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Time-series measurements of the number density ncore and temperature Tcore of the core-
electron population of the solar wind are examined at 1 AU and at 0.13 AU using
measurements from the WIND and Parker Solar Probe spacecraft, respectively. A
statistical analysis of the ncore and Tcore measurements at 1 AU finds that the core-
electron spatial structure of the solar wind is related to the magnetic-flux-tube structure of
the solar wind; this electron structure is characterized by jumps in the values of ncore and
Tcore when passing from one magnetic flux tube into the next. The same types of flux-tube
jumps are seen for Tcore at 0.13 AU. Some models of the interplanetary electrical potential
of the heliosphere predict that Tcore is a direct measure of the local electrical potential in the
heliosphere. If so, then jumps seen in Tcore represent jumps in the electrical potential from
flux tube to flux tube. This may imply that the interplanetary electrical potential (and its effect
on the radial evolution away from the Sun of solar-wind ions and electrons) independently
operates in each flux tube of the heliosphere.
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INTRODUCTION

The magnetic structure of the solar wind at 1 AU is well observed, with ubiquitous strong current
sheets (magnetic directional discontinuities) (Siscoe et al., 1968; Burlaga and Ness, 1969; Mariani
et al., 1973; Vasquez et al., 2007) partitioning the magnetic field and plasma into numerous spatial
domains. Over the years observations of the behavior of energetic-particles fluxes and anisotropies,
the electron strahl, the proton plasma, the proton bulk flow, and the alpha-to-proton ion
composition have led to a picture of the magnetic structure where the current sheets partition
the field into filaments or a spaghetti of magnetic flux tubes (Bartley et al., 1966; McCracken and
Ness, 1966; Michel, 1967; Bruno et al., 2001; Borovsky, 2008; Greco et al., 2008; Riazantseva et al.,
2017; Pecora et al., 2019). There are, however, other depictions of the magnetic structure of the solar
wind, for instance an admixture of flux tubes, plasmoids, magnetic islands, and localized magnetic
structures (e.g., Khaborova et al., 2015; Khaborova et al., 2016; Adhikari et al., 2019;Malandraki et al.,
2019; Khaborova et al., 2020), which is well depicted in Figure 24C of the review Khabarova et al.
(2021). Certainly, it is well known that closed-field plasma blobs can be found in solar-wind plasma
originating from coronal streamer stalks (Wang et al., 1999; Sheeley and Rouillard, 2010; Viall et al.,
2010; Viall and Vourlidas, 2015; Kepko et al., 2016; Di Matteo et al., 2019). Relatedly, sector-reversal-
region plasma (in which the heliospheric current sheet is found) tends to have magnetic fields that
are less Parker-spiral oriented and tends to have a weaker electron strahl (Borovsky, 2021), both
being indicative of impulsive emission of plasma from the Sun with poor magnetic connections back
to the Sun. In the non-ejecta solar wind the magnetic flux tubes meander along the Parker-spiral
direction (Borovsky, 2010). It is also known that there is a plasma structure to the solar wind at 1 AU

Edited by:
Daniele Telloni,

National Institute of Astrophysics
(INAF), Italy

Reviewed by:
Tommaso Alberti,

Institute for Space Astrophysics and
Planetology (INAF), Italy

Olga Malandraki,
National Observatory of Athens,

Greece

*Correspondence:
Joseph E. Borovsky

jborovsky@spacescience.org

Specialty section:
This article was submitted to

Space Physics,
a section of the journal

Frontiers in Astronomy and Space
Sciences

Received: 01 April 2021
Accepted: 24 May 2021
Published: 08 June 2021

Citation:
Borovsky JE, Halekas JS and

Whittlesey PL (2021) The Electron
Structure of the Solar Wind.

Front. Astron. Space Sci. 8:690005.
doi: 10.3389/fspas.2021.690005

Frontiers in Astronomy and Space Sciences | www.frontiersin.org June 2021 | Volume 8 | Article 6900051

ORIGINAL RESEARCH
published: 08 June 2021

doi: 10.3389/fspas.2021.690005

http://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2021.690005&domain=pdf&date_stamp=2021-06-08
https://www.frontiersin.org/articles/10.3389/fspas.2021.690005/full
https://www.frontiersin.org/articles/10.3389/fspas.2021.690005/full
http://creativecommons.org/licenses/by/4.0/
mailto:jborovsky@spacescience.org
https://doi.org/10.3389/fspas.2021.690005
https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://doi.org/10.3389/fspas.2021.690005


that is related to the magnetic structure: changes (jumps) in
plasma quantities are co-located with the strong current sheets
that are the boundaries between magnetic flux tubes. This
indicates that the plasma properties vary from magnetic-flux
tube to magnetic flux tube.

The origins of the flux tube texture of the solar wind are
uncertain: a major question is what portions of this structure are
created locally in the solar wind far from the Sun and what
portions are fossils from the solar corona (Neugebauer and
Giacalone, 2010; Li and Qin, 2011; Owens et al., 2011;
Neugebauer and Giacalone, 2015; Telloni et al., 2016; Tu et al.,
2016; Viall and Borovsky, 2020). Ideas in the literature about the
current-sheet origins include 1) current-sheet formation by
nonlinear steepening of outward traveling Alfvén waves
(Malara et al., 1996; Vasquez and Hollweg, 1999), 2) current-
sheet formation and destruction in active MHD turbulence
(Dmitruk et al., 2004; Greco et al., 2010, Greco et al., 2016), 3)
fossil flux tubes from the corona advecting outward with the solar
wind (Borovsky, 2008; Huang et al., 2014; Burkholder et al., 2019;
Eselevich, 2019), and 4) the remnants of decayed near-Sun
turbulence that are advected outward with the solar wind (e.g.,
Dobrowolny et al., 1980; Matthaeus et al., 2012; Servidio et al.,
2014; Telloni et al., 2016). Mechanisms (1) and (2) have the
structure created in situ in the solar wind; mechanism (4) has the
structure created in the near-Sun solar wind; and mechanism (3)
has the structure created in the corona.

For assessing the impact of the findings in this stud an item of
consideration is the survivability of current sheets and flux tubes
from the corona to 1 AU. In the upper solar corona, the plasma is
partitioned into magnetic flux tubes by current sheets (Close
et al., 2003; Close et al., 2005; DeForest et al., 2018; Burkholder
et al., 2019). Three observations provide evidence for the survival
of some current sheets. 1) Current sheets at 1 AU are seen that
have strong jumps in the alpha-to-proton number-density ratio
α/p across them (Borovsky, 2020a). Such α/p ion-composition
boundaries in the ion composition can only be created in the
corona, not in the solar wind away from the Sun: hence, those
particular current sheets seen at 1 AU are fossils (relics) from the
corona. 2) Similarly, current sheets at 1 AU are seen co-located
with jumps in the intensity of the electron strahl (Borovsky,
2020a): for these current sheets the strahl jump is an indication
that the current sheet is coherent back to the Sun (Gosling et al.,
2004a,b; Borovsky, 2020a). The jumps in strahl intensity from
tube to tube implies that different flux tubes in the magnetic
spaghetti magnetically connect to different spots on the Sun
(Gosling et al., 2004a,b; Borovsky, 2021). (Similarly, see
Trenchi et al. (2013a,b) for coherence indicated by energetic-
particle observations). 3) Examination of the compression and
rarefaction of the magnetic structure in the solar wind at 1 AU
(Borovsky and Denton, 2016; Borovsky, 2020d) indicates that the
current sheets and flux tubes are long lived (many 10 s of hours to
the age of the solar-wind plasma). If the flux tubes of the solar
wind were to be destroyed, two possible mechanisms for their
destruction are turbulence and reconnection. The notion that flux
tubes from the Sun could be destroyed by the action of turbulence
in the solar wind was tested by quantifying the amount of
turbulent mixing (stretching and folding) that occurs in the

solar wind between 0.3 and 1 AU (Borovsky, 2012b): no
evidence for mixing was found. Similarly, periodic solar-wind
structures with spatial scales in the “inertial subrange” survive to
1 AU and beyond without being destroyed by turbulence (Kepko
and Spence, 2003; Viall et al., 2009; Di Matteo et al., 2019; Kepko
and Viall, 2019; Birch and Hargreaves, 2020a,b). Reconnection
also appears not to destroy the current sheets that are the walls of
flux tubes. Solar-wind reconnection events are rare (Gosling et al.,
2005; Phan et al., 2006; Gosling, 2012), unlike the ubiquitous
current sheets. The strong current sheets of the solar wind are
thick (several 100 s of km) (Siscoe et al., 1968; Vasquez et al.,
2007; Miao et al., 2011; Borovsky and Steinberg, 2014) compared
with the ion and electron kinetic scales (several 10 s of km)
necessary to initiate reconnection in collisionless plasmas (Hesse
et al., 2001; Pritchett, 2005). Further, the solar wind plasma is
everywhere expanding with time (rather than driving structures
together to initiate reconnection) and in the Alfvenic solar wind
there are strong parallel-to-B velocity shears (Borovsky, 2020c)
across the current sheets that tend to stabilize them to
reconnection (Roth et al., 1996; Doss et al., 2015). The
current-sheet evolution in the solar wind may be more
consistent with Bohm and gyro-Bohm diffusion (Perkins et al.,
1993; Hannum et al., 2001; Borovsky, 2006).

The electron distribution function in the solar wind generally
exhibits three distinct components (e.g., Feldman et al., 1978;
Maksimovic et al., 2005): lower-energy core electrons, higher-
energy halo electrons, and a higher-energy magnetic-field-aligned
strahl. It is generally accepted that the core electrons of the solar
wind are a population that is “trapped” by (a) an interplanetary-
electric-field potential barrier as the core electrons move away
from the Sun and (b) the magnetic mirror force as the core
electrons move toward the Sun (e.g., Lie-Svendsen and Leer, 2000;
Marsch, 2006). This being the case, the temperature Tcore of a
measured distribution of core electrons is related to the electrical
potential difference between the measurement location and the
distant-from-the-Sun heliosphere (Feldman et al., 1975; Boldyrev
et al., 2020; Moncuquet et al., 2020) [For a different interpretation
of Tcore, see Scudder (2019)]. On average, the core electron
temperature of the solar wind decreases with distance from
the Sun (Pilipp et al., 1990; McComas et al., 1992; Halekas
et al., 2020; Moncuquet et al., 2020), in general agreement
with exosphere models of the interplanetary electrical potential
ϕ, with ϕ(r) decreasing in magnitude (with respect to infinity)
with distance r from the Sun (Lemaire and Scherer, 1971; Meyer-
Vernet and Issautier, 1998; Meyer-Vernet et al., 2003).

In the present study, we extend the analysis of the solar-wind
plasma and magnetic structure to examine the core-electron
structure of the solar wind and its relation to the magnetic
structure. Jumps (boundaries) in the number density ncore and
temperature Tcore of the core electrons will be examined,
statistically at 1 AU using the WIND spacecraft and briefly at
0.13 AU using the Parker Solar Probe spacecraft. Of interest is the
relation of the core-electron structure of the solar wind to the
magnetic structure of the solar wind: it will be seen that the values
of Tcore tend to vary from flux tube to flux tube.

If Tcore is a measure of the local electrical potential ϕ in the
solar wind, then spatial changes in Tcore represent spatial changes
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in the electric potential. Changes in Tcore from flux tube to flux
tube represent changes in the electrical potential ϕ from tube to
tube. This may indicate that the interplanetary potential ϕ (r)
(Jockers, 1970; Lemons and Feldman, 1983; Lacombe et al., 2002;
Salem et al., 2003; Lemaire, 2010) and its affect on solar-wind ion
and electron evolution (e.g., Lie-Svendsen and Leer, 2000; Meyer-
Vernet et al., 2003) acts on a tube-by-tube basis.

This study organized as follows. In Data the data sets that will
be used are described, along with a numerical algorithm used at 1
AU to identify jumps in the ncore and Tcore time series. TheWIND
Statistical Data Analysis at 1 AU describes the results of a
statistical analysis of the WIND data set at 1 AU from the
Sun and Examination of Parker Solar Probe Measurements
Near the Sun describes a brief examination of Parker Solar
Probe electron measurements at 0.13 AU. Summary and
Discussion summarizes the findings and discusses implications
of the observed core-electron structure of the solar wind.

DATA

To examine the electron structure of the solar wind at 1 AU, 12-s
time-resolution electron moments measurements from the SWE
instrument (Ogilvie et al., 1995) on theWIND spacecraft are used
in coordination with 3-s time-resolution magnetic-field
measurements from the MFI instrument (Lepping et al., 1995)
on WIND.

The first 120 days of the year 2005 were analyzed. This is the
same time interval that was used for the analysis of the strahl
structure and the alpha-to-proton number-density structure of
the solar wind (Borovsky, 2020a). This is a time interval in the
declining phase of the solar cycle that contains a good mix of the
various types of plasma coming off the Sun with very few
interplanetary shocks, which can confuse the categorization of
the solar-wind plasma types. Using the Xu and Borovsky (2015)
1-AU solar-wind categorization scheme this 120-days interval
was, by fraction of time, 40.2% coronal-hole-origin plasma, 30.0%
streamer-belt-origin plasma, 14.5% sector-reversal-region
plasma, and 15.4% ejecta. This is a variety that represents the
solar-cycle-averaged variety of plasma types seen at 1 AU, with an
emphasis on coronal-hole-origin plasma. It will be seen that this
interval yields thousands of events for statistical analysis.

In theWIND time-series data, a numerical algorithm was used
to locate jumps (shifts) in the magnitudes of the core-electron
number density ncore and the core-electron temperature Tcore that
are greater than the noise level in the data. These jumps are taken
to be spatial boundaries in the electron density and in the electron
temperature. For every suspected temporal jump, the four data
points prior to the jump and the four data points after the jump
are examined. To be accepted as a valid jump, 1) the maximum
value of the four data points on one side of the jump must be less
than the minimum value of the four data points on the other side
of the jump. Further, 2) a minimum value of the shift must be
exceeded before the jump is accepted: the absolute value of the
change in the average of the logariths of the four points before the
jump from the logarithmic average of the four points after the
jump must exceed a threshold value Q. With the notation that a

data point “value” v before the jump is vibefore and a data point
value after the jump is viafter, this second condition is written for
the two sets of four points

| log10(v1beforev2beforev3beforev4before)− log10(v1afterv2afterv3afterv4bafter) |/4 >Q
(1)

where log (A) + log (B) � log (AB) has been exploited in summing
the four logarithms. For the density jumps Q � 0.0607 � log10
(1.15) is taken (corresponding to a greater-than-15% change in
the 4-point logarithmic average across the jump) and for the
temperature jumps Q � 0.414 � log10 (1.1) is taken
(corresponding to a greater-than-10% change in the 4-point
logarithmic average across the jump).

In the 120 days of WIND time-series measurements, 3,436
density jumps are identified (28.6 jumps per day on average) and
1,648 temperature jumps are identified (13.7 jumps per day). Five
hundred-twenty six of the jumps are identified as both density
jumps and temperature jumps.

FIGURE 1 | The occurrence distribution of the 24-s change in log10(ncore)
[panel (A)] and in log10(Tcore) [panel (B)] are binned for 120 days of WIND
measurements at 1 AU.
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Categorizing the solar-wind plasma type at the time of each
ncore jump using the 1-AU Xu and Borovsky (2015) solar-wind
categorization scheme, there are 1,382 ncore jumps in coronal-
hole-origin plasma, 607 ncore jumps in streamer-belt-origin
plasma, 256 ncore jumps in sector-reversal-region plasma, and
1,106 ncore jumps in ejecta plasma. Likewise, there are 903 Tcore

jumps in coronal-hole-origin plasma, 108 Tcore jumps in
streamer-belt-origin plasma, 29 Tcore jumps in sector-reversal-
region plasma, and 517 Tcore jumps in ejecta plasma. Owing to
absences of validated solar-wind-proton measurements, some of
the ncore and Tcore jumps could not be plasma categorized.

At 0.13 AU, 14-s cadence measurements of the core-electron
temperature from the Parker Solar Probe SWEAP SPAN electron
instrument (Kasper et al., 2016;Whittlesey et al., 2020) are used in
conjunction with magnetic-field measurements from the PSP
FIELDS fluxgate magnetometers (Bale et al., 2016). The core-
electron temperatures are obtained from fits to the measured
electron distribution functions with the fitting procedure
described in the Appendix of Halekas et al. (2020).

To look for the occurrence of strong current sheets in the solar
wind, directional changes in the magnetic-field-vector time series
will be used. The angular change in the field direction Δθ over a
fixed time difference (30 s is used here for the WIND
measurements) will be examined. Based on a simple
Ampere’s-law argument (Colburn and Sonett, 1966) and tested
with 4-spacecraft data sets (Knetter et al., 2003; Knetter et al.,
2004), examining Δθ is a standard method for identifying current
sheets in the solar wind (e.g., Siscoe et al., 1968; Burlaga, 1969;
Burlaga and Ness, 1969; Li, 2008; Miao et al., 2011).

THE WIND STATISTICAL DATA ANALYSIS
AT 1 AU

Figure 1A plots the occurrence distribution of the 24-s change in
log10 (ncore) in the first 120 days of 2005 (black points) and
Figure 1B plots the occurrence distribution of the 24-s change in
log10 (Tcore) in the first 120 days of 2005 (black points). Absolute
values of the changes are used. Both occurrence distributions in
Figure 1 exhibit two components: a population of small changes
that is fit with a steep exponential (green dashed curves) and a
second population of large changes that is fit with a shallower
exponential (blue dashed curves). In both plots the sum of the two
exponential fits is plotted as the red curve. Similar two-
component distributions in the solar wind have been seen for
changes in the magnetic-field strength Bmag, the proton specific
entropy Sp, the intensity of the electron strahl, and the alpha-to-
proton number-density ratio α/p [cf. Figure 3 of Borovsky
(2008)], indicating spatial structure in those quantities: the
larger-value components of those two-component distributions
have been shown to be associated with crossings of current sheets.
Below it will be shown that the large-change populations in
Figures 1A,B are associated with the crossings of current
sheets in the solar wind. Hence, the large-change population
in Figure 1 is consistent with the crossings of boundaries of ncore
in the solar wind and the population of large changes in
Figure 1B is consistent with crossings of boundaries of Tcore

in the solar wind, with those boundaries being co-located with
current sheets. The small-change populations in both panels are
consistent with small fluctuations in ncore and Tcore away from the
boundaries, or with noise in the measurement values away from
the boundaries.

A question that will be addressed is whether or not the
boundaries of ncore and of Tcore in the solar wind tend to be
co-located with the current sheets of the solar-wind magnetic
structure.

To determine whether or not there is a relationship between
boundaries of the ncore and Tcore structure and strong current
sheets in the solar wind, the 30-s angular change in the magnetic-
field direction Δθ is examined when theWIND spacecraft crosses
the boundaries. Writing b(t) � B(t)/|B(t)|, the 30-s angular
change in the magnetic-field direction at time t is calculated
from the magnetic-field vector time series as

Δθ � arcos −(b(t + 15s)·−b(t − 15s)) (2)

In Figure 2 some occurrence distributions of the 30-s change
in the magnetic-field direction Δθ are plotted. The black points in
Figure 2 plot the distribution of Δθ values for all times during the
first 120 days of 2005, with the exclusion of times when the
WIND spacecraft was in ejecta plasma. Note the two components
to the black-point Δθ distribution, a small-angle component fit by
exp(−Δθ/7.67o) (green dashed curve) and a large-angle
component fit by exp(−Δθ/25.5o) (purple dashed curve). The
solid-red curve is the sum of the two exponential fits [See also

FIGURE 2 | Distributions of the 30-s change in the magnetic field
direction Δθ are plotted using WIND magnetic-field measurements. The black
points are the distribution of all values in the first 120 days of 2005. The blue
points are the Δθ values at the times that WINDwas crossing boundaries
in the core-electron number density and the red points are the Δθ values at the
times that WIND was crossing boundaries in the core-electron temperature.
The exponential fits are described in the text.
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Figure 2 of Borovsky (2008) and Figure 6 of Miao et al. (2011) for
similar two-component Δθ distributions]. The large-Δθ portion
of the distribution has been interpreted as representing crossings
of strong current sheets in the solar wind (Burlaga andNess, 1969;
Knetter et al., 2004; Borovsky, 2008) (flux-tube walls between one
flux tube and its neighbor) and the small-Δθ portion of the
distribution has been taken to represent small magnetic-field
fluctuations in the interiors of the flux tubes. The large Δθ
component of the black-point distribution is expected to
extend down to smaller values of Δθ below the breakpoint in
the curve: the red solid curve matching the black points is the sum
of the two exponential fits. In the spaghetti of magnetic flux tubes,
the angle of the magnetic-field direction in one tube with vs. the
neighboring flux tube is a function of the distance along a tube so
that sometimes the Δθ value crossing between tubes is large and
sometimes the Δθ value is small, even zero. Hence, using the
large-Δθ criterion to find flux-tube walls will fail to locate some of
the walls (The walls sometimes can be located via other
properties, such as jumps in the plasma properties). The mean
value of Δθ for the exp (−Δθ/25.5o) is <Δθ > � 25.5o and the mean
value of Δθ for the entire black-point distribution (the sum of the
two exponential fits) is <Δθ> � 10.2o. The blue points in Figure 2
plot the distribution of 30-s Δθ values during the times when
jumps (boundaries) in ncore are seen. Those blue data points are fit
with an exponential function exp(−Δθ/25.8o) (dark-blue dashed
curve), which is similar to the exp(−Δθ/25.5o) large-Δθ fit of the
current-sheet crossings for the black-point distribution in
Figure 2. Note that this blue-point distribution extends down
into small-Δθ values, which probably represents crossings
between flux tubes that are locally nearly aligned at the
crossing point. Hence, the Δθ values seen at the times of
crossing ncore boundaries in the solar wind (blue points) are
consistent with crossings of strong current sheets in the solar
wind. The red points in Figure 2 plot the distribution of 30-s Δθ

values during the times when jumps (boundaries) in Tcore are
seen. Those data points are fit with an exponential function
exp(−Δθ/29.6o) (dark-red dashed curve), which is also similar
to the exp(−Δθ/25.5o) fit of the current-sheet crossings for the
black-point distribution in Figure 2. And note again that this red-
point distribution extends down into small Δθ values. Hence, the
Δθ values seen at the times of crossing Tcore boundaries in the
solar wind are consistent with crossings of strong current sheets
in the solar wind (Note, in the collection of ncore and Tcore

boundaries, the two boundaries are often co-located).
In Figure 3 the superposed epoch average value of the

magnetic-field-direction change Δθ is plotted as a function of
the time from the identified jumps in the values of ncore. A time
shift τshift � 0 in the plot means the 30-s change Δθ in the
magnetic-field direction is centered at the times of the ncore
jumps, and time shifts away from 0 have the 30-s change Δθ
centered at a time τshift away from the jumps in ncore. The
individual curves in Figure 3 pertain to the sets of identified
ncore boundaries in the different types of solar-wind plasma, as
determined using the Xu and Borovsky (2015) plasma-
categorization scheme. Excluded in Figure 3 are ncore
boundaries found in ejecta plasma; ejecta plasma is often
characterized by a smoothly varying magnetic-field direction
(Klein and Burlaga, 1982; Cane and Richardson, 2003), a low
level of field fluctuations (Lepping et al., 2005; Borovsky et al.,
2019), and by a dearth of strong current sheets (Borovsky, 2008;
Borovsky, 2012a). Note in Figure 3 that the average value of Δθ is
much greater at the time of boundary crossings (τshift � 0) than it
is away from the boundaries (τshift ≠ 0): this indicates that the
ncore boundaries in the solar wind tend to be co-located with
strong current sheets in the solar wind, as was also indicted in
Figure 2. The values of Δθ at τshift � 0 in Figure 3 are consistent

FIGURE 3 | The superposed epoch average value of the 30-s change in
the magnetic-field direction is plotted as a function of time from the identified
core-electron density boundaries in the WIND data set at 1 AU.

FIGURE 4 | The superposed epoch average value of the 30-s change in
the magnetic-field direction is plotted as a function of time from the identified
core-electron temperature boundaries in theWIND data set at 1 AU. Note that
the statistics of the purple sector-reversal-region-plasma curve are poor
with only 29 identified temperature-boundary events.
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with the mean value <Δθ> � 25.5o for the exp(−Δθ/25.5o) portion
of the black-point distribution in Figure 2. The values of Δθ away
from τshift � 0 in Figure 3 are consistent with the <Δθ> � 10.2o

found for the total black-point (sheets and not sheets)
distribution in Figure 2. Hence, changes in ncore tend to occur
when crossing from one magnetic flux tube into another tube.
Note in Figure 3 the systematically differing amplitude of Δθ in
the different categories of solar-wind plasma (in the different
colored curves); these systematic differences in the “wiggle angle”
of the magnetic field in the differing plasma types have been
explored in prior studies [cf. Figure 11 of Borovsky and Denton
(2010) or Figure 8a of Borovsky et al. (2019)].

Similarly, in Figure 4 the superposed epoch average of Δθ is
plotted as a function of the time from the identified jumps in the
values of Tcore, with τshift � 0 meaning the 30-s change Δθ in the
magnetic-field direction is centered at the times of the Tcore

jumps. The individual curves in Figure 4 pertain to the sets of
identified Tcore boundaries in the different types of solar-wind
plasma. Again, excluded are Tcore boundaries found in ejecta
plasma. In Figure 4 the average value of Δθ is much greater at the
time of Tcore boundary crossings (τshift � 0) than it is away from

the Tcore boundaries (τshift ≠ 0). The values of Δθ at τshift � 0 in
Figure 4 are again consistent with the mean value <Δθ> � 25.5o

for the exp(−Δθ/25.5o) portion of the black-point distribution in
Figure 2, and the values of Δθ away from τshift � 0 in Figure 4 are
again consistent with the <Δθ> � 10.2o found for the total black-
point (sheets and not sheets) distribution in Figure 2. Figure 4
indicates that the Tcore boundaries in the solar wind tend to be co-
located with strong current sheets in the solar wind, as was also
indicted in Figure 2. Hence, Tcore changes tend to occur when
crossing from one magnetic flux tube into another tube.

Going back to the two component Δθ distribution of Figure 2,
one can ask the question: What fraction of current-sheet
crossings do not have Δθ values large enough to be detected
out of the noise of the small-Δθ distribution. For the small-Δθ
component of the black-point distribution of Figure 2 that is fit
by exp (−Δθ/7.67o), 95% of the points in that distribution have Δθ
< 23.0o. A Δθ value for an electron boundary that is greater than
23.0o would probably stand out in a time series from the values of
the background. Assuming that the exp(−Δθ/25.5o) distribution
of current-sheet crossings extends down to Δθ � 0o (as do the red-
point and blue-point distributions in Figure 2), then 41% of the
points in the exp(−Δθ/25.5o) distribution have Δθ > 23.0o. Hence,
about half (41%) of the cold-electron boundaries are expected to
be individually identified as current-sheet crossings and about
half (59%) are expected to have Δθ values too low to be clearly
identified as current-sheet crossings, although they probably are.

In Figure 5 the amplitudes of the identified jumps in ncore
(Figure 5A) and the identified jumps in Tcore (Figure 5B) are
examined. Here the occurrence distributions of the jump
amplitudes are plotted, where the amplitudes are binned with
linear bin sizes but plotted logarithmically. The jump amplitude
here is measured by the absolute value of the difference between
the average of the values of the four data points before the jump
and the average of the values of the four data points after the
jump. As seen in Figure 5A, typical jump values of ncore are
∼1 cm−3, with values as large as 5 cm−3 being not uncommon.
Figure 5B displays the distribution of jump amplitudes for Tcore:
typical values are ∼1 eV and values of 5 eV or so are not
uncommon.

EXAMINATION OF PARKER SOLAR PROBE
MEASUREMENTS NEAR THE SUN

A brief, non-statistical examination is made of core electron
measurements by the Parker Solar Probe spacecraft during the
January-2020 close encounter with the Sun. Figures 6, 7 plot two
time series of the temperature Tcore of the core-electron
population (blue) along with the 10-s change in the magnetic-
field direction Δθ (green). Jumps in the value of Tcore are
indicated by vertical dashed line segments: these jumps are
identified by visual inspection of the time series and they are
not identified with the 8-point numerical algorithm [expression
(1)] that was used to identify jumps in the WIND time series at 1
AU. Jumps in the value of Tcore that are associated with strong
changes Δθ in the field direction are denoted with red vertical
dashed line segments and jumps in the value of Tcore that are not

FIGURE 5 | The distributions of jump sizes for the identified number-
density boundaries [panel (A)] and for the identified temperature boundaries
[panel (B)] are plotted. Note that the binning used linear bi sizes (horizontal
axis), but the bin values are plotted logarithmically.
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associated with strong changes Δθ in the field direction are
denoted with light-blue vertical dashed line segments.
Figure 6 plots 48 min of measurements at 0.13 AU on January
29, 2020 and Figure 7 plots 15.6 min of measurements at 0.13 AU
on January 30, 2020. In Figure 6 six jumps in Tcore are marked
with red vertical segments indicating that they are associated with
localized large Δθ values, i.e., these shifts in the Tcore value are
associated with crossings of strong current sheets in the solar
wind. In Figure 6 six jumps in Tcore are marked with light-blue
vertical segments indicating that they are not associated with
crossings of current sheets in the solar wind that are strong
enough to have Δθ values larger than the background values.
(This is also the case for Tcore jumps at 1 AU, as discussed in The
WIND Statistical Data Analysis at 1 AU and as shown by the red-
point distribution in Figure 2, where the distribution of Δθ values
for Tcore jumps extends down to low Δθ values.) Those low-Δθ
Tcore jumps could be interpreted as jumps associated with flux
tubes that are locally near parallel where the spacecraft crosses
from one tube into the next. In Figure 7 all six observed shifts in
Tcore are associated with strong current-sheet crossings (red
dashed line segments). Note in Figure 7 the magnitude of the
Δθ values at the times of the Tcore jumps, often showing a
magnetic-field rotation of more than 90o across the current
sheets. The examination of the two time series in Figures 6, 7
indicates that, at 0.13 AU, the spatial structure of the core electron
temperature Tcore is related to the magnetic-flux-tube structure,
as it is at 1 AU.

Note that none of the Tcore changes flagged in Figures 6, 7 are
associated with magnetic switchbacks (field foldings or field
inversions), which at times are prevalent in the Parker Solar
Probe data set (Dudok de Wit et al., 2020; Macneil et al., 2020).
The closest is the event at 4.203 UT in Figure 7, where the
magnetic field makes a transition to a near-radial orientation
from a transverse-to-radial orientation.

Typical changes in the value of Tcore in the jumps marked in
Figures 6, 7 are 2–3 eV.

SUMMARY AND DISCUSSION

A statistical analysis of 120 days of solar-wind measurements at 1
AU show that the density structure and temperature structure of
the core electrons of the solar wind are both related to the
magnetic-flux-tube structure of the solar wind; in this
structure the number density ncore and temperature Tcore of
the core-electron population tend to jump in value from flux
tube to flux tube. An examination of Tcore measurements at 0.13
AU shows the same features related to the magnetic structure,
with Tcore jumps associated with current-sheet crossings.

The relationship between the electron number density ncore
and the magnetic flux tubes is no surprise in light of quasi-
neutrality considerations, since it is known that the proton
number density structure of the solar wind reflects the
magnetic structure (Borovsky, 2012b; Borovsky, 2020b). The
variations in Tcore that are related to the magnetic-flux-tube
structure are more interesting. If a local value of Tcore

represents a measurement of the local electrical potential ϕ,
then Tcore varying from tube to tube means ϕ varies from tube
to tube. If ϕ(r) is (as in an exosphere model) determined by the
evolution of the solar-wind ions and electrons away from the Sun,
then variations of ϕ from tube to tube might mean that exosphere
models apply tube by tube, i.e., that the solar-wind evolution is to
some degree independent from tube to tube. There is no reason to
argue that the differing flux tubes should not act independently.
At 1 AU it is seen that the intensity of the electron stralh can vary
from flux tube to flux tube (Borovsky, 2021): this strahl variation
is an indication that different flux tubes at 1 AU are connected
to different features in the corona (Gosling et al., 2004a,b;

FIGURE 7 | For 15.6 min of time-series measurements by Parker Solar
Probe on January 30, 2020 the relationship between jumps in the core-
electron temperature (blue curve) and current-sheet crossings as indicated by
strong temporal changes in the magnetic-field direction (green curve) are
examined.

FIGURE 6 | For 48 min of time-series measurements by Parker Solar
Probe on January 29, 2020 the relationship between jumps in the core-
electron temperature (blue curve) and current-sheet crossings as indicated by
strong temporal changes in the magnetic-field direction (green curve) are
examined.
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Borovsky, 2021). The differences in connection to the corona could
result in independent exospheric scenarios in the different flux tubes.

If the solar-wind plasma is an admixture of open flux tubes
plus other magnetic structures (e.g., Figure 24C of Khabarova
et al., 2021) then the exosphere-model picture is more
complicated. Further investigation of field and core-electron
measurements at 1 AU, guided with measurements of the
strahl intensity to judge magnetic connectivity to the Sun
(Borovsky, 2021), is called for. In any closed-magnetic
structure, the interpretation of Tcore as an indication of the
local electrical potential ϕ (e.g., Feldman et al., 1975; Boldyrev
et al., 2020; Moncuquet et al., 2020) might no longer be possible.

At both 1 and 0.13 AU, the fractional variation of Tcore in a
typical jump is about 10% of the value of Tcore, although
occasional much-larger jumps (several tens of percent) can be
found. This indicates a variation of the interplanetary potential of
about 10% from tube to tube, although not every tube-wall
crossing shows a jump in Tcore.

At 1 AU typical Tcore changes across flux-tube walls are ∼1 eV,
although larger potentials can be found. This represents a change
in electrical potential of ∼1 V across the boundary between
adjacent flux tubes. If at 1 AU a current sheet (flux-tube wall)
is 1,000-km thick (e.g., Siscoe et al., 1968; Vasquez et al., 2007)
and the potential change is 1 V, then the electric field of this
potential change is E � 1 × 10−6 V/m. For a magnetic field
strength of 5 nT, this corresponds to an E × B drift speed of
0.2 km/s [Note that if the potential is a few times the core-electron
temperature (cf. Maksimovic et al., 1997), then these electric-field
values and drift speeds are a few times larger].

In future, a statistical analysis of the changes in Tcore in the
Parker Solar Probe data is needed accounting for the types of
plasma being observed and the rapid longitudinal motion of the
spacecraft. In particular this will be interesting when future closer

passes to the Sun have occurred and the variations of the
interplanetary electric potential can be examined where the
potentials are anticipated to be greater in magnitude nearer to
the Sun.
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