraro (Chiosi and Carraro, 2002), the early hierarchical
scheme of Merlin et al. (Merlin et al., 2010; Merlin et al., 2012),
and the full hierarchical scheme, e.g. the Illustris case of
Vogelsberger et al. [e.g. Vogelsberger et al., 2014, and
references]. It is worth recalling here that care must be paid

on the link between the Schmidt and Kennicutt-Schmidt SF laws
and their implications for numerical simulations (Schaye and
Dalla Vecchia, 2008).

The pure monolithic scheme. Chiosi and Carraro (2002)
highlighted the role of over-density of the initial perturbation
when exceeding the threshold value. Two groups of models were
analyzed according to the initial over-density: 1) models with
mean initial density 〈ρ〉≃ 200 × ρu(z) and collapse redshift zf � 5
(shortly named A); 2) models with 〈ρ〉≃ 5 × ρu(z) and zf ≃ 1
(named B). ρu(z) is the density of the Universe at redshift z 3.
Perturbations with spherical symmetry, assigned mass, mean
density exceeding the critical value (and hence suitable radius)
are let collapse and form stars. A MonteCarlo procedure is
adopted to fix the initial coordinates and velocities of the DM
and BM particles. The key result of this study is that the star
formation history (rate vs. time) is found to depend on the depth
of the gravitational potential well of a galaxy. The following
picture can be drawn. In the case of deep gravitational potentials
(such as in massive and/or dense galaxies) once star formation
has started energy is injected into the gas by supernova
explosions, stellar wind, etc., but this is not enough to push
the gas out of the potential well. The balance between cooling and
heating is reached and the gas consumption by star formation
goes to completion. Star formation cannot stop until the
remaining gas is so little that any further energy injection will
eventually heat it up to such high energies (temperatures) that the
gravitational potential is overwhelmed. No more gas is left over
and star formation is quenched. The star formation history
resembles a strong unique burst of activity, a sort of
monolithic star forming event, taking place over a certain
amount of time, of the order of 1–2 Gyr. In contrast, in a
galaxy of low mass and/or density and hence shallow
gravitational potential, even a small star-forming activity will
heat up the gas above the potential well. Some of it is soon lost in
galactic wind, the remaining one becomes so hot that it will take
long time to cool down and to form new stars. The cycle goes on
many times in a sort of repeated bursting mode of star formation
taking place during long periods of times if not forever. Out of all
this we can derive what follows:

1) The duration, strength, and shape of the SFR as a function of
time strongly depend on the galaxy mass and the initial
density: (a) Galaxies of high initial density and total mass
undergo a prominent initial episode of SF followed by
quiescence. (b) The same happens to high mass galaxies of
low initial density, whereas the low mass galaxies experience a
series of burst-like episodes up to the present. The details of
their SFH are very sensitive to the value of the initial density.
The typical dependence of the SFR on time for models B is
shown in the left panel of Figure 6, while the right panel shows
the SFR of a low mass galaxy (MT � 109M⊙) for moderate
variations of the initial density. Models A are not shown
because their SFR is represented by a single initial spike.

3The cosmological parameters were H0 � 65 km s−1 Mpc−1, Baryonic to Dark
Matter ratio 1 to 9, i.e. for MT � MB + MD, MB � 0.1MT, MD � 0.9MT.
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2) The gas mass turned into stars (per unit total mass of the
galaxy) is nearly constant. This means that the same engine is
at work.

3) At increasing total mass of the galaxy the ratio between the
left-over gas and the initial total BM decreases.

4) As a result of star formation, large amounts of gas are pushed
out from the central regions to large distances. When this gas
cool, part of it falls back toward the central object.

5) In general all galaxies eject part of their gas content into the
inter-galactic medium, and the percentage of the ejected
material increases at decreasing galaxy masses.

The early hierarchical scheme. Merlin et al. (2010, 2012) using
initial conditions derived from large-scale cosmological
simulations and abandoning the strict monolithic scheme,
much improved the NB-TSPH galaxy models of Chiosi and
Carraro (2002). They also adopted the ΛCDM cosmology
instead of the classical CDM 4. Without entering into detail,
they cut from large-scale simulations calculated with the free code
COSMICS by Bertschinger (1995, 1998) a spherical portion
containing proto-halos of DM and BM in cosmological
proportions with the desired over-density, mass, and size (the
reference proto-halo with the highest mass to consider). The same
is made for halos with lower mass and smaller dimensions at fixed
mean density. The procedure to obtain halos with the same mass
but different initial mean density is more complicated and will

not be reported here [seeMerlin et al. (2010, 2012) for the details].
These proto-halos contain a number of distinct lumps of matter
that will merger together later on. The cosmological simulation
provides the initial positions and velocities of all the particles in
the proto-halos. The expansion of the Universe is taken into
account. The proto-halos are followed through their expansion
(caused by the Hubble flow), down to their collapse and
aggregation into single objects. The redshift of the collapse
varies from model to model and, inside the same model, from
the center to the periphery. In general the collapse occurs in the
redshift interval 4 > z > 2, it starts in the central regions and
gradually moves outward. The collapse is complete at redshift z ≃
2. All models develop a stellar component. The more massive
halos experience a single, intense burst of star formation (with
rates ≥ 103M0/yr) at the early epochs. The intermediate mass
halos (MT ≃ 1011M⊙) have star formation histories that strongly
depend on the initial over-density, i.e. with a single or a long
lasting period of activity and strong fluctuations in the rate. The
small mass halos (MT ≃ 109M⊙) always have fragmented star
formation histories: this is the so-called galactic breathing
phenomenon. These models are classified as early hierarchical
because they experience repeated episodes of mass accretion at
very early epochs and then evolve in isolation ever since. They
confirmed the correlation between the initial properties of proto-
halos and the star formation history found by Chiosi and Carraro
(2002). The models have morphologies, structures, and
photometric properties similar to real galaxies [see Merlin
et al. (2012), for all other details].

The fully hierarchical scheme. This is the most difficult case to
discuss because of mergers among galaxies of different mass, size,

FIGURE 6 | Left panel: The SFR as a function of time for the model galaxies of type B of Chiosi and Carraro (2002). Their initial conditions are rather simple and
grouped according to the initial over-density: models of type A had mean initial density 〈ρ〉≃ 200 × ρu(z), whereas models of type B had 〈ρ〉≃ 5 × ρu(z) where ρu(z) is the
density of the Universe at redshift z. The Hubble constant was H0 � 65 km s−1 Mpc−1 and the redshift of the starting collapse zf � 5. Only models B are shown here
because they are particularly useful to highlight the effect of the mass at given initial over-density. From the bottom to the top, the SFRs refer to galaxies withMT �
MDM +MBM from 1 × 108 M⊙ to 5 × 1013 M⊙. The initial baryonic and darkmass areMBM � 0.1Mh andMDM � 0.9Mh, respectively.Right panel: the SFR of lowmass type
B galaxies of the same mass, but different initial over-density. The mass is MT � 109 M⊙. The initial over-density varies from low (LD) to intermediate (ID) to high values
(HD). The figures are reproduced from Chiosi and Carraro (2002).

4The cosmological background was the standard ΛCDM, with H0 � 70.1 km/s/
Mpc, flat geometry, ΩΛ � 0.721, σ8 � 0.817, and baryonic fraction ≃ 0.1656.
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and age. If gas is present recurrent episodes of stronger star
formation activity may occur. It is conceivable that seed galaxies
prior to any encounter behave like the general scheme envisaged
before and governed by the initial density and mass. Mergers
among objects of similar mass would likely enhance the rate of
star formation in a sort of burst of short duration and fold the two
histories together. Mergers among objects of much different mass
would simply generate a temporary perturbation on the star
formation history of the most massive one, while less massive
object simply loses its identity. In the hierarchical scenario,
tracing the star formation history of single galaxies is a hard
task. Anyway, the observational evidence provided by the stellar
content of galaxies of different mass strongly supports the mass-
density scheme we have described.

The general trends of the SFR described in this section agree
with the picture envisaged long ago by Sandage (1986), examining
the SFR in galaxies of different types [see also Tinsley (1980),
Chiosi et al. (2014), Matteucci (2016)]. This scenario has been
confirmed by studies of SF histories based on absorption line
indices (Thomas et al., 2005), and by the recent study of Cassarà
et al. (2016). A good agreement also exists with other independent
numerical NB-TSPH models of galaxy formation and evolution
by Kawata and Gibson (2003a, 2003b), Kobayashi (2005).

9.2 The Rate of Star Formation in Disk
Galaxies
According to Matteucci (2016) the most common
parameterization of the SFR in LTGs is the Kennicutt
(Kennicutt and Jr., 1998a) generalization of the original
Schmidt (Schmidt, 1959b) law, where the SFR is proportional
to the gas density ρ. Kennicutt (Kennicutt and Jr., 1998a)
suggested that the SFR can be written as:

SFR(t) � ]Σκ
g (23)

where Σ is the gas surface mass density, ] the efficiency of star
formation (the SFR per unit mass of gas), and κ � 1.4 ± 0.15, as
deduced by the data of the star-forming galaxies [see also
Kennicutt (1998)]. Other parameters, such as gas temperature,
viscosity, and magnetic field, are not considered.

Actually, the “Kennicutt law” was in use long before its
discovery. In the mid-seventies Larson (1975, 1976) developed
the first modern hydrodynamic models of formation and
structure of elliptical and spiral galaxies, showing that a rate of
star formation strongly declining during the latest stages of
collapse was necessary to form a massive disk in spiral
galaxies. However, once the gas has settled onto the equatorial
plane and built up the disk, the rate of star formation should
increase to a peak value and then decline again. The duration of
this phase and the height of the peak were found to depend on the
position on the disk. Larson envisaged several physical
mechanisms that might strongly suppress star formation
during the latest stage of collapse, e.g. velocity dispersion of
the gas, tidal forces exerted on the remaining gas by the
already formed spheroidal component, and dependence on the
cloud-cloud collision frequency. The same processes were also

invoked to control the second phase of star formation. Starting
from this Talbot and Arnett (1975) correlated the process of star
formation with the surface mass density of the gas in an already
flattened disk, whose thickness is regulated by the balance
between the gravitational attraction and the increase of the
scale height by energy injection by short-lived stars (e.g. type
II supernova explosions by massive stars). They proposed a star
formation rate proportional to the surface mass density of gas.
Chiosi (1980) folded the Larson (Larson, 1976) results into the
Talbot and Arnett (Talbot and Arnett, 1975) mechanism and
incorporated all this into a new model for the chemical evolution
of galactic disks in the presence of infall. In this model the disk is
described by a series of concentric rings (no mass exchange
among them), whose surface mass distribution at the present
time tg is given by an exponential law of type Σ(r) � Σdexp( − r/
Rd), where Σd and Rd are two scale parameters. The formation of
the disk is supposed to occur by rapid infall of the gas left over by
the formation of the halo and the central spheroidal component.
The temporal and spatial dependence of the infall rate is given by

dΣ(r, t)
dt

� A(r)exp(−t/τ) (24)

where A(r) is a suitable function to be determined. This is derived
by integrating Eq. 24with respect to time and by equating it to the
present-day mass distribution. We obtain

A(r) � Σdexp(−r/Rd)τ−1[1 − exp(−tg/τ)]−1 (25)

for rB ≤ r ≤ rD, where RB ≃ 2 kpc and rD ≃ 20 kpc are the typical
radius of a bulge and of a disk of spiral galaxies, respectively. The
scale parameters Σd and Rd are determined by knowing the rate
and the surface mass at a certain position of the disk (e.g. the solar
vicinity in our case). Thanks to the short time scale of the energy
input from massive stars (a few million years), compared to the
mass accretion time scale by infall (from hundred to thousand
million years) the disk was supposed not to differ from an
equilibrium state so that the Talbot and Arnett (Talbot and
Arnett, 1975) formalism could be applied. Chiosi (1980) and
Chiosi and Matteucci (1980) proposed and used the SFR:

dΣs(r, t)
dt

� −dΣg(r, t)
dt

� ~]
Σ(r, t)Σg(r, t)

Σ(~r, t)[ ]κ−1
Σg(r, t) (26)

where Σg (r, t) and Σs (r, t) are the surface mass densities of gas,
stars at the position r or and time t, respectively. The quantities
Σ(~r, t) and ~] are the total surface mass density at a particular
distance from the galaxy center, and an efficiency parameter.
They play the role of a particular radial scale controlling star
formation. In the Larson’s view they might be associated with the
radial distance at which the central spheroidal component and
the innermost regions of the disk exert their tidal effect on the
residual external gas. The spatial and temporal dependence of the
relation Eq. 26 in the infall model for the disk of the Milky Way
and disk galaxies in general is such that at any time the SFR is
strongly inhibited at distances r> ~r, while at any given r the SF
starts small, increases to a peak value, and then declines again.
This behavior of the SFR is typical of all infall models, where
because of interplay between gas accretion and consumption, the
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SFR starts low, reaches a peak after a time approximately equal to
τ, and then declines. Independently of the position, the net
temporal dependence of the SFR is the time delayed
exponentially declining law:

SFR∝
t

τ exp −tτ( ). (27)

The Schmidt law is the link between gas accretion by infall and gas
consumption by star formation. Thanks to the infallmodel by varying
τ (time scale of the galaxy formation process) one can recover all
types of star formation indicated by observational data going from
GCs to LTGs and ETGs. The infall scheme and companion SFR have
been widely used in many studies on the subject of galactic chemical
evolution [e.g. Matteucci (2016), for a recent review and references].
The infall galaxy model is very flexible and can be adapted to a wide
range of astrophysical problems. Suffice to recall that it has been used
by Bressan et al. (1994) to model the spectro-photometric evolution
of ETGs reduced to point mass objects, extended by Tantalo et al.
(1998a) to the case of spherical systems made of BM and DM
mimicking ETGs, adapted by Portinari and Chiosi (2000) to include
radial flows of gas in disk galaxies, and recently used by Chiosi et al.
(2017) to study the cosmic star formation rate and by Sciarratta et al.
(2019) to investigate the color-magnitude diagram of galaxies in
general.

9.3 The Mass–SFR Relation
The connection between the structure and dynamics of galaxies
and their stellar population, which we have encountered
addressing the FP problem, is also part of the SF problem of
galaxies. Observations have in fact revealed that the SFR and the
stellar mass (Ms) of active star-forming galaxies are tightly
correlated (SFR∝M0.6

s ). This trend is known as the galaxy
“main sequence” (MS) (Brinchmann et al., 2004; Noeske et al.,
2007; Salim et al., 2007; Elbaz et al., 2011; Salim et al., 2012;
Whitaker et al., 2012; Rodighiero et al., 2014; Speagle et al., 2014;
Schreiber et al., 2015). Adopting different samples the MS may be
different, either in slope or in scatter, primarily for selection
effects on the adopted SF indicator used (Popesso et al., 2019).
One may select galaxies according to their mass and/or color,
picking preferentially the blue cloud objects, or using the BzK
color selection (Daddi et al., 2004; Daddi et al., 2007; Pannella
et al., 2009) or the UVJ selection (Williams et al., 2009; Whitaker
et al., 2012), or adopting a minimum threshold for the specific
SFR (sSFR � SFR/Ms) (Karim et al., 2011).

The presence of a main sequence, with a scatter of 0.3 (in log
units for active star-forming objects), indicates that these galaxies
have an SFR that spans a factor of two. This can be explained by
the self-regulating nature of the SF process, that is by the interplay
between gas accretion, SF, and feedback (Schaye et al., 2010; Davé
et al., 2011; Haas et al., 2013; Lilly et al., 2013; Rodríguez-Puebla
et al., 2016; Tacchella et al., 2016).

The scatter however is much larger ( ∼ 0.6) if all types of
galaxies are considered. We can see it in Figure 7. The red dots in
the various panels represent the data of the WINGS database
(Fritz et al., 2007; Fritz et al., 2011). The SFR in the last 20 Myrs,
measured from the spectral energy distribution in more than
3,000 objects of all morphological types, is plotted versus the

stellar mass. The artificial data coming from the Illustris
simulations are also represented for different redshift epochs:
z � 4 (blue dots), z � 1 (green dots), and z � 0 (black dots). Before
drawing any conclusion, it is worth recalling that the model
galaxies of the Illustris simulation were chosen to have stellar
masses above 109M⊙ at z � 0. Therefore, the comparison between
theory (black dots) and data (red dots) in Figure 7 is possible only
for Ms ≥ 109M⊙. We note that in the common region the
simulations predict the correct slope and quite a similar
scatter at z � 0. They also predict that the slope mildly
changes with redshift and that the scatter increases going to
the present epoch. This limit onMs does not exist for the samples
at higher redshifts.

The origin of the scatter and its amount might be different for
dwarf and giant galaxies (Matthee and Schaye, 2019) and can be
attributed to both short-time and long-time processes, such as the
competing effects of inflows and outflows, the variation of the
halo mass, the variation of the SFE, and the feedback effects from
the active nuclei. Daddi et al. (2007), Elbaz et al. (2007), Noeske
et al. (2007) claim that the correlation is present even at redshift ∼
2, with a nearly constant slope and a dispersion similar to that
observed for galaxies in the local Universe (Brinchmann et al.,
2004).

The information that one can draw from the MS is still under
debate (Kelson, 2014; Abramson et al., 2015). There are many
open questions: does the main sequence imply that the SFH of
galaxies of the same stellar mass is similar? Is the MS a median
“attractor-solution” (Peng et al., 2010; Behroozi et al., 2013)? Is it
an average sequence for a population at a certain age of the
Universe (Gladders et al., 2013; Abramson et al., 2016)? Do
galaxies of the same mass have different SFHs on longer time-
scales? What effects are most significant at different mass and
time-scales?

The slope and scatter of the MS might encode such crucial
information. What makes the growth of galaxies different? Which
are the important time-scales of SF?Which are the systematic and
stochastic effects behind the scatter? Which is the role played by
the environment and by the DM in the assembly accretion history?

The MS measured at higher redshifts shows a positive
correlation evolving only a bit in slope and scatter [see e.g.
Elbaz et al., 2007, Noeske et al., 2007, Whitaker et al., 2012].
This might support the idea that the link between structure and
stellar population in galaxies is already in place at z ∼ 2.5 (Wuyts
et al., 2011).

The SFR in a galaxy depends on a variety of factors, such as the
rate at which the galaxy accretes mass from the IGM, the rate of
shocking and cooling of gas onto the galaxy, the details of how the
inter-stellar medium (ISM) converts gas into stars, the amount of
galactic fountain and outflow, etc. This complex nonlinear
physical mechanism is difficult to understand, in particular if
one wants to discover what processes dominate, and if and how
these change over time. The PCA reveals that neutral gas fraction
fgas, stellar massMs, and SFR form a nearly flat 2D surface (Lagos
et al., 2016). The location of the plane varies with redshift, and
galaxies can move along it when fgas and SFR drop with redshift.
Their position along the plane is correlated with gas metallicity.
This is a sort of “fundamental plane of SF” whose curvature is
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determined by the dependence of the SFR on gas density and
metallicity.

10 THE MASS–METALLICITY RELATION

It has been known for a long time that the mean metallicity of
galaxies correlates with the mass (and luminosity) (Faber, 1973;
Lequeux et al., 1979; Skillman et al., 1989; Brodie and Huchra,
1991). By metallicity astronomers mean the abundance of heavy
elements in the gas phase of the ISM. Such a relation is observed
in either gas-rich or gas-poor galaxies and suggests a similar
physical mechanism behind the origin of the phenomenon
(Zaritsky et al., 1994). Recently, the data of the SDSS have
permitted the analysis of the mass–metallicity (MZR) relation
over a wide interval of masses and metallicities (Tremonti et al.,
2004; Maiolino et al., 2008).

All studies confirm the trend of decreasing metallicity toward
lower stellar masses, but the true form of the MZR is not yet well

established. This depends on the strong systematic uncertainties
affecting the measurement of the metallicity. There are a variety of
methods to determine the metallicity (Kewley and Ellison, 2008).
Some are based on the photoionization models for HII regions by
reproducing some emission-line ratios, such as ([OII]λ3727 +
[OIII]λλ4959, 5007)/Hβ (Kobulnicky and Kewley, 2004) and
[NII]λ6583/[OII]λ3727 (Kewley and Dopita, 2002). Some others
on the fits of the electronic temperature (Te), using strong-line ratios
for HII regions and galaxies, like ([OIII]λ5007/Hβ)/([NII]λ6583/
Hα) and [NII]λ6583/Hα (Pettini and Pagel, 2004). However, there
are some problems when using these strong-line metallicity
calibrations. For example, the MZRs with different calibrations
have different shapes and normalization (Kewley and Ellison, 2008).
Furthermore, for high-z star-forming galaxies, these calibrations
may not be valid, since their physical conditions in terms of gas
density, ionization, N/O abundance, etc. might significantly be
different from those in the local Universe (Ly et al., 2016).

Kewley and Ellison (2008) have shown that the method used to
measure the oxygen abundance (log (O/H)), typically assumed to

FIGURE 7 | The correlations betweenMs, LV, SFR, and σ. Mass and luminosity are in solar units, SFR inM⊙/yr and σ in km s−1. The red dots are the observational
data of theWINGS survey for all morphological types (Fritz et al., 2007; Fritz et al., 2011). The blue dots are the prediction of the Illustris simulation for galaxies at z � 4. The
green dots the prediction at z � 1 and the black dots the prediction at z � 0. Note the lack of objects with mass below 109M⊙ at z � 0.
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trace the ISM metallicity, affects the shape and normalization of
the MZR. Differences up to 0.7 dex in the abundances at fixed
stellar mass, using different emission-line methods, are measured.
This difference is not constant with the stellar mass and can give
significant differences in the shape of the MZR. Possible origins
for these discrepancies are discussed in Stasińska et al. (2002),
Kewley and Ellison (2008), López-Sánchez et al. (2012), Blanc
et al. (2015), Bresolin et al. (2016).

The observations are commonly explained by gas outflows
that are much stronger in dwarf galaxies than in giant elliptical
galaxies. The massive galaxies are able to retain the gas much
longer than low-mass objects. This permits an increase of
metallicity, because the new generations of stars are formed in
a metal-enriched environment. At the same time, low-mass
objects lose their gas through galactic winds. Alternative
explanations invoke a variable SF efficiency (SFE). This is
larger in more massive systems, which formed most of their
stars in a short time at high redshift, quickly enriching the ISM to
solar or super-solar metallicities.

The MZR clearly depends on how gas accretion, SF, and
outflows proceed with time and therefore it contains important
information about these processes. Several examples of the MZR
have been published adopting samples of massive star-forming
galaxies at different redshifts (0 < z < 3.5) [see e.g. (Tremonti
et al., 2004; Erb et al., 2006; Kewley and Ellison, 2008; Maiolino
et al., 2008; Zahid et al., 2011; Henry et al., 2013; Maier et al.,
2014; Steidel et al., 2014; Sanders et al., 2015)], while only few
studies, mostly at z ∼ 0, have extended the MZR to lowmass DGs
(Lequeux et al., 1979; Lee et al., 2006; Vaduvescu et al., 2007;
Zahid et al., 2012; Andrews and Martini, 2013). The
luminosity–metallicity (LZR) relation has also been studied by
several authors (Lequeux et al., 1979; Richer and McCall, 1995;
Melbourne and Salzer, 2002; Salzer et al., 2005; Sweet et al.,
2014).

Recently, the chemical evolution models of De Lucia et al.
(2004), in a hierarchical context, have also explained the observed
MZR and the Tully–Fisher relation. This was possible by
including feedback processes into the cosmological
simulations. The drawback is that the feedback includes some
free parameters, such as the efficiency or the yield, that can be
chosen to match the observations.

Another difficulty of the outflow scenario is that different
amounts of DM can play a key role in stopping the outflow of gas
(Dekel and Silk, 1986). The works of Lee et al. (2006) and
Dalcanton (2007) have for example shown that the simple
outflow of the gas does not reproduce correctly the yields
observed in the ISM of DGs. The large variations in the
effective yields and the dispersion in the relation are difficult
to understand using only superwinds or outflows, in particular for
the low metallicities observed at low masses and luminosities. It
seems that neither the simple infall nor the outflow models are
able to reproduce the low effective yields of low-mass galaxies.

In nearby galaxies, in the 106 ÷ 109.5M⊙ range, the MZR
follows a shallow power-law (Z∝Mα

s ) with slope α � 0.14±0.08.
Approaching Ms ∼ 109.5M⊙ the MZR steepens significantly,
showing a slope of α � 0.37 ± 0.08 in the 109.5 ÷ 1010.5M0

range. Finally a flattening toward a constant metallicity is

observed at higher stellar masses because the metallicity of the
most massive galaxies saturates.

The evolution with redshift of the MZR (Maiolino et al., 2008;
Yuan et al., 2013; Zahid et al., 2014) is a tool to trace the history of
chemical enrichment in the different cosmic epochs. At high
redshifts the MZR has a steeper slope. The MZR at z ∼ 3.5 seems
to evolve much stronger than at lower redshifts (Maiolino et al.,
2008). This is an epoch of strong SF activity and metal
enrichment also for massive systems. The metallicity evolution
of low-mass systems seems stronger with respect to that of high-
mass systems, an effect that reminds the “downsizing” of galaxies
in a chemical framework. Recent results concerning the evolution
with redshift of the MZR up to z ≃ 2.7 are those by Wuyts et al.
(2016). Using the Integral Field spectroscopy they obtained data
in good agreement with the old long-slit spectra, except for the
slope of the relation at z ∼ 2.3 in the low-mass regime, where they
measured a steeper slope than in previous literature results.

The ISM of galaxies can be enriched by different effects: the
accretion of gas from the inter-galactic medium (IGM), the
injection and mixing of metals coming from the SF, the
removal of these metals when they are locked into long-lived
stars and stellar remnants, the ejection of these metals when
galactic outflows are at work, the mixing of high and low
metallicity gas in the circum-galactic medium (CGM), and the
removal/reaccretion of this gas out of the halo or back in the
galaxies (Lynden-Bell, 1975; Larson, 1976; Lacey and Fall 1985;
Edmunds, 1990; Dalcanton, 2007; Oppenheimer et al., 2010; Lilly
et al., 2013; Ma et al., 2016). All these processes play an important
role in shaping the evolution of galaxies.

Not surprisingly, the links between the gas mass (Mg), the SFR,
the stellar mass (Ms), and the metallicity Z are evident in a
number of observed correlations. The most notable examples, in
addition to the MZR, are: 1) theMs − SFR correlation (dubbed the
“Main Sequence,” MS (Brinchmann et al., 2004; Daddi et al.,
2007; Noeske et al., 2007; Elbaz et al., 2011; Renzini and Peng,
2015); 2) the Mg − SFR correlation between (the so-called
Schmidt-Kennicutt, SK, relation (Schmidt, 1959a; Kennicutt
and Jr., 1998b; Bigiel et al., 2008; Leroy et al., 2009); that has
already been discussed in the previous sections.

Before leaving the subject of the mass–metallicity relation in
galaxies, we would like to briefly touch upon the companion, long
debated subject of the age–metallicity relation for the stellar
population. Age, metallicity, stellar mass are indeed the key
parameters to play with to reconstruct the past history of
formation and evolution of galaxies of any type.
Unfortunately, the optical colors of old populations are
affected by the age–metallicity degeneracy (Worthey, 1994;
Worthey et al., 1994; Worthey et al., 1999): it implies that the
spectro-photometric properties of an unresolved stellar
population cannot be distinguished from those of another
population three times older and with half the metal content
(the so-called 3/2 degeneracy, i.e. in the space color(s)-age the axis
is not each orthogonal). Many efforts have been made over the
past 20 years to break the degeneracy. Worthey et al. (1994)
analyzing some optical features of the spectrum built up the so-
called Lick system of indices and found that if on one side the
indices decrease the age degeneracy, on the other side the age
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degeneracy is still there. The Lick system has been improved
(Trager et al., 2000a; Trager et al., 2000b; Vazdekis et al., 2010),
other features have been added e.g. the CaII IR triplet of Cenarro
et al. (2001a), Cenarro et al. (2001b), other high-resolution
features have been introduced (Rodríguez-Merino et al., 2020).
Spectral windows, in particular the mid-UV, seem to be more
promising (Dorman et al., 2003; Yi, 2003; Kaviraj et al., 2007).
The overall results indicate that the UV indeed helps to better
constrain the age of unresolved systems (as would be expected
since the MS turn-off is much more sensitive to age than the red
giant branch), but the determination of chemical composition is
still better determined by the more sensitive optical features. Li
et al. (2007) to bypass the difficulty suggested the PCA method
based on a large number of indices. The problem became even
more complicated by recognizing that another parameter played
an important role. i.e. the so-called α-enhancement measured by
the ratio [α/Fe], where α is the abundance of elements such as C,
O Mg, Ti, etc [see Tantalo et al. (1998b), Tantalo and Chiosi
(2004a), Tantalo and Chiosi (2004b), Tantalo (2004), Tantalo
et al. (2007), for a thorough discussion]. The enhancement factor
adds another degree of freedom to the age–metallicity degeneracy
that now becomes the age–metallicity–enhancement degeneracy.
The new degeneracy has size comparable to the old one. The
whole issue is still open [see Chiosi et al. (2014), for a recent
review]. Despite the large uncertainties, the broad band color and
line indices technique has been largely used to infer the age,
metallicity, and degree of α-enhancement in galaxies of different
morphological types. In relation to ETGs, the most massive
objects of the galaxy population and the expectation from the
classical hierarchical view of galaxy formation, Jimenez et al.
(2007) analyzed the spectra of a larger number of ETGs from the
SDSS to infer the ages, metallicities, and star formation histories
and found clear evidence of “downsizing,” i.e. galaxies with large
velocity dispersion and hence mass have older stellar populations.
Most of the ETGs seem to complete their stellar content at
redshift z > 2.5, to increase their metallicity on a rather short
time scale, and to possess subsolar [α/Fe] ratios. This finding
cannot be easily reconciled with the hierarchical scenario while it
agrees with the early hierarchical models of Merlin et al. (2012).
The issue is still open.

11 RELATIONSHIPS BETWEEN DM-HALO
AND BM-GUEST GALAXY

11.1 The Stellar-To-Halo Mass Ratio
The previous sections have clearly demonstrated that the
observed properties of galaxies are regulated by a complex
series of physical effects tightly intertwined. Last, but not the
least, is the ratio between the stellar mass in a galaxy and its dark
matter componentMs/MD (and its inverseMD/Ms). The ratioMs/
MD is a quantity that ultimately affects the half-luminosity radius
Re of the stellar component of a galaxy (see Section 6.1). The
analysis of the Illustris data and the theoretical galaxy models of
Chiosi and Carraro (2002), Merlin and Chiosi (2006), Merlin and
Chiosi (2007), Merlin et al. (2010), Merlin et al. (2012), Chiosi
et al. (2012) led Chiosi et al. (2019) to suggest that the ratio Ms/

MD depends on the total mass of the galaxy MT ≃ MD and the
redshift zf at which the bulk of SF occurs. This is shown by
Figure 8 for the Illustris data. For low values of the redshift (say
below 0.6), the ratio smoothly decreases with massMD (low mass
galaxies are slightly more efficient in building their stellar
content); the opposite occurs for higher redshifts, where Ms/
MD increases with MD. Chiosi et al. (2019) give the following
analytical expression for the ratio Ms/MD as a function of MD

and z

log
Ms

MD
� [0.218 z − 0.101] logMD + [0.169 z − 2.227] (28)

where the halo mass goes from 104M⊙ to 10
14M⊙ and the redshift

from 0 to 4. The ratios Ms/MD predicted by Eq. 28 are indicated
by the small black dots of Figure 8.

Other relationships for the inverse ratio m � MD/Ms can be
found in the literature [see, for instance, Shankar et al. (2006), Fan
et al. (2010), Girelli et al. (2020)]. For MD ≥ 1011M0 Fan et al.
(2010) propose the relation:

m � MD

Ms
� 25

MD

1012
( )0.1 1 + z

4
( )−0.25

(29)

from which one derives the ratioMs/MD shown in Figure 8 by the
red circles. In practice there is no dependence on redshift.

FIGURE 8 | The relations between Ms/MD and MD at different redshifts
for different theoretical models (all masses are in solar units). The colored
dotted lines correspond to eight values of the redshift z � 0 and z � 0.2 (top,
red), z � 0.6, z � 1.0 (intermediate, yellow), z � 1.6 and z � 2.2
(intermediate, green), z � 3 and z � 4 (bottom, blue). The black dots are the
values resulting by Eq. 28 at varying log MD (from 4 to 14 in steps of 1) and
redshift z (from 0 to 4 in steps of 1), respectively. The large red and golden
circles are the combination of Eqs 29, 30. The open magenta (z � 0) and dark-
olive (z � 3.95) open circles are the relationsMs/MD vsMD at different redshifts
according to Girelli et al. (2020). Note that all relations agree at logMD ≃ 12,
while they badly disagree at lower values ofMD. Reproduced from Chiosi et al.
(2019).
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Notably, the curve of Fan et al. (2010) agrees with the one
derived by Chiosi et al. (2019) using the Illustris models for the
values of the redshift smaller than about 1.6 (the slope is nearly
identical). Shankar et al. [Shankar et al. (2006), and references
therein] presented a detailed analysis of the dependence ofMs on
MD. First, they claim that forMD < 1011M⊙ the relation should be

m � MD

Ms
� CM−2/3

D (30)

with C a suitable proportionality constant to be determined.
Assuming equality between the values of m derived with the
two above relationships (at the transition massMD ≥ 1011 M0),
the proportionality constant is log C � 9.044. The ratiosMD/Ms

resulting by Eq. 30 are shown in Figure 8 with the dark golden
circles. Note that the relation of Shankar et al. (2006) agrees
with that of the Illustris models for redshifts in the range from
2 to 4.

It is also worth noting that the linear extrapolation of the Fan
et al. (Fan et al., 2010) relationship (red circles) in Figure 8 to
lower masses and the linear extrapolation of the Shankar et al.
(Shankar et al., 2006) curve (dark golden circles) to higher values
of the mass encompass the predictions derived from the Illustris
models for all the values of the redshift.

Shankar et al. (2006) derived a second analytical expression for
the relation between Ms and MD:

Ms � 2.3 × 1010M0

(MD/3 × 1011M0)3.1
1 + (MD/3 × 1011M0)2.2 (31)

for MD ≥ 1011M⊙. In this relation there is not an explicit
dependence on the redshift. The ratios Ms/MD predicted by
Eq. 31 are visible in Figure 8 with the black filled squares. Eq.
31 predicts ratiosm(MD, z) that are in agreement with those from
Eq. 28 derived from the Illustris data, Eq. 29 from Fan et al.
(2010), and Eq. 30 only in the region around log(MD) ≃ 12
and z ≃ 0.

In a very recent study Girelli et al. (2020) have thoroughly
investigated the stellar-to-halo mass ratio of galaxies (Ms/
MD) in the mass interval 1011 <MD < 1015 and redshifts from
z � 0 to z � 4. They use a statistical approach to link the
observed galaxy stellar mass function on the COSMOS field
to the halo mass function from the ΛCDM-Dustgrain
simulation and derive an empirical model to describe the
variation of the stellar-to-halo mass ratio as a function of the
redshift. Finally they provide analytical expressions for the
functionMs(MD, z). The relationsMs/MD vsMD as a function
of the redshift obtained with the formalism of Girelli et al.
(2020) are also shown in Figure 8 (the magenta and dark-
olive-green open circles joined by dashed lines of the same
color). See also for a similar analysis the study of Engler et al.
(2020).

It is soon evident that while all studies agree on the Ms/MD

ratios for objects with halo mass in the interval 11.5 ≤ logMD ≤
12.5 nearly independently of the redshift, they badly disagree each
other going to lower values of the halo mass. Furthermore, they
also disagree with the theoretical results predicted by Illustris. The
problem is open to future investigations.

11.2 Redshift Evolution of DM-Halos and
Their BM-Guests
When galaxy formation started DM and BMwere in cosmological
proportions (i.e. MD � ωMB with ω ≃ 6). Then the SF gradually
stored more and more BM into stars.

Here, exploiting again the Illustris library of model galaxies
(Vogelsberger et al., 2014) we show the relationships between the
stellar mass Ms (as a proxy of the BM component) and the dark
massMD, and that between Re and RD for four different values of
the redshift (z � 4, 2, 1, and 0). They are visible in the left and right
panels of Figure 9, respectively. Masses (in M0) and radii (kpc)
are in log units and the color code indicates the redshift (z � 4,
blue; z � 2, green; z � 1, yellow; z � 0, red).

It is clear that the efficiency of SF over the Hubble time, i.e. the
transformation of gas in stars, is different in galaxies of different
masses. SinceMB <MD,Ms is always smaller thanMD. However,
galaxies of different total mass can build stars at different
efficiencies, and the ratio Ms/MD is therefore expected to vary
with MD and redshift. In the left panel of Figure 9, we note that
Ms increases withMD, so that lowmass galaxies build up less stars
than the more massive ones. The slope of the relation however
decreases as the redshift goes to zero. In more detail, for redshifts
z ≳ 2 and massesMD ≃ 1012M0 the slope decreases at decreasing
redshift so that more and more stars are present at given MD.
More precisely, for z ≲ 2 andMD ≤ 1012M⊙ the above trend holds,
but above this limit the opposite occurs, at a givenMD less stellar
mass is present than expected. In other words, massive galaxies
are less efficient builders of their stellar content. We can
approximate this relation between log Ms and log MD with
the linear dependence log Ms � α log MD + β, where α and β
may vary with the mass range and the redshift. From the linear fit
we obtain: (z � 4, α � 1.55, β � − 8.19) (z � 2, α � 1.44, β � − 6.78)
(z � 1, α � 1.16, β � − 3.37, forMD < 12.0) (z � 1, α � 0.76, β � −
2.30, for MD > 12.0) (z � 0, α � 0.93, β � − 0.43, for MD < 11.5),
and (z � 0, α � 0.79, β � − 1.22, forMD > 11.5). The ratioMs/MD

varies from 0.2 to 0.05 when the mass MD increases from 107 to
1012M0 with mean value ≃ 0.10. The overall process of star
formation is not highly efficient, large amounts of gas remain
unused and likely expelled into the external medium through
galactic winds partially enriched in metals. Similar results are
given by Merlin et al. [Merlin et al. (2012), and references]. The
efficiency of star formation is customarily measured by the ratio
MD/Ms as a function of MD. This is simply given by:

MD

Ms
� 10−βM1−α

D (32)

that has already been discussed in Section 11.
Similarly we can derive the relations: log Re � c log RD + η

(Re � ηRc
D) that are shown in the right panel of Figure 9. From

the linear fit we obtain: (z � 4, c � 0.39, η � − 8.19) (z � 2, c � 0.30,
η � − 6.78) (z � 1, c � 0.22, η � − 3.37, forMD < 12.0) (z � 1, c �
0.22, η � − 2.30, for MD > 12.0) (z � 0, c � 0.29, η � − 0.43, for
MD < 11.5), and (z � 0, c � 0.29, η � − 1.22, for MD > 11.0).

The radius RD is larger than Re by a factor of 3–10 as the galaxy
mass increases from 109M⊙ to 10

13M⊙. The slope c of the Re-RD
relation (in log units) first decreases by about a factor of 2, from
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z � 4 to z � 1, and then increases again at z � 0. What is important
is that while at high redshifts (our z � 4, z � 2, and z � 1 cases) the
galaxy distribution on the Re-RD plane is a random cloud of
points, at z � 0 a regular trend appears and Re increases with RD
on the side of large values of RD (largest masses). However, in the
region of low radii and masses a cloud of points is still visible. The
reason must be attributed to the effect of strong galactic winds
and mergers among galaxies of similar mass in the hierarchical
process that strongly perturb the mechanical equilibrium of these
systems [see Chiosi et al. (2019)]. Finally, note that the ratiosMs/
MD ≃ 0.1 and Re/RD ≃ 0.1 − 0.3 confirm the predictions of Bertin
et al. (1992), Saglia et al. (1992) based on analytical models for
galaxies made of DM and BM.

12 THE ANGULAR MOMENTUM—MASS
CORRELATION

We now turn back our attention again to the correlations
observed among galaxies. First we want to explore the
correlation between angular momentum J and mass M,
introduced by Fall (Fall and Athanassoula, 1983), that is one
of the most fundamental SRs of galaxies. It is at least as important
as the SRs between rotation velocity, velocity dispersion,
characteristic size, and mass. The correlation between angular
momentum and mass largely determines other basic properties of
galaxies, such as the characteristic size (e.g. the half-mass radius
Rh) of disk-dominated galaxies. The angular momentum is in fact
linked to global dynamical processes and gravitational instability
of galaxy discs to bar formation [see e.g. (Mo et al., 1998;
Athanassoula, 2008; Agertz and Kravtsov, 2016; Sellwood,
2016; Okamura et al., 2018; Romeo and Mogotsi, 2018; Zoldan
et al., 2018)].

Operationally, one defines the stellar-specific angular
momentum jp � J/Ms (the angular momentum per unit mass),
the stellar mass Ms, and the bulge fraction βp � Mp

b/(Mp
d +Mp

b),

where Md and Mb are the mass of the disk and the bulge
respectively. In a plot of log jp against log Ms galaxies of
different morphological types and bulge fraction βp follow
nearly parallel sequences. Over the mass range 8.9 ≤ log(Ms/
M0) ≤ 11.8 disks and bulges follow SRs of the form jp∝Mα with
α � 0.67 ± 0.07. The different sequences have amaximum offset in
zero-point by a factor of 8 ± 2 (Fall and Romanowsky, 2018).

The specific angular momentum of halos scales approximately
with the power 2/3 because of tidal torques (Peebles, 1969;
Efstathiou and Jones, 1979). The shape of this law is in fact
important to test galaxy formationmodels (a discrepancy is found
only at the lowest masses), and constrain many fundamental
parameters, such as, for example, the retained fraction of angular
momentum. More recently, Posti et al. (2018) find that this
relation is well described by a single, unbroken power-law
over the entire mass range 7 ≤ logMs/M0 ≤ 11.5, with a slope
of 0.55 ± 0.02 and an orthogonal intrinsic scatter of 0.17 ±
0.01 dex.

A similar result was obtained by Obreschkow and Glazebrook
(2014), who discovered a strong correlation between the baryon
mass Mb, jb, and the bulge mass fraction β, fitted by β �
−(0.34 ± 0.03)log(jbM−1

b /[10−7kpckms−1M−1
0) − (0.04 ± 0.01)

over a range of 0 ≤ β ≤ 0.3 and 109M0 <Mb < 1011M0. ThisM −
j − β relation likely originates from the proportionality between
jM−1 and the surface density of disks.

Along the same vein Romeo and Mogotsi (2018)
investigated the link between angular momentum and disc
instability. They showed that the mass-weighted average of
the Toomre parameter Q is a more reliable diagnostic of
stability. Such a diagnostic parameter permits us to
constrain the relation between stellar mass, stellar-specific
angular momentum, and disc stability level. Romeo (2020)
introduced a new set of galaxy SRs for the relative mass
content of atomic gas, molecular gas, and stars, driven by
disc instability and originating from the low galaxy-to-galaxy
variance of the Toomre’s Q stability parameter.

FIGURE 9 | Left panel: TheMs −MD relations at different redshifts (z � 4, blue; z � 2, green; z � 1, yellow; z � 0, red). Masses are in solar units. The solid lines are the
best fits discussed in the text. Right panel: the same as in the left panel but for the Re − RD relations. Radii are in kpc.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org November 2021 | Volume 8 | Article 69455425

D’Onofrio et al. SRs of Galaxies and AGN

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


The above picture seems to indicate that disks and spheroids
are independent structures, formed by distinct physical processes:
disks are likely formed by diffuse gas settling down on a flat
surface within DM halos, while spheroids formed more violently
by merging and collisions of cold gas clumps. In this scenario,
disk-dominated galaxies are not affected by major mergers, while
spheroid-dominated galaxies have properties substantially linked
to stripping and merging. The interesting thing is that this
relation offers a natural explanation of several classical SRs,
such as the FP of spiral galaxies, the TF relation, and the MR
relation. It can also be the basis for an objective classification
scheme alternative to the Hubble sequence.

In CDM models, galaxies get their angular momentum in the
initial phases of density perturbation growth, when the collapsing
DM clouds are tidally torqued by neighboring overdensities
(Hoyle, 1951; Peebles, 1969; Doroshkevich, 1970; White,
1984). The classical theory of disk galaxy formation (Fall and
Efstathiou, 1980; Ryden and Gunn, 1987; Dalcanton et al., 1997;
Mo et al., 1998) predicts that gas acquires nearly the same specific
angular momentum of the host DM halo. This angular
momentum sets the disk size, and largely determines the final
morphology (Fall and Athanassoula, 1983; Fall and
Romanowsky, 2013). The baryons increase their rotational
support by falling into the potential wells of the DM halos
conserving their angular momentum. To what extent the
baryons preserve the angular momentum during this process
is one of the key issues in our understanding of disk galaxy
formation.

The angular momentum of the DM halos is often expressed
with the dimensionless spin parameter λ � j/

�
2

√
RvirVvir, where

Rvir and Vvir are the virial radius and virial velocity of the halo,
and j the specific angular momentum inside Rvir (Bullock et al.,
2001). The spin parameter of DMwithin Rvir is found to have log-
normal distribution with a median λ ∼ 0.04 and rms variance of
σ ln λ ∼ 0.55 (Bullock et al., 2001; Vitvitska et al., 2002; Bett et al.,
2010), while BM seems to have a spin higher than the halo’s
average (Kimm et al., 2011; Pichon et al., 2011; Tillson et al., 2011;
Codis et al., 2012; Danovich et al., 2012; Stewart et al., 2013; Übler
et al., 2014; Danovich et al., 2015). In a set of zoom-in simulations
Danovich et al. (2015) have shown that λ of the cold gas grows
when crossing the virial radius (see also Pichon et al. (2011)).

From the side of numerical simulations we should highlight
the long suffered problem of the “angular momentum
catastrophe” (Navarro and White, 1994; Navarro and
Steinmetz, 2000). The problem emerged from the comparison
with observations of disk galaxies. While the observed disks have
shown a specific angular momentum j lower by a factor of two,
modeled disks appear to have radial scale-lengths smaller by a
factor of 10, resembling bulges rather than disks (Navarro and
Steinmetz, 2000). In the last years however, simulations seem to
have solved the problem by inserting an efficient stellar feedback
(Scannapieco et al., 2008; Zavala et al., 2008; Sales et al., 2010). For
example, drop, and (Brook et al., 2011), but see also (Brook et al.,
2012; Christensen et al., 2014; Übler et al., 2014) found that
supernova feedback can selectively remove low angular
momentum gas via outflows, leading to disk formation more
in line with observations.

In a recent paper, Peng and Renzini (2020) argued that the
stellar angular momentum of galaxies increased by a large factor
over the last ∼ 10 Gyr (i.e. z ∼ 2), starting from an epoch when the
majority of galaxies acquired their ordered rotation. The size of J
follows directly from the SRs of spiral galaxies, i.e. from the
connection:

J∝MpReVrot (33)

between stellar mass, effective radius, and rotational velocity.
This behavior could be driven by the baryonic gas vorticity of the
circum-galactic filaments that might drive the galaxy evolution.
In this framework, the gas in the filaments regulates the
fluctuations in the specific SFR of galaxies, offering an
explanation for the existence of the main sequence (Lilly et al.,
2013).

For what concerns the angular momentum of galaxies at high
redshift, we refer to the paper of Burkert et al. (2016). This work
analyzes a sample of ∼ 360 massive star-forming galaxies at z ∼
0.8 − 2.6. They found a J distribution broadly consistent with the
theoretical prediction for the dark matter halos, in terms of either
spin parameter 〈λ〉∼ 0.037 or its dispersion (σ log λ ∼ 0.2). These
data support the hypothesis that on average, at high redshifts, the
specific angular momentum of spirals is the same of dark matter
halos (jd � jDM). Including the molecular gas, these authors
measured a total BM to DM mass ratio of ∼ 5% for halos of
∼ 1012M0, which corresponds to ∼ 31% of the available baryons.
This means that high-z disks are strongly baryon dominated.

13 THE SCALING RELATIONS OF
BLACK-HOLES AND GALAXIES

Today, the idea that the history of the massive black-holes (BHs)
at the center of galaxies and that of galaxies themselves is strictly
entwined is widely accepted, after the discovery that the BH mass
correlates with various properties of the host galaxies (Ferrarese
and Ford, 2005; Kormendy and Ho, 2013; Graham, 2016), such as
bulge mass Mbulge (Kormendy and Richstone, 1995), total stellar
massMs (Hring and Rix, 2004), velocity dispersion σ+ (Ferrarese
and Merritt, 2000; Gebhardt et al., 2000), light concentration
(Graham et al., 2001), and halo circular velocity (Ferrarese, 2002).
The ensuing paradigm of BH and host bulge/spheroid
coevolution is today widely accepted and supported by these
well-known correlations for quiescent and almost quiescent
galaxies. Unfortunately, the physical nature of this connection
is still obscure (Silk and Rees, 1998; Shapiro, 2005) despite intense
observational efforts.

For galaxies whose nuclei are currently active, there are basic
observational issues that remain open at the time of writing. The
necessity to resort to type-1 AGN for studying the MBH—σ+ or
MBH andMbulge

5 relations outside of the local Universe raises two

5It is yet unclear which of the two relation is the most fundamental, albeit the
relation σ+withMBH has been considered as the primary one in several past works.
The two relations will be considered as interchangeable when the MBH—bulge
relation is mentioned in a generic context.
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overarching questions. The first one is whether the MBH—bulge
relations are observationally consistent with the one obtained for
quiescent galaxies at very low redshift. A related issue is about the
selection effects specific to the MBH—bulge relation for type-1
AGN with respect to the one of nonactive galaxies. The second
question is whether there is a significant evolution of the
MBH—bulge relation with cosmic epoch.

Some general considerations are in order, before focusing on
the analysis of the scaling relations and on the twomain questions
above. The most accurate black hole mass determinations are the
ones that probe the truly central regions of a galaxy, where the
gravity of the black hole is the dominant force. This occurs within
a distance from the BH rh � GMBH/(σ+)2 ≈ 43MBH,8σ2+,100 pc,
where MBH is in units of 108 solar masses, and the σ+ of
100 km s−1. The BH sphere of influence has been resolved in
several nearby galaxies, presumably hosting the most massive
BHs that were shining at z ≈ 2, where the most luminous quasars
are observed (Lynden-Bell, 1969). In the local Universe, these
galaxies mostly appear as spent or almost-spent active nuclei [e.g.
(Lynden-Bell, 1969; King and Nealon, 2019)]. As long as a galaxy
has a central black hole, there is no such a thing as a quiescent
galaxy: some nuclear activity occurs, even if at extreme low level,
and detected only in the nearest cases (i.e., Sagittarius A) and
under particular circumstances. We consider here weakly active
sources whose Eddington ratio is too low to enter into the domain
of radiative efficient accretion mode (a typical example could
be M87).

13.1 Massive Black Holes at the Center of
Quiescent (or Weakly Active) Galaxies
The method employed for modeling stellar system in dynamical
equilibrium is that of orbit superposition (Schwarzschild, 1979).
The gravitational potential is defined as the sum of the central
black hole (assumed a central point whose mass is to be
determined) and of the stellar mass density derived from the
stellar mass-to-light ratio. What is computed is the combination
of orbits compatible with the spatially resolved stellar kinematics
and photometric profiles. For the kinematically hot galaxies the
early way to get the BH mass was based on the fit of the line-of-
sight velocity dispersion of spherical galaxies assuming that the
stellar distribution function is isotropic (Young et al., 1978). In
more modern approaches, the fit is made over the entire line-of-
sight velocity distribution (Rix et al., 1997; Gebhardt et al., 2007)
for arbitrary galaxy models whose gravitational potential includes
the effect of dark matter, and of triaxiality (Gebhardt and
Thomas, 2009; van den Bosch et al., 2008). The most general
and accurate possible models, with the highest resolution of
spectroscopic observations, are reputed to be most accurate
(Kormendy and Ho, 2013), provided that the BH sphere of
influence is adequately resolved. A case in point is the
estimate of the black hole mass in M87: early estimates
yielded a mass ∼ 5 × 109M0 from spherical, isotropic models
Young et al. (1978). More recent analyses based on stellar
dynamics yielded MBH in the range ≈ (6. − 6.5) · 109 M0

(Gebhardt and Thomas, 2009; Gebhardt et al., 2011). The
stellar dynamics mass value has been spectacularly confirmed

by the Event Horizon Telescopes observations that yieldedMBH ≈
6.5 ± 0.2|stat ± 0.7|sys · 109 M⊙ from the inference of the angular
size of the black hole gravitational radius (Akiyama et al., 2019).

One of the most promising developments in the last years has
been the increasing number of dynamical mass estimates
obtained with ALMA [e.g., (Barth et al., 2016; Boizelle et al.,
2019), for mildly active and quiescent galaxies]. ALMA has the
capability to resolve cold molecular gas kinematics on angular
scales well below 1 arcsec. (Wootten and Thompson, 2009). This
is becoming instrumental to high-precision measurements of
black hole masses in the “intermediate” mass domain, a
previously uncharted territory. For instance, sub-parsec
resolution ALMA observations revealed a black hole with mass
∼ 5 · 105 M0 in the dwarf galaxy NGC404 (Davis et al., 2020).

Space-based long-slit spectra of optical emission lines yield a
velocity cusp (Macchetto et al., 1997). A striking example is
provided by the radial velocity curve of NGC4374 (Bower et al.,
1998): the STIS spectra show a Keplerian swing beginning at ± 0.5
arcsec and culminating at ± 0.1 arcsec, with a radial velocity
difference of δvr ≈ 400 km s−1, implying anMBH ≈ (1.5+1.1−0.6) · 109
M0. The main concern is that gas motions could be affected by
radiation forces, shocks, turbulence, and magnetic fields, and not
only by gravitation. Relatively few galaxies have been found to
have regular disk-like profile suggestive of a velocity field
dominated by Keplerian motion in a dynamically cold disk
(Kormendy and Ho, 2013). In addition, the Keplerian
assumption is not consistent with gas flow toward low-
accretion-rate SMBHs and at variance with observations of the
Galactic Center (Jeter et al., 2019). For M87, both an early and a
more recent analysis based on HST data suggest a black hole mass
of ≈ (3 − 3.5) · 109 M0 (Harms et al., 1994; Macchetto et al., 1997;
Walsh et al., 2013), and very close to the value obtained by
modeling the jet boundary shape (Nokhrina et al., 2019), but
always at variance with the values obtained from stellar dynamics
(Section 13.1).

13.2 Relations MBH vs Mbulge and σ+ for
Quiescent Galaxies
As mentioned earlier, the correlation between MBH and host
galaxy bulge properties—Mbulge and σ+ or even bulge
luminosity—is now an established fact since more than
20 years [see e.g. Kormendy and Richstone, 1995, Ferrarese
and Merritt, 2000, Gebhardt et al., 2000]. Widely used forms
of the relation between MBH and σ+ based on sources for which
there is a dynamical MBH determination are the ones of
McConnell et al. (2011) and of Kormendy and Ho (2013) for
early-type galaxies. Kormendy and Ho (2013) derived a
power law:

log(MBH) ≈ 8.491 ± 0.049 + (4.384 ± 0.287)logσ+,200, (34)

where the mass is in solar units and σ+ is units of 200 km s−1. For
both early type and spiral galaxies McConnell and Ma (2013)
yield a significantly steeper slope ≳ 5, with a lower intercept for
spiral galaxies, implying that MBH in ETGs is about a factor 2
higher than in LTGs at a given σ+ (McConnell and Ma, 2013).
Equivalent relations (i.e., with similar scatter, around 0.30 dex)
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have been defined with the bulge mass, and infrared luminosity,
usually suggesting a power-law relation betweenMBH andMbulge

with an exponent ≈1 or larger (Kormendy and Ho, 2013;
McConnell and Ma, 2013; Bennert et al., 2021).

There is still much ongoing research considering the linearity
of the relation, its slope, and the origin of its dispersion. Theories
that connect galaxy evolution and black hole growth predict the
existence of a second parameter which may account for the
dispersion in the MBH—σ+ correlation. Black hole—spheroid
coevolution models would require that the BH mass scales with
the gravitational binding energy of the spheroid host, ∼ Mbulge/r
(Hopkins et al., 2007). The correlation can be easily turned into
bivariate relations MBH ∝MBH

0.6σ1.2+ and ∝ r0.6bulgeσ
2.4
+ that imply

correlations betweenMBH and σ+ andMbulge consistent with the
observed ones (Saglia et al., 2016). A correlation with the binding
energy of the host galaxy (Aller and Richstone, 2007; Barway and
Kembhavi, 2007) implies the presence of a second parameter that
may compensate for the changes in the galaxy structural
parameters occurring at fixed MBH. Saglia et al. (2016) found
significant bivariate correlations consistent with a connection
between MBH and binding energy and with bulge kinetic energy,
although the scatter remains comparable to the one for the
MBH—σ+ correlations obtained with the best dataset of MBH

dynamical mass measurements.
The log(MBH) − log(Ms,sph) relation reported by Kormendy

and Richstone (1995), Franceschini et al. (1998), Magorrian et al.
(1998), McLure and Dunlop (2002), Marconi and Hunt (2003),
Hring and Rix (2004) is almost linear, but the inclusion of low-
mass spheroids revealed departures from linearity. Laor (1998,
2001), Wandel (1999), and Ryan et al. (2007) obtained a much
steeper power law with a slope of 1.53 ± 0.14. The mean MBH/
Ms,sph ratio is probably not a universal constant, as it drops from ∼
0.5% in bright (MV ∼ − 22) ellipticals to ∼ 0.05% in low-
luminosity (MV ∼ − 18) bulges. Salucci et al. (2000) claimed
that the MBH − Ms,sph relation is significantly steeper for spiral
galaxies than for (massive) elliptical galaxies. Graham (2012)
suggested that the relation between luminosity (L) and stellar
velocity dispersion (σ) for low-luminous ETGs is inconsistent
with the MBH − L and MBH − σ relations. They prefer a broken
MBH − Ms,sph power-law relation, with a near-linear slope at the
high-masses and a near-quadratic slope at the low-masses. In a
recent review article Graham (2016) analyzed the consequences
of this steeper relation, which can be rich of implications for the
theories of galaxy–BH coevolution. Scott et al. (2013), Graham
and Scott (2013) offered an interpretation for the curvature of the
MBH − Ms,sph relation invoking the presence of core-Sérsic and
Sérsic spheroids at the high- and low-mass ends of the
distribution respectively.

The highest degree of correlation is obtained for ETGs and for
bulges that follow a Sérsic—surface brightness profile. Galaxies
obeying a Sérsic photometric profile down to the resolution limits
of their surface brightness profiles are believed to be the product
of wet mergers, i.e., merger of gas rich galaxies that provide
material to sustain accretion on the central black hole and trigger
a period of sustained nuclear activity. The ensuing feedback
effects (both radiative and mechanical) on the host, due to the
active nucleus and to the merger-induced star formation, make it

possible to couple the growth of the central black hole to the host
spheroid mass (Zubovas and King, 2012; King and Pounds, 2015):
the feedback forces by the quasar expel so much gas to quench
both star formation and stop black hole growth, ultimately
accounting for the relation between MBH and σ+, and MBH

and Mbulge (Di Matteo et al., 2005; Robertson et al., 2006).
However, the most massive elliptical galaxies often exhibit

surface brightness profiles that are flatter than the extrapolation
of Sérsic-like profiles. Sources showing a deficit with respect to the
Sérsic profile are contributing to the scatter in the MBH—Mbulge

relation (Kormendy and Bender, 2009). Core profiles are believed
to be due to dissipationless mergers of galaxies that have central
black holes. N-body simulations show that merging of two
galaxies with a sharp cusp may result in a merger remnant
with a shallower core (Milosavljević and Merritt, 2001;
Kulkarni and Loeb, 2012; Bortolas et al., 2016). The formation
of a core has been ultimately linked to a bound binary black hole
system, which produces a depletion of the stellar component in
the nucleus due to slingshot ejection of stars on nearly-radial
orbits.

The size of the core and the starlight and mass deficits in the
centers of core galaxies (i.e., the mass ejected by the binary) have
been found to scale approximately with the mass of the central
black hole (Graham, 2004; Kormendy and Ho, 2013), in
agreement with theory that predicts a mass deficit (Merritt,
2006) to be 0.5 n MBH, with n as the number of major merger
events. The luminosity deficit correlation provides an
independent way to estimate MBH in core ellipticals. Core
radius is most strongly correlated with the black hole mass
and correlates better with total galaxy luminosity than it does
with velocity dispersion (Rusli et al., 2013). In addition, core
scouring changes the orbit distribution. Only radial orbits allow
for close passage past the galaxy center and thus only those stars
can reach the vicinity of the central binary black hole.
Consequently, the orbital structure in the core after core
scouring is predicted to be strongly biased in favor of
tangential orbits, while the ejected stars contribute to
enhanced radial motions outside the core (Quinlan and
Hernquist, 1997; Milosavljević and Merritt, 2001). For
example, the orbital structure of the S0 NGC524 shows
tangential anisotropy right at the SMBH radius of influence,
corresponding to the core region in the photometric profile
(Krajnović et al., 2009). Similar results apply to the elliptical
galaxy NGC1600 (Thomas et al., 2016), and agree well with
predictions from numerical simulations where core profiles are
the result of SMBH binaries impoverishing the central nuclear
regions (Rantala et al., 2018).

Recent work emphasizes the presence of substructures in the
MBH—σ+ relation (Sahu et al., 2020). Pseudo-bulges are
associated with spiral galaxies, and studies of their
photometric profiles reveal that they are disk-like with a
different surface brightness profile than classical bulges
(Kormendy and Kennicutt, 2004; Kormendy and Bender,
2012b). Pseudo-bulges are known to be offset in the MBH—σ+
relation in the sense of systematically lower MBH (Saglia et al.,
2016). In the case of pseudo-bulges, the growth of the central
black hole may be decoupled from the growth of the host
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spheroid and not associated with galaxy merger, but instead with
mechanisms of secular evolution not related to gravitational
interaction with other galaxies; in observational terms, some
studies (Kormendy and Ho, 2013) find weak MBH correlations
for pseudo-bulges, see, however, e.g., (Bennert et al., 2021).

The most massive BHs have been detected only in the more
luminous galaxies ( − 22 ≤ MB ≤ − 18) (Ferrarese and Ford, 2005)
and it is not clear yet if fainter and lessmassive systems host massive
BHs and whether they follow the extrapolations of the SRs defined
by the brightest objects. Searches for BHs in less luminous galaxies
of the Local Group have produced ambiguous results, as in the case
ofM33 (Gebhardt et al., 2001;Merritt et al., 2001), NGC205 (Valluri
et al., 2004), andM32 (Verolme et al., 2002). Some galaxies exhibit a
compact stellar nucleus (with half-light radius rh ∼ 2 − 4 pc) in their
center. This is ∼ 20 times brighter than a typical globular cluster
(Kormendy and McClure, 1993; Butler and Martínez-Delgado,
2005). In the Virgo and Fornax Clusters ∼ 25% of dE galaxies
contain such nuclei (Binggeli et al., 1985; Ferguson, 1989; Binggeli
and Cameron, 1991), but the observations with the Hubble Space
Telescope revealed that these structures are far more common:
about 50–80% of the less luminous galaxies contain a distinct
nuclear star cluster (Carollo et al., 1998; Matthews et al., 1999;
Böker et al., 2002; Balcells et al., 2003; Graham and Guzmn, 2003;
Lotz et al., 2004; Grant et al., 2005; Côté et al., 2006). Nuclear star
clusters are not a replacement for black holes. On the contrary low
mass galaxies (109 − 1010 M⊙) show a high incidence of nuclear star
clusters coexisting with massive black holes (Greene et al., 2020).
However, nuclear star clusters are rare in high mass galaxies
(Graham and Spitler, 2009), suggesting that the growth of BH
during activity may lead to the demise of the star cluster itself
(Antonini et al., 2019).

The low mass end of the relation MBH—σ+ for quiescent
galaxies is still poorly sampled and of uncertain interpretation
(Graham and Scott, 2015). Tidal disruption events (TDEs)
provide an independent method for MBH estimation. First,
TDEs are luminous flares predominantly detected in quiescent
galaxies (very few events have been detected in AGN, as the
luminosity of the AGN obliterates the brightness increase
associated with the TDE). Flares are produced by the tidal
debris that fall back toward the black hole and that form an
accretion ring or a disk around an otherwise inactive black hole.
Second, a TDE can take only with relatively low black hole
masses, MBH ≲ 108 M⊙ for a solar-mass star (Gezari, 2021) to
avoid that the star crosses the black hole event horizon without
being tidally disrupted. The central BH mass is recovered via
synthetic multi-band optical light curves based on
hydrodynamical simulations of polytropic tidally disrupted
stars (Mockler et al., 2019). The method is not yielding yet a
good agreement with otherMBH estimates, as it is not clear which
parameter should be correlated withMBH, in amodel in which the
TDE luminosity is powered by fall-back accretion (Gezari, 2021).

13.3 MBH Measurements in Active Galactic
Nuclei
Stellar dynamical determinations for AGN have been possible
only for weakly or mildly active Seyfert 1 galaxies. Presently, only

≲ 100 dynamical MBH measurements have been obtained by
modeling stellar kinematics of quiescent and active nuclei [e.g.
(Saglia et al., 2016; Kormendy and Ho, 2013)]. A case in point is
the intermediate Seyfert 1 galaxy NGC3327 (Davies et al., 2006)
which illustrates the complexity of the nuclear regions of a mildly
active AGN, even if an application of the Schwarzschild method
of orbit superposition allowed for a meaningful estimate of the
stellar dynamic mass ∼ 107 M⊙. A Population B source (see §14.2
and Figure 12) radiating at modest Eddington ratio, NGC3227,
shows a nuclear stellar distribution within a few parsecs of the
central black hole affected by intense bursts of star formation
occurring in its recent past. Similar considerations apply to the
stellar dynamics results on MCG–6–30–15 (Raimundo et al.,
2013). In general, stellar populations in the closeness of the active
nucleus are not easy to model, also because of the uncertain
distribution of obscuring dust, even in the least active nuclei, such
as NGC4258. Nonetheless the stellar dynamical and maser
masses agree very well for this source (Siopis et al., 2009). A
dynamical mass estimate for Cen A also agrees with the estimate
derived from cold molecular H2 gas (Neumayer et al., 2007;
Cappellari et al., 2009), suggesting that molecular gas could
provide mass estimations as accurate as the ones based on
stellar dynamics.

The most reliable method to probe distances within rh from
the black hole of galactic nuclei that are currently mildly active
involves observation of H2O masers (Miyoshi et al., 1995;
Herrnstein et al., 2005; Greene et al., 2010). The H2O
emission profile shows a radial velocity “cusp” at distances
where the velocity field is governed by the gravity of the black
hole i.e., when r ≲ rh. This method is not exempt by issues that
could bias the results. A maser disk with Keplerian rotation could
have a non-negligible disk mass comparable to the black hole
mass (Huré et al., 2011), and the effects of disk self-gravity might
lead to large systematic errors in the derivation of the black hole
mass (Kuo et al., 2018). Disturbed morphology and kinematics
are an ubiquitous feature of maser systems especially above
Eddington ratio λEdd ≳ 0.1 (Kuo et al., 2020).

Outside of the local Universe (i.e., beyond 2.5 Mpc), VLBI
observations of mega-maser systems can probe within the sphere
of influence for BHs down to 106 M⊙ even at 100 Mpc (van den
Bosch et al., 2016). Mega-masers are more frequently associated
with active galaxies (Constantin, 2012), and they should be more
common at high redshift (van den Bosch et al., 2016). The
exploitation of mega-masers is however difficult, because the
maser signal of high-redshift sources is lost in noise, and
major surveys have until now failed to detect a mega-maser in
the wide majority of galaxies. Mass determinations based on the
resolved maser systems are completely independent of any other
method, and best suited to cross-check the estimates obtained
from stellar and gas dynamics. Several H2O masers have been
detected from the circumnuclear regions of quasars also at
relatively high redshift (Broome et al., 2019; Stacey et al.,
2020). The hope to go beyond modest distances rests with
SKA—because of its unprecedented μJy sensitivity—and in
future space based radio interferometry with μarcsec spatial
resolution. Assuming Earth-space baselines of about
30,000 km, angular resolution of 2 μ-arcsec would be
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achievable at 8 GHz (Taylor et al., 2007). This angular scale
corresponds to a projected linear size of ≈ 0.02 pc at z � 2,
therefore allowing to probe within the BH sphere of influence
even at the remote epochs of the “cosmic noon,” a key epoch of
galaxies AGN when a population of most luminous quasars was
shining bright and producing the maximum feedback on their
host galaxies.

ALMA is today the most powerful tool to yield MBH also for
AGN [e.g. (Onishi et al., 2015)]. However, the CO J � 2-1
kinematics in a sample of nearby AGN reveals noncircular
motions in the inner kiloparsec of all galaxies in the sample,
although molecular gas and stellar kinematics show an overall
agreement. The CO observations of nearby radio galaxies detect
molecular disks, but also caution about the possibility of
asymmetries and disruptions due to interactions with the
radio jet (Ruffa et al., 2019).

Several studies have employed the capabilities of STIS on
board HST to study the dynamics of line-emitting gas in
proximity of the central black hole (Pastorini et al., 2007), or
the sub-arcsec spatial resolution of imaging spectrometers or IFU
units operating with adaptive optics (Hicks and Malkan, 2008).
The concern is that radiation forces within the inner 100–1,000 pc
of the central black hole may be affecting the dynamics of the line-
emitting gas even more than in the case of cold gas dynamics,
especially if the AGN is radiating at high Eddington ratio
(Zamanov et al., 2002; Xu and Komossa, 2010; Marziani et al.,
2016a; Berton et al., 2016; Schmidt et al., 2018).

Spectro-astrometry is another promising tool: the approach
is based on the different photocenter positions of emission lines
at different velocities (Gnerucci et al., 2011). Although a
relatively modest spectral resolution ( ∼ 10 km s−1) is
sufficient, sub-arcsec spatial resolution is required, obviously
the higher the better, achievable only from space or from
ground using active optics (Abuter et al., 2021). This is the
approach exploited by GRAVITY, an instrument of the Very
Large Telescope Interferometer (VLTI) (Abuter et al., 2017).
After first light in 2017, GRAVITY detected a spatial offset
(with a resolution of 10 micro-arcseconds corresponding to
approximately 0.03 parsecs) between the red and blue centers of
the Paschen-α line of 3C273 (Sturm et al., 2018). This offset
corresponds to a gradient in velocity and implies that the gas is
orbiting the central supermassive BH.With the new capabilities
of GRAVITY (Abuter et al., 2017) and with the wave-front
corrections of an adaptive optics system, it will be possible to
repeat this feat in many low-z type-1 (i.e., broad line) AGN
(Bosco et al., 2021). The broad line region velocity field has
been spatially resolved and modeled even in NGC3783
(Amorim et al., 2021) to provide an MBH estimate, although
this achievement will likely remain restricted to low-z Seyfert-1
nuclei for the time being.

If we exclude masers, for which BH masses can be inferred
from rotation (Ferrarese and Ford, 2005) and spectro-astrometry,
for the vast majority of Type-1 AGN the BH masses are derived
from the (presumed) virial motions of the broad line region
(BLR) gas clouds orbiting in the vicinity of the central compact
object. If the motion in the emitting gas is in virial equilibrium, we
can write the central black hole mass MBH as:

MBH � rBLRδv2K
G

. (35)

Here δvK is the virial velocity module, rBLR the radius of the BLR,
G the gravitational constant. Eq. 35 can be useful if we can relate
δvK to the observed velocity dispersion, represented here either by
the dispersion σ or by the FWHM of a suitable broad emission
line:

MBH � fS
rBLRFWHM2

G
(36)

via the structure factor (a.k.a. form or virial factor) whose
definition is given by:

δv2K � fSFWHM2. (37)

Mildly ionized gas dynamics i.e., gas motions within the broad
line regions of type-1 AGN, is the basis of the estimate of theMBH

for large samples of quasars up to the highest z, following Eq. 36.
In addition to a measure of the virial broadening provided by the
emission line width, a measure of the line-emitting gas distance
from the central black hole is needed. Under the assumption that
the main source of line emission is provided by photoionization
(Shuder, 1981), the distance is measured by the time lag of the
emission lines with respect to continuum variations (Peterson,
1993): rBLR ≈ cτ, where τ is the time delay. Recent observations
measure τ as a function of wavelength across the line profile in an
attempt to resolve the velocity field of the emitting region
(Brotherton et al., 2020; Williams et al., 2021). The
“reverberation mapping” technique has been described in
several reviews that also include a critical discussion of the
technique shortcomings (Horne et al., 2004; Marziani et al.,
2006; Peterson, 2014). The rBLR estimates have been carried
out mainly for the HI Balmer line Hβ for ∼ 100 type-1 AGN,
recently supplemented by the monitoring of the SDSS
Reverberation Mapping Project that yielded data for 144
quasars (Li et al., 2017). The reverberation mapping
determinations of rBLR offer a sort of primary step over which
a correlation between rBLR and luminosity is built (Section 13.4),
in turn instrumental to the determination of the MBH in large
samples of quasars (Section 13.5).

13.4 The Radius—Luminosity Relation
A correlation between the radius of the emitting regions and
continuum luminosity is expected on the basis of the spectral
similarity of quasars. Even if this is an oversimplification, we
observe always the same lines, and their relative intensities change
only within a limited range, also in response to continuum
variation. The ionization parameter should remain roughly
constant, implying that r ∝ La, with an exponent a at any rate
close to 0.5 (Kaspi et al., 2000; Bentz et al., 2013). The scaling
relation has been derived from spectroscopic monitoring of
emission lines (mostly the HI Balmer line Hβ) that yield the
time delay τ of the emission line response to continuum
variations (Peterson, 1993; Peterson, 2017). A sufficient
number of sources is available for a correlation analysis since
the early 2000s (Kaspi et al., 2000). The consideration of various
aspects (host galaxy subtraction and removal of the line narrow
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component believed to be emitted in a different region) and the
increase of the number of monitored sources has led to a standard
r − L relation with an exponent consistent with 0.5 within the
uncertainties (Bentz et al., 2006; Bentz et al., 2009; Bentz et al.,
2010; Bentz et al., 2013). However, the r − L relation suffers of
significant scatter because it was derived neglecting the diversity
of type-1 quasars organized by the quasar Main Sequence (MS,
see below), and is biased in favor of sources radiating at a
relatively low Eddington ratio. It is not difficult to account for
this preferential selection: such sources are relatively low
accretors and therefore more prone to variability associated
with an unsteady accretion flow. Recent work (Du et al.,
2016a; Du and Wang, 2019) has shown that sources that
radiate at high L/LEdd significantly deviate from the correlation
of (Bentz et al., 2013): their radius is shorter than the one expected
on the basis of their luminosity. Including high Eddington ratio
sources in the correlation creates a cluster of data points that
increases the scatter in the correlation. Figure 10 shows that the
relation for sources radiating at the highest value of the
Eddington ratio is significantly offset from the one of other
spectral types along the quasar main sequence discussed in
Section 14.2. Linear combination with the dimensionless
accretion rate (i.e., the mass accretion rate normalized by the
Eddington accretion rate) or Eddington ratio leads to a significant

reduction of the scatter (Du and Wang, 2019; Martínez-Aldama
et al., 2020).

13.5 Scaling Laws for Active Galactic Nuclei
Black Hole Mass Estimates
The virial theorem can be conveniently rewritten as log MBH � α
log L+β log FWHM+ c, where β � 2. The luminosity term comes
from the use of the radius—luminosity relation, r − La. Several
different scaling laws based on this expression have been defined
for the width of different lines, and for different continuum and
line luminosity as well. The most widely used has been perhaps
the one formulated by Vestergaard and Peterson (2006) for Hβ
and continuum luminosity at 5,100 Å.

The main underlying assumptions in the use of the virial
theorem are that the broadening is due to Doppler effect because
of the line-emitting gas, and that the velocity field is such that the
emitting gas remains gravitationally bound to the black hole.
Early UV and optical inter-line shift analysis provided evidence
that not all the line-emitting gas is bound to the black hole
(Gaskell, 1982; Tytler and Fan, 1992; Brotherton et al., 1994;
Marziani et al., 1996; Leighly and Moore, 2004). The emerging
scenario is that outflows are ubiquitous in AGN, they occur under
a wide range of physical conditions, and are detected in almost
every band of the electromagnetic spectrum and on a wide range
of spatial scales, from few gravitational radii to tens of kpc (e.g.,
(Capetti et al., 1996; Colbert et al., 1998; Everett, 2007; Carniani
et al., 2015; Cresci et al., 2015; Bischetti et al., 2017; Komossa et al.,
2018).

For z > 4, MBH estimates historically rely on the
CIVλ1549 high-ionization line, and the highest-z sources
appear almost always high-accretors (Bañados et al., 2018;
Nardini et al., 2019). The source of concern is that high-
ionization lines such as CIVλ1549 are subject to a considerable
broadening and blueshifts associated with outflow motions
already at low redshift (Coatman et al., 2016; Sulentic et al.,
2017; Marinello et al., 2020a; Marinello et al., 2020b).
Overestimates of the virial broadening by a factor as large as
5–10 (Netzer et al., 2007; Sulentic et al., 2007; Mejía-Restrepo
et al., 2016; Mejía-Restrepo et al., 2018) for SMBHs at high zmay
pose a spurious challenge to concordance cosmology
(Trakhtenbrot et al., 2015) and lead to erroneous inferences
on the properties of the seed BHs believed to be fledgling
precursors of massive BHs. The solution is either to carry out
Hβ observations at high redshift (a feat that is becoming easier as
more NIR spectrometers are being installed at the focus of large
telescopes) or to use a surrogate line whose profile is also virially
broadened. The Al IIIλ1860 and CIII]λ1909 lines could be much
robust estimator of the BHmass. These lines, in a blend at 1900 Å,
can be easily observed with optical spectrometers up to redshift
z ≈ 4. Similar considerations apply to the use of MgIIλ2800 (Shen
and Liu, 2012; Trakhtenbrot and Netzer, 2012) which however
can be observed only up to z ≈ 2.5 without the use of NIR
spectrometers. Another approach has been to apply corrections to
the CIVλ1549 line width (Coatman et al., 2017; Marziani et al.,
2019), although such corrections, to be effective, require the
knowledge of the quasar rest frame, which remains poorly

FIGURE 10 | The radius-luminosity relation, expressed as the relation
between the time lag derived from reverberation mapping and the optical
luminosity. Data are from Du and Wang (2019), and include, in addition to
the sources of Bentz et al. (2013) also the xA sources monitored in
dedicated campaigns (Du et al., 2016a; Du et al., 2018a). Sources are color
coded according to the spectral types identified along the quasar main
sequence: B1++ (red), B1+ (orange), B1 (rose), B2 (gray), A1 (aquamarine),
A2 (blue), A3 (magenta), A4 (purple), and roughly correspond to a sequence
of increasing Eddington ratio. The gray line traces an unweighted least
square fit for the full sample, the dotted magenta line refers to an
unweighted lsq but for sources radiating at extreme Eddington ratios (A3
and A4) only.
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known from rest-frame UV observations only. Shen and Liu
(2012) propose scaling laws in which the virial assumption is
released that is, with β ≠ 2. For CIVλ1549, this means correcting
for effect associated with the emission component due to an
outflow, which overbroadens (and shifts) the line. The scaling law
introduced by Park et al. (2013) follows this approach assuming c
� 0.5, that is, a FWHM dependence that is much weaker than the
one of the virial law. The scaling law suggested by Park et al.
(2013) applied to a high luminosity sample properly corrects for
the overbroadening of the CIVλ1549 line profiles of high
Eddington ratio sources of a high-luminosity sample, but
overcorrects the width in case of sources radiating at modest
Eddington ratios, yielding a large deviation from the Hβ-derived
MBH values (Marziani et al., 2019).

13.5.1 The Virial Factor: Orientation and Radiation
Effects
The application of Eq. 36 requires the knowledge of the fS, a
quantity of O ∼ 1 but that can be significantly different from
source to source. The presence of a rotating accretion disk and a
spin axis for the central black hole guarantees that axial, and not
spherical symmetry, is satisfied for AGN (Antonucci, 1993; Urry
and Padovani, 1995). Accordingly, unification schemes
distinguish between sources that are observed with the line of
sight oriented not very far from the disk axis, and sources that are
seen almost edge-on, for which the observation of the BLR is
precluded by obscuration (type-2 AGN). Leaving apart obscured
sources, there is a considerable range of orientation angles (from
0 to 45–60) that are possible for type-1 AGN. The effect of
orientation can be quantified by assuming that the line
broadening is due to an isotropic component + a flattened
component whose velocity field projection along the line of
sight is ∝ 1/ sin θ (McLure and Jarvis, 2002; Collin et al.,
2006; Decarli et al., 2011; Mejía-Restrepo et al., 2018). Even
with this assumption, it is not known how to connect the
viewing angle of the black hole + accretion disk system and
the parameters measured on the optical and UV spectra. Only in a
few special cases this feat has been possible. In such cases the
viewing angle is constrained by data unrelated to the spectra, such
as the radio morphology or the jet beaming (Wills and Browne,
1986; Decarli et al., 2011; Punsly et al., 2020). The dependence on
orientation can be overcome by spectropolarimetric
measurements: if the emission line light is scattered by an
equatorial scatterer, then the width of the polarized line flux
should be related to the velocity field as measured by an observer
in the equatorial plane of the accretion disk, i.e., as if the viewing
angle were θ � 90 from the disk axis, de facto removing the
orientation effect. Spectropolarimetric measurements allowed for
the estimate of the black hole mass in a few tens of type-1 AGN
(Savić et al., 2018; Afanasiev et al., 2019; Savić et al., 2020; Capetti
et al., 2021). The technique requires large-aperture telescopes
even for nearby, bright AGN, whose polarization is notoriously
low ( ≲1%; Sniegowska et al. 2021, in preparation).

A parameterization of the virial product dependent on the
Balmer Hβ line has been suggested (Mejía-Restrepo et al., 2018) in
the form fBLR ∝ FWHM−1.17 and exploited in several works
(Martínez-Aldama et al., 2019; Bon et al., 2020). This relation is

however especially risky in samples covering a wide range of
luminosity, since it is not accounting for the increase in line width
expected with increasing mass, if line broadening is
predominantly virial (Section 15). In addition, orientation is
not the only variable affecting fS. Radiation forces act on gas
motions and make the fS dependent on Eddington ratio [e.g.
(Netzer and Marziani, 2010; Khajenabi, 2015)]. The effect can be
as large as a factor ≈ 2 and, perhaps more importantly, the
efficiency of radiation forces is dependent on the gas column
density, leading to the preferential expulsion of gas of lower
column density (Netzer and Marziani, 2010). Recent attempts to
derive the fS from dynamical models still do not consider the role
of radiation pressure on the gas motion (Pancoast et al., 2014a;
Pancoast et al., 2014b; Pancoast et al., 2018; Williams et al., 2020).
In addition, there are basic difficulties in modeling the BLR. One
of the main issues is whether there are indeed gas clouds or
whether the broad lines are emitted directly by a continuum-
illuminated accretion disk (Collin-Souffrin et al., 1988; Dumont
and Collin-Souffrin, 1990). If clouds are indeed present, the
mechanism of confinement is unclear, although confinement
by an external magnetic field is favored (Rees, 1987; Bottorff
and Ferland, 2000; Chelouche and Netzer, 2001; Shadmehri,
2015; Esser et al., 2019). The quasar main sequence discussed
in Section 14.2 provides a focus for these questions, but the
physical processes of line-emitting gas dynamics have not yet
been contextualized for different accretion modes (Section 14.3).

The virial factor fS has been estimated by scaling the virial
product rBLRδv

2 to theMBH—σ+ for quiescent galaxies obtaining
an average fS ≈ 5.5 if the velocity dispersion of the broad emission
line is used ( ≈ 2.3 from the FWHM). This approach provides a
test of consistency for the reverberation mapping technique
(Bennert et al., 2021) within a factor 2–3 uncertainty. In
principle, the fS uncertainties could be reduced, if a careful
separation of different morphological types and of different
accretion modes is carried out. For instance, the technique
applied to NLSy1s yields fS ≈ 1.1 (for FWHM (Woo et al.,
2015)); Du and Wang (2019) show that sources accreting at
high rates do not obey the Bentz et al. (Bentz et al., 2013) relation.

13.6 MBH vs Mbulge and σ+ for Active
Galactic Nuclei and Its Consistency With
Quiescent Galaxies at Low-z
There is a general consensus that most galaxies host massive BHs
that went through phases of activity. This latter had a role in the
BH growth and in the regulation of the SF activity of the host
galaxy by means of wind/jet driven feedback mechanisms
(Shankar et al., 2009a; Shankar et al., 2009b; Alexander and
Hickox, 2012). The theoretical models show that an AGN and
its host may coevolve (Silk and Rees, 1998; Granato et al., 2004),
leading to characteristics (such as the Ms,sph/Ms ratio and/or the
central stellar velocity dispersion σ) related to black hole
mass (MBH).

An early answer to the question “do galaxies hosting an AGN
share the sameMBH −MBulge correlation of normal galaxies?”was
affirmative: AGN have the same BH-bulge relation as ordinary
(inactive) galaxies (Wandel, 2002). Fast forward 20 years, there is
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not yet an established view. A most recent work, based on state-
of-the-art surface photometry, and spatially resolved kinematics
to measure σ+, find that correlations between MBH and host
galaxy properties hold for AGN within the limits of an intrinsic
scatter 0.2–0.4 dex, and are consistent with the ones of quiescent
galaxies (Bennert et al., 2021).

Recent works also point toward a complex scenario involving
selection biases (Schulze and Wisotzki, 2011) and a better
appreciation of the active galaxies diversity. We may represent
the distribution of objects in theMBH—Mbulge (or σ+) diagram by
the bivariate distribution function of bulge mass Mbulge and MBH

Ψ(MBH,Mbulge). The Ψ distribution can be factorized as Ψ �
c(MBH | Mbulge)ϕ(Mbulge) where ϕ(Mbulge) is the spheroid mass
function and c represents the MBH—Mbulge correlation i.e., the
probability of having the black hole massMBH for a givenMbulge.
A correct evaluation of c(MBH | Mbulge) relies on: 1) the
knowledge of ϕ(Mbulge), which is not a trivial task to achieve
even in the local Universe, and needs a separate consideration of
purely spheroidal (i.e., diskless) galaxies and galaxies with
pseudo-bulges or with a bulge/disk system; 2) the absence of
biases affecting c(MBH | Mbulge).

Both the determinations of MBH and bulge parameters are
challenging, when derived from conventional optical and NIR
measurements. At present, black hole masses for type-1 AGN are
more frequently derived through the so-called, single epoch virial
broadening estimation i.e., through the measurement of the radial
velocity broadening term that appears squared in Eq. 36 from
single epoch spectra. In practice, it is the measurement of the
FWHM or σ6 of broad emission lines [e.g. (McLure and Jarvis,
2002; Vestergaard and Peterson, 2006)]. To obtain MBH, an
estimate of the radius rBLR is also needed, and a rather poorly
defined scaling law of rBLR vs luminosity is applied.

The bulge estimates in AGN samples are hampered by the
luminous source associated with the active nucleus, which may
well outshine the entire galaxy. The Mbulge has been frequently
computed from the host galaxy luminosity (Peng et al., 2006a;
Peng et al., 2006b; Treu et al., 2007; Schramm et al., 2008; McLeod
and Bechtold, 2009; Bennert et al., 2010; Decarli et al., 2010;
Targett et al., 2011). However, type-1 AGN remain offset from
inactive galaxies in the MBH—Lbulge relation: AGN have more
luminous bulges at a given black hole mass (Nelson et al., 2004;
Bennert et al., 2021). There are evidences that the MBH − Lbulge
relation defined by quiescent BH samples differs from that
defined by the galaxies in the SDSS (Bernardi et al., 2007).
Interestingly, the offset is larger for AGN of larger Eddington
ratio (Barth et al., 2021). This suggests that the central regions of
galaxies hosting an AGN have, in general, lower mass-to-light
ratios than inactive galaxies, most likely for the presence of a
young stellar population in the bulge of active systems (Kim and
Ho, 2019).

The σ+ has been measured either directly i.e., from the width
of absorption lines associated with the stellar component of the
host galaxies (Woo et al., 2006; Woo et al., 2008b; Shen et al.,
2008) or by using the widths of narrow emission lines a proxy of

the stellar velocity dispersion (Shields et al., 2003; Shields et al.,
2006; Salviander et al., 2007). The latter approach is fraught from
systematic effects. In the case of quasars and AGN radiating at
moderate and high Eddington ratios, the [OIII]λ5007 broadening
is strongly affected by non-virial motions (Zamanov et al., 2002;
Marziani et al., 2006; Mathur et al., 2011; Marziani and Sulentic,
2012; Cracco et al., 2016).

More reliable results for dynamical mass measurements of the
host galaxy from spatially resolved images have been obtained
with adaptive optics (Inskip et al., 2011). CO emission profiles
have been used to estimate dynamical masses for individual
objects since the early 2000s (Walter et al., 2003) even at fairly
high redshift, and nowadays ALMA is rapidly adding to the
available dynamical mass measurements for the host galaxy [e.g.
(Tan et al., 2019; Molina et al., 2021)], considering that the
velocity field of the molecular gas is often regular and
consistent with rotation. State-of-the-art surface photometry of
the AGN host galaxies in the NIR achieves decomposition in
spheroid, disk, and bar component, as most of the host of nearby
Seyfert galaxies are of morphological type Sa/SBa. As mentioned,
a most recent work did not detect significant differences in the
scaling with MBH and σ+ between active and nonactive galactic
nuclei (Caglar et al., 2020; Bennert et al., 2021), and did not find
difference between pseudo and classical bulges or barred and
nonbarred galaxies in the MBH—Mbulge relation (Bennert et al.,
2021), although this result is still controversial (Kormendy et al.,
2011; Ho and Kim, 2014). In addition, c is still computed with the
single epoch technique, without consideration of the diversity in
accretion structure (and hence virial factor) that is expected in
type-1 AGN samples. For type-1 active nuclei radiating at
Eddington ratio above 0.01, the geometry and structure of the
emitting region are affected by the accretion mode, which in turn
affects the expression of the virial factor that is dependent on
kinematics, geometry, and viewing angle (Collin et al., 2006; Park
et al., 2012; Mejía-Restrepo et al., 2016; Mejía-Restrepo et al.,
2018; Shankar et al., 2019). A study separately considering
sources in different accretion modes and the statistical bias
introduced by orientation effects is not available as yet.

Keeping the attention focused on c, the radius of influence rh is
of the order of parsecs, and insufficient resolution may prevent
reliable BHmass estimates or forces to target only the largest BHs
(Gültekin et al., 2009; Gültekin et al., 2011), leading to a selection
effect that yields an increase in theMBH—σ relation for quiescent
galaxies by a factor of a few (Shankar et al., 2016; Shankar et al.,
2019). AGN will on average host more massive BHs than in the
volume-limited case (Lauer et al., 2007), determining a
Malmquist bias toward more massive BHs at a given spheroid
mass, shifting c upward and causing an offset in the zero-point of
the MBH—Mbulge relation. There are competing effects: the
fraction of active galaxies among SMBHs varies considerably
with mass (high-mass BHs are likely less active than low-mass
BHs (Schulze and Wisotzki, 2011)). The strength of the bias
depends on the limit in luminosity, the shape of the distribution
function of spheroids, the scatter of theMBH-Mbulge relation, and
the Eddington ratios. If, as mentioned, the active fraction
decreases as the BH mass increases, then for a given spheroid
mass it will be more probable to find small-masses BHs in an6Not to be confused with σ+.
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AGN sample, causing a bias toward lowerMBH/Mbulge ratios, and
a change in the slope of the relation.

The low-MBH end of the correlation is especially problematic,
as it is for quiescent galaxies. Narrow-line Seyfert 1s nuclei
(NLSy1s, low-z type-1 AGN several of which are accreting at
high rate (Marziani and Sulentic, 2014a)), often hosted in dwarf
high surface brightness galaxies (Krongold et al., 2001) and in
barred spirals (Crenshaw et al., 2003; Ohta et al., 2007), possess
under-massive BHs (Mathur et al., 2001; Chao et al., 2008).
NLSy1 nuclei often reside in disk-dominated galaxies with
pseudo-bulges (Orban de Xivry et al., 2011; Mathur et al.,
2012; Ermash and Komberg, 2013; Olguín-Iglesias et al., 2017;
Järvelä et al., 2018; Doi et al., 2020). These types of bulges are
more closely associated with the evolution of disks and may be
typical of systems that did not experience a minor or major
merger capable of leading to a real bulge development. Several
studies found that disk-dominated galaxies deviate from the
MBH—Mbulge correlation, and, if considered as a distinct class,
may not follow a MBH—Mbulge correlation (Kormendy et al.,
2011; Davis et al., 2018; Sahu et al., 2020). However, if one applies
a correction for the disk component, and considers only the
bulge, the AGN in the low black hole mass rangesMBH ≲ 108 M⊙
might follow a relation consistent with the local MBH—Mbulge

correlation (Bennert et al., 2011; Sanghvi et al., 2014). At any rate,
the relation betweenMBH and σ+ orMbulge should be taken with
special care in particular in the lower MBH range. Relatively few
objects are obscured type-1 AGN. Chandra observations are
detecting a wealth of black holes in star-forming galaxies, in
the range between 106—107 M⊙, even at high z (Mezcua et al.,
2016; Fornasini et al., 2018; Zou et al., 2020). They are low mass
by supermassive black hole mass standards, and most likely still
growing in an obscure phase. It is not known how they would be
located in the MBH—Mbulge plane. These elusive AGN are
potential targets for JWST (Satyapal et al., 2021).

13.7 Over-Massive and Under-Massive
Black Holes
At the time of its discovery, the luminous quasar HE0450-2,958
appeared as an oddity: a quasars without a host galaxy! (Magain
et al., 2005). Understandably enough, the source attracted a lot of
interest, and perhaps even a revival of the noncosmological
interpretation of quasar redshifts (Arp et al., 1979; Sulentic
and Arp, 1983; Sulentic and Arp, 1987). HE0450-2,958
appears hosted by a galaxy much fainter than that inferred
from the correlation between BH mass and bulge luminosity
(Kim et al., 2007). In the case of quiescent galaxies, compact dwarf
galaxies whose BH has a mass reaching even 15% of the total
galaxy mass (Reines et al., 2014; Seth et al., 2014; van Loon and
Sansom, 2015) are observed. A possible explanation is that their
outer parts may have been stripped by repeated encounters with
other galaxies and produced an ultra-compact dwarf galaxy. The
EAGLE cosmological and hydrodynamical simulations suggest
that these kinds of objects are outliers resulting from the
combination of stellar tidal stripping and the early formation
epoch, which leaded to a rapid BH growth at high redshift, with
the first mechanism being the most relevant for 2/3 of these

sources (Barber et al., 2016). However, the disk/bulge
decomposition is a delicate procedure. A careful reanalysis of
the most striking cases, Mrk1216, NGC1277, NGC1271, and
NGC1332, suggests that a proper reevaluation of the disk size
with an ensuing increase in spheroid mass will bring these sources
in better agreement with the MBH—Mbulge relation (Savorgnan
and Graham, 2016). The case of HE0450-2,958 has not been fully
explained to date. Past works have considered intriguing lines of
evidence suggesting high L/LEdd and BAL outflow (Merritt et al.,
2006; Lipari et al., 2007). However HE0450-2,958, which appears
as a mini-BAL from a FOS spectrum, shows modest optical FeII
emission, and a spectrum similar to the one of PG1211 + 143
(Merritt et al., 2006). According to the main sequence trends (see
§14.2), the object should not be highly accreting (Marziani and
Sulentic, 2014a; Du et al., 2016b). It is also unlikely that HE0450-
2,958 is a recoiling black hole ejected by a companion galaxy at
approximately 7 kpc of projected linear distance, on the ground of
the strong narrow line emission of [OIII]λλ4959,5007 (Merritt
et al., 2006). HE0450-2,958 does not appear as an extraordinary
powerful quasar. The upper limits on the host galaxy luminosity
are not very constraining, so that this object could be well within
the limits set by the scatter in the MbulgevMBH correlation (Kim
et al., 2007).

However, recoiling black holes—provided that they are the
active member of the binary, as suggested by numerical
simulations (Nguyen and Bogdanović, 2016)—may
systematically lower MBH and ultimately increase the scatter of
the observed BH–host galaxy bulge relation due to ejected BHs
(Volonteri, 2007). Recoiling BHs have lower masses than their
stationary counterparts, but the deficit in mass depends on kick
speed and merger remnant properties (Blecha et al., 2011). The
effect is of an overall downward shift in the normalization and an
increase of the scatter in the MBH—Mbulge relation: the offset
between the stationary and the recoiling BH population can reach
δ log g ≈ 0.4 dex, if the rotational velocity of the secondary BH is
close to its escape velocity. The amplitude of the downward offset
depends on the recoil velocity as well as on the accretion history
of the stationary black hole, and can be lower, yielding a δ log ϕ ≈
0.2 dex. This scenario is not as yet contextualized: a large fraction
of type-1 AGN shows evidence that they do not host a sub-parsec
binary black hole with a significant mass ratio between the
secondary and the primary (say q ≳ 0.1). Conclusive evidences
in favor of such binary systems are very rare at the time of writing.

13.8 Evolution of the MBH—Mbulge Relation
Active galactic nuclei and quiescent bulge-dominant galaxies do
not show strong evidence of evolution in the MBH—Mbulge

relation up to z ∼ 0.6 − 1 (Salviander et al., 2007; Schulze and
Wisotzki, 2014; Li et al., 2021). At higher redshift, there is an
increasing evidence of evolution, in the sense of high-z SMBHs
that are overmassive at a given bulge mass than expected from the
local scaling relation (McLure et al., 2006; Decarli et al., 2018).
Between redshifts 1 and 2, Merloni et al. (2010) suggested a
significant increase of the MBH/MBulge ratio ( ∝ (1 + z)0.68).
Studies at even higher redshift used the velocity dispersion of the
gas as a proxy of the stellar velocity dispersion and dynamical
mass measurement from inclined disk models (Vayner et al.,
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2021). They suggest over-massive black holes (Targett et al., 2011)
with respect to the local scaling law. The most recent results
confirm that quasars host galaxies are under massive relative to
MBH, and detect a large difference, even by an order of magnitude,
with systems at redshift in between 1.4 and 2.6 residing off the
local scaling relation. Several quasar host galaxies have been
resolved in their [C II] emission on a few kpc scale at redshift
≈6. Even in this case, the dynamical mass estimates for the host
galaxies give masses more than an order of magnitude below the
values expected from the local scaling relation (Decarli et al.,
2018), in agreement with the results for galaxies at z ≈ 7 derived
from cosmological hydrodynamical simulations (Marshall et al.,
2020).

The evolution of the MBH—Mbulge relation with the cosmic
epochs can be interpreted in several ways: the most
straightforward is that of a rapid growth of SMBHs at high
redshift (Lupi et al., 2021). Also a variation of structural
properties of AGN hosts remains possible (Shankar et al.,
2013b; Zhu et al., 2021): elliptical galaxies are not really
monolithic spheroids, but have undergone significant late-
time dissipation-less assembly. There are intriguing caveats
with the interpretation of a rapid black hole growth. First,
very massive seed black holes need to be formed at z ≈ 20 to
account for masses ∼ 109 M⊙ observed at redshift z ≳ 4
((Volonteri, 2010; Trakhtenbrot, 2020), and references
therein). Second, BH masses (unlike the masses of galaxies!)
can only increase with cosmic epoch. If the merger-driven
hierarchical scenario that implies the parallel growth of bulges
and BHs is taken literally, the larger MBH/MBulge ratio at high z
means that mergers affect more bulge than BHmasses (at cosmic
epochs associated with z ≳ 1), an implication consistent with the
anti-hierarchical growth and downsizing of the nuclear activity
at low-z (Hirschmann et al., 2012). If pseudo-bulges follow the
same MBH scaling relations as that of classical bulges [e.g.,
Bennert et al., 2021], hierarchical growth might not be the
only mechanism that drives the relation between
MBH—Mbulge: in spiral galaxies, secular evolution might lead
to a parallel growth of bulge and central black hole. Clearly, this
issue should be analyzed in connection to ongoing star formation
properties of the pseudo-bulge hosts (Zhao et al., 2021). Host and
black hole properties are different for different masses, and the
relation between galaxy color and black hole mass is different for
the red and blue sequence quiescent galaxies, suggesting different
channels of black hole growth for the two sequences (Dullo et al.,
2020).

In conclusion, AGN with “coreless” elliptical/bulge-
dominated hosts may straightforwardly follow a relation
similar to the one of normal galaxies. In other words, the
MBH—Mbulge relation may strictly hold for massive evolved
systems, also if the nucleus is active, in a form that is as yet
indistinguishable from the one of quiescent galaxies. It remains to
be tested whether these sources could be mainly AGN accreting at
relatively low rate and radiating at modest Eddington ratios
(Population B, Section 14.2). Significant deviations may be
associated with disk dominance, but a careful assessment of
the relative disk and bulge contribution might bring the
system with the over-massive BHs in agreement with the

established relation (Caglar et al., 2020; Zhao et al., 2021). The
local NLSy1s—all of which are Population A (Section 14.2), with
a significant fraction of high accretors—are instead believed to be
with black holes under massive with respect to their host masses.
In this respect they are different from the high-z quasars with
over-massive black holes. However, the observational properties
of low-zAGN accreting at relatively high rate can still be regarded
as typical of very high z quasars, whenmassive bulges were not yet
formed, as originally suggested by Mathur (2000), Sulentic et al.
(2000a). The analogy is based on the optical, UV, and X-ray AGN
spectroscopic properties that are mainly governed by the
Eddington ratio. In addition, modest masses of low-z quasars
can grow by a factor ∼ 10 on time scales shorter than timescale of
the cosmic evolution of quasar accretion rates, and therefore
bring under massive BHs in line with the MBH—Mbulge relation
(Fraix-Burnet et al., 2017).

14 THE FUNDAMENTAL PLANE OF ACTIVE
GALACTIC NUCLEI AND THE TYPE-1
ACTIVE GALACTIC NUCLEI MAIN
SEQUENCE

Some general considerations are in order when restricting
the attention to the nuclei of galaxies. First, the central
engine of nuclear activity is contained within a few parsec
from its prime mover, the accreting massive black hole.
Several scaling laws that are widely applied in the study of
galaxies are not considered in the study of AGN: the
Kormendy relation loses its meaning in the context of a
system that is observed without spatial extension. Or, they
might connect different physical bodies: when we speak
about the r − L relation for AGN, r is the radius of the
line-emitting region, and L is the luminosity of the AGN. The
two parameters do not refer to cospatial entities. A similar
consideration applies to the MBH—r, or the MBH—L, or the
MBH—metallicity relations.

The virial equation (Eq. 36) is yielding the same FWHM for
the same r/MBH; what matters is the radius in units of
gravitational radii, a dimensionless quantity. A smaller mass
can give the same line width of a larger mass provided that r
scales withMBH. This is why we need an estimate of the linear size
r to recover a value ofMBH in physical units. This scale invariance
is obviously not applicable to radiative phenomena: the flux
reaching a distance r will decrease with the inverse of the
square of r on a dimensional scale. The BLR radius rBLR
subtends such a small angle that has not been directly resolved
if not in the last few year thanks to the GRAVITY instrument
(Amorim et al., 2020; Amorim et al., 2021). The foundations of
any AGN diagnostics therefore rest on the scale invariance of
gravitational forces, and on electromagnetic phenomena instead
of lacking such scale invariance. These considerations can be
translated in mathematical terms to provide at least a self-similar
framework that includes the fundamental plane of black holes,
the modelization of jets (Heinz and Sunyaev, 2003) and the
quasar main sequence (MS).
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14.1 The Fundamental Plane of Black Hole
Activity
The fundamental plane of black hole activity can be written as a
correlation between black hole mass, X-ray, and radio luminosity.
The correlation defines a plane in the space of parameters defined
by the mass and the radio and X-ray luminosities. In its original
formulation, the fundamental plane was written as (Merloni et al.,
2003):

logLR � (0.60 ± 0.11)logLX + (0.78+0.11−0.09)logMBH + 7.33+4.05−4.07.
(38)

The scatter is large, implying that a fourth variable might be
involved, for instance black hole spin (Ünal and Loeb, 2020). The
salient point is however that the relation holds over a huge range of
black hole masses, from a few times solar (i.e., from the domain of
the so-called micro-quasars) to the largest black hole masses
detected in the Universe ∼ 1010 M0 [e.g. (Schindler et al., 2021;
Valtonen et al., 2012)]. 7 It is remarkable that also stellar-mass black
holes exhibit relativistic jets, as spectacularly demonstrated by the
relatively recent discovery of superluminal motion in a Galactic
black hole candidate by Mirabel and Rodríguez (1994). The self-
similarity expressed inEq. 38 allows for an invariant jet model and a
simple relation betweenMBH and radio power (Heinz and Sunyaev,
2003). The self-similarity notwithstanding, there is a nonlinear
relation between BH mass and radio power, with P] ∝
MBH

1.3−1.4, implying that the radio emission normalized to the
bolometric luminosity should be much higher for AGN than for
microquasars. In the framework of the model of Heinz and Sunyaev
(2003), flat spectrum synchrotron jet emission is produced by an
inefficient accretion mode. The fundamental plane of black hole
activity refers to sources accreting at very low rate (dimensionless
accretion rate _m≲ 0.01), and radiating below a few hundredths of
their Eddington luminosity (Gültekin et al., 2019). This means that
the relation is best suited for sources such as micro-quasars
(i.e., stellar-mass black hole candidates in the low state (Mirabel
and Rodríguez, 1994)) and BL Lac objects, in which both radio and
X-ray emissions are ultimately associated with the relativistic jet.8

14.2 The Quasar Main Sequence
The quasar main sequence is, in many ways, analogous to the FP
for black holes in a different accretion mode sustained by higher
_m ∼ 0.01 − 1. The formulation is rather different, and follows a
different discovery path based on the statistical analysis of sources
that are predominantly radio-quiet. The quasar main sequence
(MS) is defined from the first Eigenvector (E1) that was originally
identified by a PCA of about 80 Palomar-Green (PG) quasars and
associated with an anti-correlation between the strength of optical
FeII emission measured from the prominence of the emission
blend centered at λ 4,570 Å (Fe IIλ4570) with respect to Hβ
(RFeII � I (Fe IIλ4570)/I(Hβ)) and FWHM of Hβ (Boroson and
Green, 1992). The E1 MS has withstood the test of time
[Figure 11 (Sulentic et al., 2000b; Zamfir et al., 2010; Popović
and Kovačević, 2011; Kruczek et al., 2011; Grupe and Nousek,
2015; Shen and Ho, 2014),], and the main optical trend shown in
Figure 11 has been confirmed by samples of more than two order
of magnitude larger in size than the original one (Shen and Ho,
2014). The importance of FeII stems from its extensive emission
from UV to the IR that can dominate the thermal balance of the
low-ionization BLR. The FWHM(Hβ) is associated with the
velocity field in the low-ionization BLR, most likely
predominantly virialized (Peterson and Wandel, 1999). These
two parameters are related to the physical conditions and to the
dynamics of the emitting regions, which are in turn influenced by
the accretion mode of the central black hole, and its
evolutionary stage.

Trends associated with the MS have been extended to the radio
(Sulentic et al., 2003; Shen andHo, 2014; Zamfir et al., 2008; Ganci
et al., 2019), FIR (Wang et al., 2006; Ganci et al., 2019), IR
(Dultzin-Hacyan et al., 1999; Loli Martínez-Aldama et al.,
2015; Panda et al., 2020), UV (Sulentic et al., 2000c; Reichard
et al., 2003; Bachev et al., 2004; Sulentic et al., 2006; Śniegowska
et al., 2020; Baskin and Laor, 2005; Richards et al., 2002; Richards
et al., 2005) and X-ray domain (Wang et al., 1996; Grupe et al.,
2001; Bensch et al., 2015), and to optical variability as well (Mao
et al., 2009; Bon et al., 2018). Table 1 of Fraix-Burnet et al. (2017)
provides a detailed list of the various parameters that have been
measured in the various frequency domains. A summary
description of the trends and a justification for the two quasar
populations are also provided by several authors (Sulentic et al.,
2008; Sulentic et al., 2011; Sulentic and Marziani, 2015). A
nonlinear decay curve provides a quantitative description of the
main sequence in the FWHM—RFeII plane (Wildy et al., 2019).

The distribution of the data in the plane RFeII—FWHM(Hβ)
makes it expedient to define spectral types [Figure 12 (Sulentic
et al., 2002; Shen and Ho, 2014)]. This provides the considerable
advantage that a composite spectrum within each bin could be
representative of objects in similar physical conditions. In
alternative, a prototype object can be defined for each spectral
type and used to analyze systematic changes along the quasar MS.
It is also expedient to distinguish between two populations:
Population A made of sources with FWHM(Hβ) ≤
4,000 km s−1 and Population B (broader) with FWHM(Hβ) >
4,000 km s−1. Extreme Population A are quasars with RFeII ≳ 1
and extreme Pop. B with undetectable FeII emission and the
broadest Balmer lines (extreme FWHM Hβ can reach ∼ 15, 000 −

7As stressed by Sulentic et al. (Sulentic et al., 2004; Sulentic et al., 2006; Sulentic
et al., 2007), MBH much in excess of ∼ 1010 M⊙ are unrealistic and probably the
results of the use of a high-ionisation line affected by wind kinematics as a virial
broadening estimator (VBE). This makes the primary black hole of OJ287
(Sillanpaa et al., 1988) as the most massive active black hole known to-date,
with a mass of ≈ 1.8 · 1010 M0, second to the black hole of Holm 15A, the central
galaxy of galaxy cluster Abell 85, with ≈ 4 · 1010 M0 (Mehrgan et al., 2019).
8There is as yet no consolidated way to compute bolometric corrections, and ideally
the bolometric correction should be computed from the spectral energy
distribution (SED) of each individual quasar (Shang et al., 2011), or at least for
each spectral type along the quasar main sequence (Pennell et al., 2017). Bolometric
corrections can be also computed from theoretical considerations on the emission
properties of the accretion disk (Nemmen and Brotherton, 2010; Netzer, 2019).
The simplest, and most widely used approach to compute the bolometric
correction is to multiply the monochromatic luminosity by a constant scale
factor that is obviously frequency-dependent and roughly 10 for λLλ at 5,000 Å,
and ≈ 2 − 3 for the UV wavelengths where the strongest lines are observed (Elvis
et al., 1994; Woo and Urry, 2002; Richards et al., 2006).
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20, 000 km s−1 (Eracleous and Halpern, 2003; Strateva et al., 2003;
Eracleous and Halpern, 2004)). Basically, Population B includes
sources termed as “disk dominated,” where radiation forces exert
a modest influence on the overall dynamics of the gas (Richards
et al., 2002), while Population A is made of quasars radiating at
relatively high Eddington ratio L/LEdd ≳ 0.2, for which radiation
forces are able to maintain a wind that leads to easily identified
systematic wavelength displacements toward the blue with
respect to the quasar rest frame in the high-ionization
emission lines (Gaskell, 1982; Brotherton et al., 1994; Marziani
et al., 1996; Richards et al., 2011; Coatman et al., 2016; Sulentic
et al., 2017). The extreme of Population A identifies the class of
“strong FeII emitters” (Lipari et al., 1993; Graham et al., 1996b).
FeII emission overwhelming Hβ line emission (RFeII ≳1) implies
extreme Eddington ratio (L/LEdd ∼ 1 (Marziani and Sulentic,
2014a)) and possibly super-Eddington accretion rate (Wang et al.,
2014a; Sun and Shen, 2015; Du et al., 2016b; Du et al., 2016b;
Panda et al., 2018; Panda et al., 2019).

However, along the entire MS, the BLR gas emitting the low-
ionization lines belongs to predominantly virialized systems
(Peterson and Wandel, 1999). The main asymmetries in the
low-ionization line profiles can be explained in the context of
a dynamical system whose velocity field is predominantly
Keplerian. The single peaked, symmetric, and unshifted profile
typical of Population A has been traditionally explained as due to
an extended disk (Dumont and Collin-Souffrin, 1990), and the
same explanation apparently remains valid in the case of extreme
Pop. A AGN that are characterized by extreme high-ionization
blueshifts (Leighly and Moore, 2004; Sulentic et al., 2007;
Richards et al., 2012; Marziani et al., 2016b; Bischetti et al.,
2017; Sulentic et al., 2017). The high CIVλ1549/Hβ intensity
ratio of the blueshifted emission (Marziani et al., 2010) makes
it possible that the Hβ profile remains almost symmetric and can
be easily symmetrized by applying a small correction (Negrete
et al., 2018). In general, the distinguishing feature of Pop. B
sources, a redward asymmetric profile, can be explained by the
sum of a disk contribution and emission from a larger distance
(Bon et al., 2007; Bon et al., 2009). Reverberation mapping studies

of lines from different ionic species have provided evidence of
“ionization stratification” and velocity-resolved reverberation
mapping of sources with asymmetric Hβ basically confirms the
scenario of a Keplerian velocity field (Du et al., 2018b; Brotherton
et al., 2020). The red-ward asymmetry has been interpreted as due
to gravitational and transverse redshift (Bon et al., 2015; Punsly
et al., 2020) or by gas clouds infalling toward the central black
hole (Wang et al., 2017). At the extreme end of Pop. B sources, the
profiles are often very broad and double peaked, accounted for by
a bare Keplerian disk model with mild relativistic effects (Chen
and Halpern, 1989; Strateva et al., 2003). So, all along the quasar
MS the low-ionization lines (at variance with the high-ionization
emission) appear to be predominantly associated with a bound,
Keplerian dynamical system (Collin-Souffrin et al., 1988; Elvis,
2000).

Many studies still distinguish between the NLSy1s (FWHM
Hβ ≲ 2000 km s−1) and the rest of type-1 AGNs [e.g., Cracco
et al., 2016], and consider NLSy1s an independent class. There
is a general consensus that the limit at 2,000 km s−1, albeit of
historical importance, has no special meaning. The main reason
behind extending the limit from 2,000 to 4,000 km s−1 is that
several properties of NLSy1s are consistent with the ones of “the
rest of Population A” in the range 2,000 km s−1 ≲ FWHM(Hβ) ≲
4000 km s−1. The change—in low redshift samples z ≲
1—occurs around 4,000 km s−1, not 2,000 km s−1 (Cracco
et al., 2016). On the converse Population A and B can be
distinguished on the basis of the Balmer line profiles, and
because of the amplitude of the systematic blueshift of the
high-ionization lines with respect to the quasar rest frame.
Composite Hβ profiles of spectral types along the MS are
consistent with a Lorentzian for both NLSy1s and the rest of
Population A. Other parameters (CIVλ1549 centroid, RFeII)
also span the same ranges in NLSy1s and the rest of
Population A.

The governing accretion parameter accounting for the MS
trends is most likely the Eddington ratio, which is related to
the mass accretion rate by a monotonic albeit nonlinear
relation (Mineshige et al., 2000; Sadowski, 2011; Sądowski

FIGURE 11 | The quasar main sequence as defined from the original paper by Boroson and Green (1992) based on 88 quasars (left) and the one based on the
SDSS sample of 310 low-z quasars by Zamfir et al. (2010). The color shading from cyan to navy blue is proportional to the number density as a function of the FeII
prominence parameter and of the FWHM of Hβ, and therefore to the source occupation in the parameter plane.
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et al., 2014). This explanation—originally suggested by
Boroson & Green (Boroson and Green, 1992)—has also
withstood the test of time (Marziani et al., 2001; Boroson,
2002; Ai et al., 2010; Zamfir et al., 2010; Xu et al., 2012; Shen
and Ho, 2014; Sun and Shen, 2015; Panda et al., 2017; Panda
et al., 2018), even if several key pieces needed to connect L/
LEdd to the observed parameters remain poorly understood to
date. The evidence of a correlation between RFeII and L/LEdd is
still made murky by the strong effect of orientation on the line
broadening, affecting MBH and L/LEdd computations with
both random and systematic errors (Marziani et al., 2019).
Sun and Shen (2015) provided evidence of this based on the
stellar velocity dispersion of the host spheroid (a proxy for
MBH) anticorrelation with RFeII, implying that L/LEdd
increases with FeII. Recent approaches include a careful
analysis of the role of metallicity and of density and
ionization trends (Panda et al., 2018; Panda et al., 2019),
and confirm L/LEdd as the main physical parameter governing
the MS “horizontal branch” along the RFeII axis.

A toy scheme can explain in a qualitative way the occupation
of the MS plane under the assumptions that Eddington ratio,
mass, and an aspect angle θ (i.e., the angle between the line-of-
sight and the accretion disk axis) are the parameters setting the
location of quasar along the MS (Marziani et al., 2001; Marziani
et al., 2018). If the BLR radius follows a scaling power-law with

luminosity (r∝ La, Kaspi et al. (2000), Bentz et al. (2013)), under
the standard virial assumption, then
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We can also write RFeII as a function of (L/LEdd) and θ,
which needs to be established either empirically or
theoretically. For illustrative purposes, we consider the
“fundamental plane of accreting BHs” that relates L/LEdd to
RFeII (Du et al., 2016b; Bon et al., 2020), ignoring other
relevant factors, such as systematic differences in line
shapes and in chemical composition along the MS (Panda
et al., 2019; Śniegowska et al., 2020), and we assume that RFeII

depends on θ following a limb-darkening law (Marziani et al.,
2001; Netzer, 2013).

As expected, the right panel of Figure 12 shows that θ
predominantly affects FWHM Hβ and L/LEdd predominantly
(but not exclusively) affects RFeII. Under the assumptions of
the toy scheme the FWHM limit at 4,000 km s−1 should
include mainly sources with L/LEdd ≳ 0.1 − 0.2. Sources at
lower L/LEdd are expected to be rare because they should be
observed almost pole-on (for example, core-dominated radio-
loud quasars whose viewing angle θ is relatively small (Marziani
et al., 2001; Zamfir et al., 2008)), and the probability of observing
a randomly oriented source at an angle θ between the symmetry
axis and the line of sight is P(θ)∝ sin θ. Even if such sources are
expected to be rare, their number increases in flux-limited
samples for a Malmquist bias, due to a continuum
enhancement via relativistic beaming. We can say that
separating Pop. A and B at 4,000 km s−1 makes sense for low z
samples and that, also by a fortunate occurrence, Pop. A includes
mostly relatively high L/LEdd sources.

The bolometric luminosity L can be estimated from optical or
UV luminosities.9 The diagram L/LEdd vs. bolometric luminosity
(Figure 13) also provides a strong rationale for the existence of
two populations: only above a threshold of L/LEdd ≈ 0.1 large
shifts are observed. Data points whose high-ionization lines are
strongly blue shifted with respect to the rest frame are
superimposed on the distribution of Figure 13, and are
clearly seen for L/LEdd ≳ 0.1 only. This corresponds to the
population A and B of Sulentic et al. (2000a), of wind and
disk-dominated quasars (Richards et al., 2002), and population 1
and 2 of Collin et al. (2006). The data of Figure 13 refer to
sources with large blueshift in [OIII]λλ4959,5007, but an
equivalent behavior is observed also for the blueshift of
CIVλ1549. At the same time, Figure 13 (and Figure 15 as
well) show the effect of a strong bias typically affecting quasar
studies over a broad range of redshifts: at high z we detect only
the high-luminosity sources that correspond to relatively high L/
LEdd.

FIGURE 12 | The optical plane of the quasar main sequence with the
occupation accounted for by the combined effect of Eddington ratio and
orientation, as claimed by Shen and Ho (2014). The two grids were computed
forMBH � 108 M0 and 109 M0 (gray), for several values of L/LEdd and for
viewing angle θ between 0 and 40°, following the toy model described in the
text and in more detail in Ref. (Marziani et al., 2018). In the left panel, the labels
identify the areas of Population A and B (respectively below and above the
FWHM limit at 4,000 km s−1), and of extreme Population A (RFeII ≳ 1).

9This might exclude NLSy1s that are believed to be genuinely jetted, such as the
ones with c-ray detections (Berton et al., 2019). Such sources are in a different
accretion domain and might be more appropriately considered in the context of a
scaling law with a L/LEdd dependence (Foschini, 2014).
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Figure 11 refers to low-z (z ≲ 1) samples. A complete
mapping of the MS at high L is still missing (we consider high-
luminosity quasars those with bolometric log L ≳ 47 [erg/s]):
the Hβ spectral range is therefore accessible only with IR
spectrometers to observe the Hβ spectral regions of high-
luminosity quasars that are very rare at z ≲ 1. A significant
progress is expected in the next years, since IR spectral
observations covering Hβ of high-z and high-L quasars are
becoming widespread. A systematic increase in BH massMBH

has a corresponding increase in FWHM. If a � 0.5, the FWHM
grows with MBH

0.25, i.e. a factor of 10 for log L, passing from
44 (relatively low luminosity) to 48 (very luminous quasars).
The trend may not be detectable in low-z flux-limited samples,
but becomes appreciable if quasars over a wide interval in L
are considered. At high MBH, the MS becomes displaced
toward higher FWHM values; the displacement probably
accounts for the wedge-shaped appearance of the MS when
large samples of quasars are considered (Shen and Ho, 2014).
If we consider a limiting Eddington ratio (L/LEdd ∼ 0.1—0.2)
as a physical criterion for the distinction between Pop. A and
B, then the separation based on the FWHM becomes
luminosity dependent. According to the toy scheme, the
FWHM of Hβ (or of any other virialized line) should be
∝ L/LEdd−

1
2 × L

1−a
2 . Figure 14 shows that the ∝ L0.25 for the

width of a low- and an intermediate ionization line. The
maximum L/LEdd should correspond to the minimum
FWHM, expected to increase with luminosity as ∝ L0.25. If
the FWHM is plotted against the luminosity, a trend-line
nicely envelops the lower FWHM end of the data point
distribution (Marziani et al., 2009).

14.3 The BH Mass—Luminosity Relation
Joining the fundamental plane and the main sequence trends for
AGN, four main regimes can be isolated (c.f. (Giustini and Proga,
2019)) where the physics of the inner accretion and ejection is
expected to change. Observationally, they range from low-
luminosity AGN at extremely low accretion rates ( _m≲ 0.01)
and Population B quasars radiating at rates 0.01 ≲ L/LEdd ≲
0.1 − 0.2, to Population A sources with L/LEdd ≳ 0.1 − 0.2, and
extreme Population A sources radiating close or somewhat above
the Eddington limit (L/LEdd ≳ 1). There is a close formal analogy
between the FP of accreting black hole and the MS. Eq. 38 can be
rewritten as an implicit relation between L/LEdd and MBH.
Similarly the MS is a sequence in the plane FWHM Hβ—RFeII
that can be translated into a relation between L/LEdd ( ∝ RFeII)
andMBH (∝ FWHM). The relations of the MS are, as in the case
of the FP, self-similar over 9 orders of magnitude in MBH

(Zamanov and Marziani, 2002). Radiation-driven winds
appear to dominate in the high-ionization line emission in
Population A and especially extreme Pop. A, reflecting the
importance of the balance between radiation and gravitation
forces expressed by L/LEdd in the accretion processes of AGN
(Ferland et al., 2009; Marziani et al., 2010), whereas the black hole
mass is the ultimate parameter governing the energetics (Sulentic
et al., 2017).

The MBH—luminosity relation can be constructed for large
quasars samples once the MBH has been computed (Figure 15).

Figure 15 shows that the distribution of quasars in the plane
MBH—L is constrained within two well-defined diagonal lines,
corresponding to the L/LEdd ≈ 0.01 and L/LEdd ≈ 1. The empty
area at the top left corner is due to inefficient radiators accreting
at very low rate (Narayan and Yi, 1995), which are most often not
type-1 quasars and are difficult to detect; the bottom right area is
associated with sources that should be super Eddington radiators.
Such sources are not expected to exist; L/LEdd ≈ a few could be a
physical limit for highly super-Eddington accretion (Mineshige
et al., 2000; Sądowski et al., 2014).

15 A TULLY-FISHER LAW FOR QUASARS

Strong FeII emitters have attracted attention since long, but they
have been linked to a particular accretion state only recently
(Marziani and Sulentic, 2014a; Marziani and Sulentic, 2014b).
The simple selection criterion RFeII > 1.0 used for the
identification of xA sources from optical data corresponds to
an equally simple selection with UV criteria (Marziani and
Sulentic, 2014a). In addition, the distinguishing features of the
UV composite spectrum of Martínez-Aldama et al. (2018) reveal
that the spectrum of xA sources can be recognized by a simple
visual inspection.

Extreme Population A sources account for ∼ 10% of quasars in
low-z, optically selected sample FeII in Pop. A. Lines have low
equivalent width: some xAs are weak lined quasars [W(CIVλ1549)
≤ 10 Å, WLQ (Diamond-Stanic et al., 2009)], whereas WLQs can
be considered the extreme of Pop. A (Marziani et al., 2016b). The
CIII]λ1909 emission almost disappears. In the plane log U − log
nH defined by CLOUDY simulations, UV line intensity ratio
converges toward extreme values for density (high, nH > 1012 −
1013 cm3) (Negrete et al., 2012; Temple et al., 2020), ionization
(low, ionization parameter U ∼ 10−3 − 10−2.5). Extreme values of

FIGURE 13 | The relation between Eddington ratio L/LEdd and
bolometric luminosity for the sample described in Figure 11, second panel.
Quasars occupy the range 0.01–1, but only above Eddington ratio ≈ 0.1 large
shifts are observed, as shown by the distribution of the blue data points,
which represent quasars with the largest [OIII]λλ4959,5007 blueshift.
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metallicity are also derived from the intensity ratios CIV/AlIII,
CIV/HeII, AlIII/SiIII] (Negrete et al., 2012; Martínez-Aldama
et al., 2018; Śniegowska et al., 2020), most likely above
10–20 times solar or with abundances anomalies that might
selectively increase aluminum or silicon, or both.

XA quasars radiate at extreme L/LEdd along the MS. The L/LEdd
dispersion has been found to be small (Marziani and Sulentic,
2014a). This result is consistent with the accretion disk theory that
predicts low radiative efficiency at high accretion rate and that L/
LEdd converges toward a limiting value (Mineshige et al., 2000;
Abramowicz et al., 1988; Sądowski et al., 2014). Another important
fact is the self-similarity of the spectra selected by the RFeII criterion:
the low-ionization lines become broader with increasing luminosity
according to Eq. 39, but the relative intensity ratios (and so the
overall appearance of the spectrum) remain basically unchanged,
although some redshift and luminosity effects are expected.
Accretion disk theory predicts that at high accretion rate a
geometrically thick, advection dominated disk should develop
(Abramowicz et al., 1988; Sądowski et al., 2014). The innermost
part of the disk is puffed up by radiation pressure, while the
outermost one remains geometrically thin. The effect on the
BLR structure can be addressed by two-dimensional
reverberation mapping and by careful modeling of the coupling
between dynamical and physical conditions (Li et al., 2013; Pancoast
et al., 2014b; Li et al., 2018). However, this change from the standard
thin disk provides two key elements for the BLR structure: the
existence of a collimated cone-like region, where the high-ionization

outflows might be produced, and the shadowing of the outer disk
where low-ionization emission lines form (Wang et al., 2014b). The
low-ionization emitting region may therefore remain shadowed
from the intense radiation field that is associated with the
continuum observed if the line of sight is not too far from the
polar axis, and the velocity field stays unperturbed.

15.1 A Relation Between Luminosity and
Velocity Dispersion for Quasars
Three conditions are satisfied for xA quasars: 1) constant
Eddington ratio L/LEdd, close to Eddington limit; 2) the
assumption of virial motions of the low-ionization BLR, so that
the black hole mass MBH can be expressed by the virial relation
(Eq. 36); 3) spectral invariance: for extreme Population A, the
ionization parameter U can be written as U �
Q(H)/4πr2BLRnHc∝ L/r2BLRnH (Netzer, 2013), where Q(H) is the
number of hydrogen-ionizing photons.U has to be approximately
constant; otherwise, we would observe a significant change in the
spectral appearance. The three constraints make it possible to
derive a relation between line width (the FWHM of the Hβ broad
component is expressed in units of 1,000 km s−1) and luminosity:

L(FWHM) � L0 · (FWHM)41000 erg s−1 (40)

where L0 depends on the square of L/LEdd, the ionizing range of
the spectral energy distribution, and a parameter directly derived
from the UV spectra, the product density times ionization
parameter that has been scaled to the typical value 109.6cm−3

(Padovani and Rafanelli, 1988; Matsuoka et al., 2008; Negrete
et al., 2012). Until now, the FWHM of Hβ broad component and
of Al IIIλ1860 have been adopted as VBEs (Dultzin et al., 2020;
Czerny et al., 2020; Marziani et al., 2020). Equation (40) implies

FIGURE 14 | The relation between FWHM of Hβ (blue) and Al IIIλ1860
(magenta) and their FWHM ratio (bottom panel), and bolometric luminosity.
The filled line represents the trend FWHM∝ L1/4, with arbitrary normalization.
The yellow band defines the uncertainty range in the ratio FWHM Al
IIIλ1860/FWHM Hβ.

FIGURE 15 | Mass-luminosity relation for a sample of ≈ 330 AGNs,
made of 280 low-z quasars from Marziani et al. (2003) and high-luminosity 50
HE quasars of the sample described by Sulentic et al. (2004). The diagonal
lines trace the lower ∼ 0.01· L/LEdd and ∼ 1.00· L/LEdd. The wide majority
of AGN is included within these limits.
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that a simple measurement of the FWHM of a low-ionization line
yields a z − independent estimate of the accretion luminosity
[Marziani and Sulentic, 2014a, c.f. (Teerikorpi, 2011)].

The virial luminosity equation is conceptually equivalent to
the Tully-Fisher and the early formulation of the Faber Jackson
laws for ETGs (Faber and Jackson, 1976; Tully and Fisher, 1977).
Recent works proposed the “virial luminosity” could provide
suitable distance indicators because several emission properties
appear to be extreme and stable with luminosity scaling with
black hole mass at a fixed ratio (Wang et al., 2013; Wang et al.,
2014a; Franca et al., 2014). The virial equation has been applied to
xA quasars only (L/LEdd ∼ 1), although it in principle could be
useful for all quasars with known L/LEdd, provided a suitable
emission line broadened by virial motions is used for the
luminosity computation. At present, the virial equation can be
considered for all xA quasars distributed over a wide range of
luminosity and redshift, where conventional cosmological
distance indicators are not available (Czerny et al., 2018;
Czerny et al., 2020; Marziani et al., 2020).

16 CONCLUSION

In this work we have reviewed only a small part of the big efforts
done up to now on the SRs of galaxies and AGN. We have not
addressed for example the correlations that are observed in the X-
ray and radio domain, as well as many correlations involving the
line emissions visible in the spectra.

It should be now clear that SRs are used continuously in every
research area. The aims are different, going from the estimation of
masses and distances, or peculiar velocities, or simply to check the
output of theories, or to extract from them some useful
indications about the physical mechanisms shaping the
structure and evolution of galaxies and AGN.

The clear message emerging from this vast panorama of
connections between structural, dynamical, gas, and stellar
population and halo parameters, is that galaxies are very
complex objects formed through different channels, which
include merging of subunits, inflows, shocks, collapses, etc., as
some of the most influent processes at work. In addition, it is also
clear that galaxies vary their properties across the cosmic time,
changing their morphology and physical characteristics. The
simple Hubble morphological classification is therefore only a

first naive tentative of summarizing such complexity that today
are leading astrophysicists to adopt new specific strategies to
classify galaxies, describe their properties, and highlight the
amount of diversity across the cosmic epochs, but always
keeping in mind the necessity of looking at the most important
parameters that are able to trace the evolution of galaxies.

This new way of working is now facing the need of
sophisticated numerical simulations and new statistical tools
able to tackle the big astronomical number of data, exploring
different classification schemes and strategies and group galaxies
according to their similar evolutionary paths.

The multivariate partitioning analyses appear to be one of the
most appropriate techniques. The principal component analysis
is one of these tools (Cabanac et al., 2002; Recio-Blanco et al.,
2006), but it is not a clustering tool. Many new attempts have used
multivariate clustering methods [see e.g. (Ellis et al., 2005;
Chattopadhyay and Chattopadhyay, 2006; Chattopadhyay and
Chattopadhyay, 2007; Chattopadhyay et al., 2009; Fraix-Burnet
et al., 2009; Almeida et al., 2010; Fraix-Burnet et al., 2010)]. These
sophisticated statistical tools are now used in different areas of
astrophysics and are giving encouraging results, in particular for
the problem of the identification of the galaxy ancestors and the
processes more active in the transformation of galaxies (Fraix-
Burnet et al., 2019).

In conclusion we can say that the world of SRs is big and
complex. A lot of efforts are still necessary to organize such
complexity, identify the key relationships having a real physical
role for galaxies and AGN, and understand the profound
implications behind their intrinsic nature. Possibly, the future
high-z observations will add new information that will help the
clarification of many long-standing open problems.
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GLOSSARY

AGN active galactic nuclei

ALMA atacama large millimeter array

BTF baryonic tully-fisher

BM baryonic matter

BH black hole

BLR broad-line region

CoGs clusters of galaxies

CGM circum-galactic medium

CMR color-magnitude diagram

DEs dwarf elliptical galaxies

DGs dwarf galaxies

DSphs dwarf spheroidal galaxies

DM dark matter

EAGLE evolution and assembly of galaxies and their environments

ETGs early type galaxies

FIR far infra-red

FJ Faber -Jackson

FP fundamental plane

FOS fiber optic switch

FWHM full width at half maximum

IGM inter-galactic medium

IMF initial mass function

ISM inter-stellar medium

JWST James webb space telescope

LTGs late type galaxies

LZR luminosity-metallicity relation

MR mass -radius

MRR mass-radius relation

MS main sequence

MZR mass-metallicity relation

NIR near infra-red

NLSy1 narrow line seyfert 1

PCA principal component analysis

SED spectral energy distribution

SF star formation

SFH star formation history

SFR star formation rate

SKA square kilometer array

SMBHs Super Massive BH

SRs scale relations

TF Tully-Fisher

VBE Virial Broadening Estimator

VLBI very long baseline interferometry

VLTI very large telescope interferometry

WLQ weak-lined quasars

ZoE zone of exclusion.
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