
ORIGINAL RESEARCH
published: 24 May 2021

doi: 10.3389/fspas.2021.652180

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 1 May 2021 | Volume 8 | Article 652180

Edited by:

Theocharis S. Kosmas,

University of Ioannina, Greece

Reviewed by:

Sabin Stoica,

Horia Hulubei National Institute for

Research and Development in Physics

and Nuclear Engineering (IFIN-HH),

Romania

Carlo Giunti,

National Institute of Nuclear Physics,

Ministry of Education, Universities and

Research, Italy

*Correspondence:

Jenni Kotila

jenni.kotila@jyu.fi

Specialty section:

This article was submitted to

High-Energy and Astroparticle

Physics,

a section of the journal

Frontiers in Astronomy and Space

Sciences

Received: 11 January 2021

Accepted: 10 March 2021

Published: 24 May 2021

Citation:

Kotila J (2021) Comparison of

Microscopic Interacting Boson Model

and Quasiparticle Random Phase

Approximation 0νββ Decay Nuclear

Matrix Elements.

Front. Astron. Space Sci. 8:652180.

doi: 10.3389/fspas.2021.652180

Comparison of Microscopic
Interacting Boson Model and
Quasiparticle Random Phase
Approximation 0νββ Decay Nuclear
Matrix Elements
Jenni Kotila 1,2*

1 Finnish Institute for Educational Research, University of Jyväskylä, Jyväskylä, Finland, 2Center for Theoretical Physics,

Sloane Physics Laboratory Yale University, New Haven, CT, United States

The fundamental nature of the neutrino is presently a subject of great interest. A way to

access the absolute mass scale and the fundamental nature of the neutrino is to utilize

the atomic nuclei through their rare decays, the neutrinoless double beta (0νββ) decay in

particular. The experimentally measurable observable is the half-life of the decay, which

can be factorized to consist of phase space factor, axial vector coupling constant, nuclear

matrix element, and function containing physics beyond the standard model. Thus

reliable description of nuclear matrix element is of crucial importance in order to extract

information governed by the function containing physics beyond the standard model,

neutrino mass parameter in particular. Comparison of double beta decay nuclear matrix

elements obtained using microscopic interacting boson model (IBM-2) and quasiparticle

random phase approximation (QRPA) has revealed close correspondence, even though

the assumptions in these two models are rather different. The origin of this compatibility

is not yet clear, and thorough investigation of decomposed matrix elements in terms

of different contributions arising from induced currents and the finite nucleon size is

expected to contribute to more accurate values for the double beta decay nuclear matrix

elements. Such comparison is performed using detailed calculations on both models and

obtained results are then discussed together with recent experimental results.

Keywords: double beta decay, nuclear matrix element, microscopic interacting boson model, quasiparticle

random phase approximation, physics beyond the standard model

1. INTRODUCTION

The question of whether neutrinos are Majorana or Dirac particles and what is the neutrino
mass parameter remains one of the most fundamental problems in physics today. Even though
the neutrino oscillation experiments can investigate the neutrino mass differences and neutrino
mixing amplitudes to high precision already, a complementary way is needed to access the absolute
neutrino mass and the fundamental nature of the neutrino (see, e.g., de Salas et al., 2021).
Observation of neutrinoless double beta decay (0νββ), hypothesized extremely rare second-order
process of weak interaction, would verify the Majorana nature of the neutrino, constrain the
absolute scale of the neutrino mass spectrum, and provide proof of lepton-number violation. It
would have fundamental implications for neutrino physics, theories beyond the standard model,
and cosmology. The 0νββ decay experiments aim to obtain the half-life of the process and
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information to be extracted from the experiments is subject to
uncertainties arising from the uncertainties in the related nuclear
matrix elements (NMEs). Hence, the reliable calculation of these
NMEs is of utmost importance.

The inverse 0νββ decay half-life in a given isotope is
conventionally expressed as

T−1
1/2 =

∣

∣f (mi,Uei)
∣

∣

2
Gν |Mν |

2, (1)

with the phase space factor (PSF) Gν and the nuclear matrix
element (NME) Mν . In particular, the mass mechanism of
0νββ decay is sensitive to the neutrino mass parameter. In
older calculations, PSFs were evaluated using approximate wave
functions for electrons (Furry, 1939; Primakoff and Rosen, 1959;
Molina and Pascual, 1977; Doi et al., 1981, 1985; Haxton and
Stephenson, 1984; Tomoda, 1991; Suhonen and Civitarese, 1998)
and in more recent calculations exact Dirac electron wave
functions have been used (Kotila and Iachello, 2012, 2013; Stoica
and Mirea, 2013; Kotila et al., 2014, 2015; Mirea et al., 2015;
Graf et al., 2018; Deppisch et al., 2020). The 0νββ NMEs have
been computed by a number of differentmodels: the quasiparticle
random-phase approximation (QRPA), in its proton-neutron
version (Šimkovic et al., 2008, 2013; Fang et al., 2011, 2018;
Faessler et al., 2012; Suhonen and Civitarese, 2012;Mustonen and
Engel, 2013; Hyvärinen and Suhonen, 2015), the interacting shell
model (ISM) (Caurier et al., 2005, 2007; Menéndez et al., 2009a,b;
Horoi and Brown, 2013; Neacsu and Stoica, 2014; Neacsu and
Horoi, 2015; Coraggio et al., 2020), the microscopic interacting
boson model (IBM-2) (Barea and Iachello, 2009; Barea et al.,
2013a,b, 2015a,b; Kotila et al., 2014, 2015; Graf et al., 2018;
Deppisch et al., 2020), the energy density functional approach
(EDF) along with density functional theory (Rodríguez and
Martínez-Pinedo, 2010; Song et al., 2014, 2017; Yao et al., 2015),
and the projected Hartree–Fock–Bogoliubov mean-field scheme
(PHFB) (Rath et al., 2010, 2019) to name some most frequently
used. In principle, the calculation of NME is straightforward
but in practice the values predicted by different nuclear models
differ by factors of up to three, causing a large uncertainty
in the half-life for a given value of neutrino mass parameter
(Rath et al., 2010). A way to avoid the model dependence and
thus the uncertainties that are caused by model assumptions
and approximation made in different models is to calculate the
NMEs from first principles, which is currently the goal of several
theoretical groups. However, applying modern ab initiomethods
to 0νββ decay is challenging and the 0νββ candidate nuclei are
generally more complicated and heavier than those treated so
far (Hergert et al., 2016; Pastore et al., 2018; Wang et al., 2019;
Basili et al., 2020). Thus, traditional nuclear model calculations
for 0νββ NMEs are still very much needed for the interpretation
of the experimental results as well as for the planning of the
future experiments. It is therefore important to try to understand
the similarities and differences of different models. In this paper,
the focus is on elaborate comparison between IBM-2 and QRPA
nuclear matrix elements. For both of these models detailed
calculations of individual NMEs that contribute to the full 0νββ

NME are available.

The paper is organized as follows: The theoretical background
is reviewed in section 2 and numerical results are summarized
in section 3 for both light and heavy neutrino exchange.
Differences and similarities of the two models are then discussed
in section 4 along with possible explanations for the obtained
results. Section 5 concludes the discussion with a summary and
an outlook.

2. THEORETICAL BACKGROUND

The theory of 0νββ decay was first formulated by Furry (1939)
and further developed by Primakoff and Rosen (1959), Molina
and Pascual (1977), Doi et al. (1981), Doi et al. (1983), Haxton
and Stephenson (1984), and, more recently, by Tomoda (1991)
and Šimkovic et al. (1999). All these formulations often differ
by factors of 2, by the number of terms retained in the non-
relativistic expansion of the current and by their contribution.
Adopting the formulation of Šimkovic et al. (1999), which is the
one used in most recent calculations, the transition operator for
0νββ in momentum space, p =

∣

∣Eq
∣

∣, can be written as

T(p) = H(p)f (mi,Uei) (2)

where for light neutrino exchange

f (mi,Uei) =
〈mν〉

me
, 〈mν〉 =

∑

k=light

(Uek)
2mk, (3)

while for heavy neutrino exchange

f (mi,Uei) = mp

〈

m−1
νh

〉

,
〈

m−1
νh

〉

=
∑

k=heavy

(

Uekh

)2 1

mkh

.
(4)

The (two-body) operator H(p) can be written as

H(p) =
∑

n,n′

τ†
n τ

†
n′

[

−hF(p)+ hGT(p)Eσn · Eσn′ −hT(p)S
p
nn′

]

, (5)

with the tensor operator defined as

S
p
nn′ = 3

[(

Eσn · p̂
) (

Eσn′ · p̂
)]

− Eσn · Eσn′ . (6)

The Fermi (F), Gamow-Teller (GT), and tensor (T) contributions
are further divided into hFVV (p), h

GT
AA(p), h

GT
AP (p), h

GT
PP (p), h

GT
WW(p),

hTAP(p), hTPP(p), and hTWW(p) terms. The terms AP, PP, and
WW are higher order corrections (HOC) arising from weak
magnetism (W) and induced pseudoscalar terms (P) in the
weak nucleon current. Finally, the terms h◦(p) can be further
factorized as

h◦(p) = v(p)h̃◦(p) (7)

where v(p) is called the neutrino potential and h̃◦(p) are the
form factors given in Table 1. The finite nucleon size (FNS) is
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TABLE 1 | Double beta decay Fermi (MF ), Gamow–Teller (MGT ), and tensor

(MT ) NMEs appearing in Equation (12), with the associated reduced form factor

product h̃(q2).

NME h̃◦(q
2)

MF = 〈hXX (q
2)〉 h̃XX (q

2) = 1
(1+q2/m2

V
)4

MAA
GT

= 〈hAA(q
2)(σ a · σ b)〉 h̃AA(q

2) = 1
(1+q2/m2

A
)4

M′AP
GT

=

〈

q2

m2
p
hAP (q

2)(σ a · σ b)

〉

h̃AP (q
2) = 1

(1+q2/m2
A
)4

1
1+q2/m2

π

M′AP
T =

〈

q2

m2
p
hAP (q

2)Sab

〉

h̃AP (q
2)

M′WW
GT

=

〈

q2

m2
p
hXX (q

2)(σ a · σ b)

〉

h̃XX (q
2)

M′WW
T =

〈

q2

m2
p
hXX (q

2)Sab

〉

h̃XX (q
2)

M′′PP
GT

=

〈

q4

m4
p
hPP (q

2)(σ a · σ b)

〉

h̃PP (q
2) = 1

(1+q2/m2
A
)4

1
(1+q2/m2

π )
2

M′′PP
T =

〈

q4

m4
p
hPP (q

2)Sab

〉

h̃PP (q
2)

taken into account by taking the coupling constants gV and gA as
momentum dependent

gV (p
2) = gV

1
(

1+ p2

M2
V

)2 ,

gA(p
2) = gA

1
(

1+ p2

M2
A

)2 .
(8)

The value ofMV is well fixed by the electromagnetic form factor
of the nucleon,M2

V = 0.71(GeV/c2)2 (Dumbrajs et al., 1983) and
gV = 1 by the hypothesis of conserved vector current (CVC). The
value of MA is estimated to be MA = 1.09(GeV/c2) (Schindler
and Scherer, 2007) and free value of gA = 1.269 (Yao et al., 2006).

The neutrino potential v(p) is written, in the closure
approximation, for light neutrino exchange as

v(p) =
2

π

1

p
(

p+ Ã
) . (9)

In non-closure calculations, an average energy Ã is replaced with
the actual intermediate state energies making the calculation
more accurate but also much more complicated. For heavy
neutrino exchange, the neutrino potential is given by

v(p) =
2

π

1

memp
. (10)

Short-range correlations (SRC) are taken into account by
multiplying the potential V(r) in coordinate space by a
correlation function f (r) squared. The most commonly used
correlation function is the Jastrow function

fJ(r) = 1− ce−ar2(1− br2) (11)

with a = 1.1 fm−2, b = 0.68 fm−2 and c = 1 for the
phenomenological Miller–Spencer parameterization (Miller and
Spencer, 1976), and, in recent years, the Argonne/CD-Bonn

parameterizations (Šimkovic et al., 2009) a = 1.59/1.52 fm−2,
b = 1.45/1.88 fm−2 and c = 0.92/0.46. Since the formulation
is in momentum space, SRC is taken into account by using the
Fourier–Bessel transform of fJ(r).

From these ingredients, one can calculate the individual
contributing NMEs listed also in Table 1. Furthermore, from
these one can calculate the final NMEs for the standard mass
mechanism,Mν and heavy neutrino exchangeMνh . To allow the
analysis to be performed in section 3, it is convenient to introduce
the quantities

MGT = M
AA
GT −

gP

6gA
M

′AP
GT +

(gV + gW)2

6g2A
M

′WW
GT +

g2P
48g2A

M
′′PP
GT

MT =
gP

6gA
M

′AP
T +

(gV + gW)2

12g2A
M

′WW
T −

g2P
48g2A

M
′′PP
T

(12)

and writeMν as

Mν = g2A

[

−

(

gV

gA

)2

MF +MGT −MT

]

, (13)

and similarly forMνh .
The obtained NMEs, both individual and compound, are

compared in two differentmodels IBM-2 andQRPA. Themethod
of evaluation 0νββ NMEs in IBM-2 is discussed in detail in Barea
and Iachello (2009); Barea et al. (2015a). For QRPA calculations,
see Suhonen and Civitarese (2012), Hyvärinen and Suhonen
(2015) and references therein. For both models, versions with
isospin restoration are used. In the case of 2νββ decay, if isospin
is a good quantum number, the Fermi matrix elements should
identically vanish. By a similar argument, the Fermi matrix
elements in 0νββ are expected to be small, although not zero,
the main difference between 2νββ and 0νββ being the neutrino

potential, which for 2νββ is v2ν(p) =
δ(p)
p2

, being the Fourier–

Bessel transform of the configuration space potential V(r) =
1. The method for isospin restoration is similar in spirit for
both models but different in practice and is discussed further in
section 4.1.

3. RESULTS

The matrix elements of the operator H(p) have dimension fm−1.
In the following, NMEs are multiplied by nuclear radius in
fm, R = R0A

1/3, with R0 = 1.2 fm in order to make them
dimensionless, which is the way they are usually quoted.

3.1. Light Neutrino Exchange
The individual IBM-2 nuclear matrix elements were recently
calculated in Deppisch et al. (2020) in order to study the
potential interplay of non-standard short-range operators of
0νββ decay with standard light Majorana neutrino exchange.
A selection of those NMEs is compared with QRPA nuclear
matrix elements reported in Hyvärinen and Suhonen (2015).
To avoid the differences arising from the use of different form
factor charges, they are explicitly factored out for both models
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TABLE 2 | Nuclear matrix elements (NMEs) for the standard light neutrino exchange 0νββ decay mechanism evaluated in the interacting boson model (IBM-2) and

quasiparticle random phase approximation (QRPA) as described in the text.

MF MAA
GT

M
′AP
GT

M
′AP
T

M
′WW
GT

M
′WW
T

M
′′PP
GT

M
′′PP
T

76Ge
IBM-2 −0.780 6.062 0.036 −0.010 0.089 −0.035 3.4× 10−4 −1.4× 10−4

QRPA −1.743 5.972 0.068 −0.011 0.224 −0.032 9.8× 10−4 −1.4× 10−4

82Se
IBM-2 −0.667 4.928 0.030 −0.010 0.073 −0.034 4.1× 10−4 −1.3× 10−4

QRPA −1.291 4.262 0.049 −0.008 0.161 −0.025 7.1× 10−4 −1.1× 10−4

96Zr
IBM-2 −0.361 4.317 0.027 0.009 0.065 0.032 3.1× 10−4 1.2× 10−4

QRPA −1.441 3.890 0.050 −0.010 0.173 −0.032 7.5× 10−4 −1.4× 10−4

100Mo
IBM-2 −0.511 5.553 0.038 0.012 0.096 0.041 4.7× 10−4 1.6× 10−4

QRPA −1.634 4.306 0.056 −0.011 0.195 −0.039 8.4× 10−4 −1.6× 10−4

110Pd
IBM-2 −0.425 4.432 0.032 0.009 0.080 0.036 3.9× 10−4 1.4× 10−4

QRPA −2.315 7.769 0.084 −0.011 0.273 −0.040 12.0× 10−4 −1.7× 10−4

116Cd
IBM-2 −0.335 3.173 0.023 0.005 0.058 0.023 2.9× 10−4 8.7× 10−5

QRPA −1.496 4.238 0.047 −0.007 0.153 −0.027 6.7× 10−4 −1.1× 10−4

124Sn
IBM-2 −0.572 3.370 0.021 −0.005 0.053 −0.018 2.5× 10−4 −7.5× 10−5

QRPA −2.332 7.519 0.083 −0.017 0.273 −0.055 11.9× 10−4 −2.4× 10−4

128Te
IBM-2 −0.718 4.321 0.027 −0.005 0.067 −0.023 3.1× 10−4 −9.1× 10−5

QRPA −1.777 5.232 0.066 −0.018 0.230 −0.060 9.9× 10−4 −2.5× 10−4

130Te
IBM-2 −0.651 3.894 0.024 −0.006 0.061 −0.021 2.8× 10−4 −8.3× 10−5

QRPA −1.523 4.878 0.060 −0.015 0.205 −0.053 8.9× 10−4 −2.2× 10−4

136Xe
IBM-2 −0.522 3.203 0.019 −0.005 0.048 −0.016 2.2× 10−4 −6.3× 10−5

QRPA −0.894 3.338 0.040 −0.009 0.133 −0.030 5.7× 10−4 −1.3× 10−4

and NMEs are presented in the notation given in Deppisch et al.
(2020). The individual QRPA nuclear matrix elements given in
Tables 2, 4, for light and heavy neutrino exchange, respectively,
are obtained from the values reported in Tables 2, 4 of Hyvärinen
and Suhonen (2015) as follows: F and AA contributions are taken
as they are; AP contributions are divided by ∓(4 ∗ m2

p/m
2
π )/6,

where − sign corresponds to M
′AP
GT and + sign to M

′AP
T ; WW

contributions (in Hyvärinen and Suhonen (2015) these are called
MM contributions): GT NMEs are divided by (µp − µn)2/6 and
T NMEs by (µp − µn)2/12 with µp − µn = 3.7; finally PP
contributions are divided by ±(4 ∗ m2

p/m
2
π )

2/48, where + sign

corresponds to M
′′PP
GT and − sign to M

′′PP
T . The thus obtained

numerical values of individual ground state to ground state
NMEs are given in Table 2 for 76Ge, 82Se, 96Zr, 100Mo, 110Pd,
116Cd, 124Sn, 128Te, 130Te, and 136Xe.

Since nuclei from A = 76 to A = 136 are covered, there
are two classes of nuclei: those in which protons and neutrons
occupy the same major shell (A = 76, 82, 124, 128, 130, 136)
and those in which they occupy different major shells (A =
96, 100, 110, 116). Clearly notable difference between the two
models is shown for the tensor matrix elements in these two
classes. For QRPA, the sign of tensor NMEs is always negative.
For IBM-2, it is negative if the protons and neutrons occupy the
same major shell and positive when they occupy different major
shells. This behavior can be traced to the fact that the neutrino
potential V(r) is different for the tensor contribution than for
Fermi and Gamow–Teller contributions. In the notation of Table
8 of Barea and Iachello (2009), V(r) = H(r) for Fermi and

Gamow–Teller matrix elements and V(r) = −rH′(r) for tensor
matrix elements.

Another considerable difference is the magnitude of MF

matrix elements. They appear twice or more larger in QRPA than
in IBM-2 for most of the studied nuclei, 136Xe being a notable
exception. On the other hand, the M

AA
GT , giving the biggest

contribution to the full NME, have rather similar magnitudes in
both models, exceptions being 110Pd and 124Sn which are much
larger in QRPA. The other contributions, AP, PP, and WW,
are orders of magnitude smaller. M′AP

GT , as well as, M
′′PP
GT , have

comparable magnitudes in both models, the exceptions again
being 110Pd and 124Sn, which are much larger in QRPA. M′WW

GT ,
however, is twice or more larger in QRPA in all the studied nuclei.
The contributions of tensor matrix elements are the smallest and
their magnitudes are fairly similar in both models.

To analyze further the similarities and differences in these two
models, it is useful to calculate the compound NMEs MGT , and
MT given in Equation (12) using the individual NMEs ofTable 2.
In the calculation, values gV = 1.0 and gW = 3.7 and quenched

values for gA = 1.0, gP = 4gA
m2
p

m2
π

(

1− m2
π

m2
A

)

= 182 are used

in order to allow straightforward use of other values of gA using
Equation (13) for the full matrix element. MF , MGT , MT , and
full matrix element Mν are listed in Table 3, along with their
ratios in the two studied models. The ratio χF = MF/MGT is
also shown for each model.

If we first look at the ratio χF = MF/MGT , we note that
QRPA gives larger absolute value in all studied nuclei. For QRPA,
this value varies between−0.30 and−0.42, largest absolute values
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TABLE 3 | Comparison between interacting boson model (IBM-2) and quasiparticle random phase approximation (QRPA) light neutrino exchange Fermi (F),

Gamow–Teller (GT), tensor (T), and full Mν NMEs as defined in Equations (12) and (13) calculated using quenched value gA = 1.0.

Isotope MF MGT MT χF Mν
M

QRPA
F

MIBM-2
F

M
QRPA
GT

MIBM-2
GT

M
QRPA
T

MIBM-2
T

MQRPA
ν

MIBM-2
ν

76Ge
IBM-2 −0.78 5.58 −0.28 −0.14 6.64

2.23 0.97 1.05 1.12
QRPA −1.74 5.41 −0.30 −0.32 7.45

82Se
IBM-2 −0.67 4.52 −0.27 −0.15 5.46

1.94 0.85 0.83 0.98
QRPA −1.29 3.85 −0.22 −0.33 5.37

96Zr
IBM-2 −0.36 3.95 0.25 −0.09 4.07

3.99 0.89 −1.01 1.28
QRPA −1.44 3.52 −0.25 −0.41 5.22

100Mo
IBM-2 −0.51 5.08 0.32 −0.10 5.27

3.20 0.77 −0.92 1.11
QRPA −1.63 3.91 −0.29 −0.42 5.84

110Pd
IBM-2 −0.43 4.03 0.24 −0.11 4.21

5.45 1.75 −1.22 2.29
QRPA −2.32 7.04 −0.30 −0.33 9.66

116Cd
IBM-2 −0.34 2.89 0.12 −0.12 3.11

4.47 1.33 −1.58 1.77
QRPA −1.50 3.84 −0.19 −0.39 5.52

124Sn
IBM-2 −0.57 3.10 −0.12 −0.18 3.79

4.08 2.20 3.72 2.53
QRPA −2.33 6.83 −0.44 −0.34 9.60

128Te
IBM-2 −0.72 3.97 −0.12 −0.18 4.80

2.47 1.20 4.07 1.46
QRPA −1.78 4.75 −0.47 −0.37 6.99

130Te
IBM-2 −0.65 3.59 −0.16 −0.18 4.40

2.34 1.24 2.56 1.45
QRPA −1.52 4.43 −0.41 −0.34 6.37

136Xe
IBM-2 −0.52 2.96 −0.12 −0.18 3.60

1.71 1.02 1.90 1.15
QRPA −0.89 3.02 −0.23 −0.30 4.15

being for 100Mo and 96Zr. For IBM-2 χF , values are between
−0.09 and−0.18 and smallest absolute values are obtained for
100Mo and 96Zr. This shows that in addition to the absolute
magnitude of MF being larger in QRPA than in IBM-2 also the
relative magnitude ofMF toMGT is larger in QRPA.

The ratios of compound NMEs MGT and MT in QRPA and
IBM-2 are shown in the last two columns of Table 3. MGT

gives the biggest contribution to the full matrix element defined
in Equation (13). For 76Ge and 136Xe,MGT are in very close
correspondence in QRPA and IBM-2. For 82Se and 96Zr, the
difference is 15% or less, and for 100Mo, 116Cd, 128Te, and 130Te,
the difference is 33% or less. The largest differences are for 110Pd
and 124Sn, as was the case also for individual NMEs. ForMT , the
situation is a bit different. Also for these nuclear matrix elements
QRPA and IBM-2 give very similar results for 76Ge and 82Se. In
96Zr, 100Mo, 110Pd, and 116Cd, the magnitude is comparable but
since these nuclei have protons and neutrons occupying different
shells there is the sign difference. For 124Sn, 128Te, 130Te, and
136Xe, the difference is as large or larger than 90%. However, it
is good to keep in mind that tensor contribution is an order of
magnitude smaller than GT contribution.

The numerical values of full matrix elementMν are discussed
in sections 4.3 and 4.4.

3.2. Heavy Neutrino Exchange
The matrix elements for heavy neutrino exchange can be simply
calculated by replacing the potential v(p) = 2π−1[p(p + Ã)]−1

of Equation (9) with the potential vh(p) = 2π−1(memp)−1

of Equation (10). Table 4 gives the corresponding individual
nuclearmatrix elements. The index h is added to distinguish these
matrix elements from those with light neutrino exchange. As can
be seen from Table 4, the situation is much more complicated
than in the case of light neutrino exchange. In addition to
Fermi matrix elements being larger in QRPA and tensor matrix
elements having sign that varies depending whether neutrons
and protons occupy the same shell in IBM-2 also the M

AA
GT are

much larger in QRPA and the sign of M′WW
GT is negative for all

studied nuclei in IBM-2 and positive in QRPA. Furthermore,
M

′WW
GT is also much larger in magnitude in QRPA than

in IBM-2.
Table 5 presents theMF ,MGT ,MT , and full matrix element

Mνh along with their ratios in the two studied models in case
of heavy neutrino exchange. Again, also the ratio χνh ,F =
Mνh ,F/Mνh ,GT is shown. Now we see that the absolute value of
χνh ,F is larger for IBM-2 in all studied nuclei on the contrary
to light neutrino exchange. On the other hand, χνh ,F ratios
are rather close to each other: for QRPA, they vary from
−0.30 to −0.39, and for IBM-2, they vary from −0.43 to
−0.48. In addition to the Fermi matrix element being ∼2 −
5 times larger in QRPA, the compound GT matrix elements
are also ∼3 − 7 larger in QRPA. As in the case of light
neutrino exchange, the difference is largest for 110Pd and
124Sn. If those two systems are disregarded, variation is much
smaller, in average 2.8 and 3.6, for F and GT, respectively. The
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TABLE 4 | Nuclear matrix elements (NMEs) for the heavy neutrino exchange 0νββ decay mechanism evaluated in the interacting boson model (IBM-2) and quasiparticle

random phase approximation (QRPA) as described in the text.

MF MAA
GT

M
′AP
GT

M
′AP
T

M
′WW
GT

M
′WW
T

M
′′PP
GT

M
′′PP
T

76Ge
IBM-2 −48.89 170.0 2.110 −1.310 −2.945 −6.541 0.028 −0.022

QRPA −139.4 458.1 7.101 −1.104 17.75 −4.821 0.117 −0.018

82Se
IBM-2 −41.22 140.7 1.758 −1.249 −2.456 −6.206 0.024 −0.021

QRPA −102.0 329.3 5.084 −0.834 12.32 −3.506 0.083 −0.013

96Zr
IBM-2 −35.31 124.3 1.523 1.090 −3.116 5.436 0.020 0.019

QRPA −114.2 359.1 5.698 −1.201 15.65 −5.698 0.095 −0.021

100Mo
IBM-2 −51.96 181.9 2.273 1.590 −4.590 8.055 0.029 0.027

QRPA −127.1 405.5 6.441 −1.438 17.53 −6.925 0.108 −0.025

110Pd
IBM-2 −43.52 151.2 1.892 1.356 −3.945 6.816 0.024 0.023

QRPA −167.6 557.5 8.552 −1.503 20.64 −7.100 0.139 −0.026

116Cd
IBM-2 −32.45 110.5 1.374 0.843 −3.069 4.222 0.017 0.015

QRPA −102.1 314.1 4.818 −1.016 11.35 −4.909 0.078 −0.018

124Sn
IBM-2 −33.19 104.2 1.321 −0.723 −1.701 −3.655 0.018 −0.012

QRPA −168.7 561.4 8.691 −1.994 21.74 −9.379 0.143 −0.034

128Te
IBM-2 −41.82 131.7 1.667 −0.890 −2.439 −4.519 0.023 −0.015

QRPA −138.5 471.9 7.481 −2.156 20.07 −10.256 0.125 −0.037

130Te
IBM-2 −38.05 119.7 1.514 −0.807 −1.951 −4.105 0.021 −0.014

QRPA −119.9 419.5 6.620 −1.909 17.62 −9.116 0.110 −0.033

136Xe
IBM-2 −29.83 94.18 1.177 −0.620 −1.625 −3.158 0.016 −0.011

QRPA −61.0 235.8 3.734 −1.214 9.95 −5.873 0.062 −0.021

TABLE 5 | Comparison between interacting boson model (IBM-2) and quasiparticle random phase approximation (QRPA) heavy neutrino exchange Fermi (F),

Gamow–Teller (GT), tensor (T), and full Mνh nuclear matrix elements (NMEs) as defined in Equations (12) and (13) and calculated using quenched value gA = 1.0.

Isotope Mνh ,F Mνh ,GT Mνh ,T χνh ,F Mνh

M
QRPA
νh ,F

MIBM-2
νh ,F

M
QRPA
νh ,GT

MIBM-2
νh ,GT

M
QRPA
νh ,T

MIBM-2
νh ,T

MQRPA
νh

MIBM-2
νh

76Ge
IBM-2 −48.9 115 −36.3 −0.43 200

2.85 3.38 0.82 2.79
QRPA −139.4 388.5 −29.8 −0.36 557.6

82Se
IBM-2 −41.2 94.7 −34.5 −0.44 171

2.47 2.93 0.64 2.35
QRPA −102.0 277.6 −22.2 −0.37 401.9

96Zr
IBM-2 −35.3 80.2 30.2 −0.44 85.4

3.23 3.86 −1.08 5.34
QRPA −114.2 309.5 −32.7 −0.37 456.3

100Mo
IBM-2 −52.0 116 44.1 −0.45 124

2.45 3.01 −0.89 4.16
QRPA −127.1 348.9 −39.2 −0.36 515.2

110Pd
IBM-2 −43.5 96.2 37.5 −0.45 102

3.85 4.89 −1.09 6.65
QRPA −167.6 470.3 −40.8 −0.36 678.7

116Cd
IBM-2 −32.5 69.6 23.3 −0.47 78.8

3.15 3.79 −1.19 5.00
QRPA −102.1 263.9 −27.7 −0.39 393.6

124Sn
IBM-2 −33.2 70.3 −20.0 −0.47 124

5.08 6.77 2.71 5.64
QRPA −168.8 476.2 −54.1 −0.35 699.2

128Te
IBM-2 −41.8 87.9 −24.7 −0.48 154

3.31 4.61 2.38 3.91
QRPA −138.5 404.8 −58.7 −0.34 602.0

130Te
IBM-2 −38.1 80.8 −22.4 −0.47 141

3.15 4.45 2.33 3.77
QRPA −119.9 359.5 −52.1 −0.33 531.5

136Xe
IBM-2 −29.8 63.5 −17.2 −0.47 111

2.05 3.18 1.93 2.67
QRPA −61.0 202.1 −33.2 −0.30 296.3
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tensor matrix elements, however, behave similarly as in the
case of light neutrino exchange and the ratios are comparable
to those.

The numerical values of full matrix elementMνh are discussed
in sections 4.3 and 4.4.

4. DISCUSSION

There are several ingredients that go into the calculation of
nuclear matrix elements. In the following, some of these are
discussed in view of explaining similarities and differences
obtained in the results of the two models studied, IBM-2 and
QRPA. Various discussed assumptions are interrelated with
each other.

4.1. Model Assumptions
4.1.1. Microscopic Interacting Boson Model
The IBM-2 is based on presentation of nucleon pairs as bosons
with certain quantum numbers and features a truncation of
the full shell-model space to a subspace. The procedure to
obtaining wavefunctions is typically more phenomenological
than inQRPA, and reliesmore on adjusting themodel parameters
to match available observables. However, there are no data on
0νββ matrix elements and the associated operators therefore
must be derived from the shell model, at least approximately.
The mapping is approximate since it involves only two- and
four-nucleon states (which are mapped to one- and two-boson
states) and a schematic surface-delta interaction (SDI) that is not
fully consistent with the phenomenological boson interaction.
In addition to three fundamental assumptions in IBM-2, those
being a shell-model assumption, a mapping assumption, and
a truncation assumption, all of which enter in a microscopic
derivation of the parameters of the IBM-2 Hamiltonian, there
are several assumptions specifically related to description of
0νββ decay, such as closure approximation, method of isospin
restoration, and inclusion of short-range correlations.

• The shell model assumption and single particle energies
It is generally accepted that the shell model provides

an appropriate microscopic framework for the description
of the low-lying states of nuclei. The basic assumption is
that nuclei contain a relatively inert doubly magic core and
additional valence nucleons (or nucleon holes) restricted
to a small number of valence shells. Interactions between
the valence nucleons scatter them over the valence orbits,
thereby dictating spectroscopic properties in the region of low
excitation energies. In practice, this means that one major shell
is active for neutrons and one for protons and corresponding
single particle energies (SPEs) play considerable role. In Kotila
and Barea (2016), the single-particle and single-hole energies
and strengths of interaction were evaluated and discussed in
connection to IBM-2. Furthermore, the occupancies of the
single particle levels were calculated and compared to QRPA
at BCS level and available experimental data in order to satisfy
a two-fold goal: to assess the goodness of the single particle
energies and check the reliability of the used wave functions.
Both tests are particularly important in the case of nuclei

involved in double beta decay, as they affect the evaluation of
the NMEs and then their reliability (Engel, 2015).

In principle, the single particle energies can be considered
as input parameters that can be fitted to reproduce the
experimental occupancies. Instead of fitting, the single particle
energies can also be calculated using, e.g., Woods–Saxon
potential or extracted from experimental data on nuclei with a
particle more or one particle less than a shell closure as is used
in IBM-2. As part of the study reported in Kotila and Barea
(2016), the single particle energies used in IBM-2 calculations
were updated and in Deppisch et al. (2020), a notable increase
for 0νββ NMEs was obtained particularly for 76Ge, 82Se and
96Zr, and 100Mo for which the SPEs changed the most. The
obtained increase,∼20− 40%, is mainly due GT contribution.
One should note that in IBM-2 the number of the valence
orbitals is dictated by magic numbers. The corresponding
single particle energies enter the calculation through mapping
procedure and the only parameter that is changed when SPEs
change is the SDI strength parameter. Also, in the IBM-2
calculation the same single particle energies and SDI strength
parameters for both initial and final states are used.

• The mapping and truncation assumption
Formally, any fermion problem can be transformed into

an equivalent boson problem by carrying out a mapping from
the original fermion space (the shell model space) onto space
composed of many-boson states. Those states, which properly
reflect the Pauli principle, define the so-called physical boson
space. To avoid violating the suppressed effects of the Pauli
principle, the boson operators that arise in such mappings
will, in general, involve infinite expansions. Their use in
practical applications requires that only low orders in the
series expansion be maintained. Implicit in the IBM-2 is the
assumption that the original fermion shell model Hamiltonian
can be mapped to a good approximation onto a boson
Hamiltonian which contains, at most, two-boson interactions.

In the current double beta decay calculations, the Otsuka–
Arima–Iachello (OAI) mapping (Otsuka et al., 1978) is
employed, where first the dominant, collective degrees of
freedom in the fermion space are isolated and then only this
collective subspace is mapped onto a boson space. In the
zeroth-order OAl mapping, the series expansion for the boson
Hamiltonian is truncated so that only one- and two-body
terms are kept. One should note that for strongly deformed
nuclei different mapping could be more suitable [e.g., the
generalized Holstein–Primakoff (GHP) expansion, Marshalek,
1980]. Bosonmapping procedures, in principle, map the entire
fermion space onto a boson space. Practical application of any
such procedure requires truncation to a small set of collective
bosons: in IBM-2, this is two collective bosons (I = 0 and
I = 2) for neutrons and likewise two collective bosons for
protons.

In Barea and Iachello (2009), the role of approximations in
the boson calculation was assessed by comparing generalized
seniority (GS), IBM-2, and IBM-2 with next to leading order
(NLO) calculation. It was observed that there was a systematic
reduction of the matrix elements by about 20% when going
from GS to IBM-2, while the effect of NLO terms was found
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to be very small. It was also found that the contribution of s
bosons is dominant, the contribution of d bosons is sizable and
of opposite sign, whereas NLO corrections are small and with
random sign. It was concluded that NLO corrections appear
to be small, they are henceforth neglected in the calculations
of Deppisch et al. (2020).

• Isospin restoration
Isospin restoration was already brieflymentioned in section

2. The need for this improvement was obvious: the Fermi

matrix elements M
(2ν)
F for 2νββ decay in IBM-2 did not

vanish in cases where protons and neutrons occupy the same

major shell. Similarly, the Fermi matrix elements M
(0ν)
F for

0νββ decay were large when protons and neutrons are in
the same major shell, as can be seen from Table 7 of Barea
et al. (2013a), where the quantity χF is reported. In IBM-2,
the isospin is restored by modifying the mapped operator by

imposing the condition that M(2ν)
F = 0. This condition is

simply implemented in the calculation by replacing the radial
integrals of Appendix A of Barea and Iachello (2009) with
ones given in Equations (9) and (10) in Barea et al. (2015a)
that guarantee that the F matrix elements vanish for 2νββ

as given in Barea et al. (2015a), and they also reduce the F
matrix elements for 0νββ by subtraction of the monopole
term in the expansion of the matrix element into multipoles.
Even though the method of isospin restoration is similar
in spirit in QRPA, it is different in practice. In IBM-2, the
isospin restoration does not affect any model parameters in
contrary to QRPA. When compared with the matrix elements
without the isospin restoration in IBM-2 (Barea et al., 2013a),
a considerable reduction of the F matrix elements to values
comparable to those of the shell model (Caurier et al., 2007;
Menéndez et al., 2009a), where isospin is a good quantum
number by definition, and uniformly small (χF∼ − 0.15), are
found. The overall reduction in full matrix element for light
neutrino exchangeM(0ν) due isospin restoration is∼15%.

• Closure approximation
A standard way to consider a double beta decay process is

to present it as a transitional process from an initial nucleus to
an intermediate nucleus and then to a final nucleus, so that the
corresponding nuclear matrix elements can be presented as a
sum over the intermediate nuclear states. To calculate these
matrix elements, one needs to calculate all the intermediate
states, which could be a very challenging task. However, this
can be avoided using closure approximation. The main idea
behind the closure approximation is to replace the energies
of the intermediate states with an average energy, and then
the sum over the intermediate states can be found explicitly
by using the completeness relation. In IBM-2, calculations
closure approximation is assumed. In Barea et al. (2013a), the
sensitivity to the closure energy (∼10MeV) is estimated to
be 5%. This uncertainty in the value of the nuclear matrix
elements is related to the ability to derive accurately enough
the average energy associated with the closure approximation.
Fortunately, the 0νββ nuclear matrix elements are not very
sensitive to the value of closure energy since the typical, large
value of momentum of the virtual neutrino is ∼100 − 200

MeV, i.e., much larger than the typical nuclear excitations. In
Yoshida and Iachello (2013), IBM-2 was employed without
closure approximation in the description of 2νββ for A =
128, 130 systems. The results were found to be comparable
with the ones using closure approximation, even though 2νββ

is muchmore sensitive to the choice of closure energy. In 2νββ

decay, the typical neutrino momentum is of the same order
than nuclear excitations. Further IBM-2 calculations without
closure approximations for 2νββ and 0νββ are in progress.

4.1.2. Quasiparticle Random Phase Approximation
The QRPA is a standard method for describing collective
excitations in open-shell nuclei with stable mean-field solutions,
either spherical or deformed. The advantage of the QRPA is
the number of single-particle orbits that can be included in the
calculation. In most QRPA calculations, all the orbitals within
one, two, or even more oscillator shells of the Fermi surface are
treated explicitly, with those further below assumed to be fully
occupied and those further above completely empty. The cost
for such large single-particle spaces in the QRPA is a restricted
set of correlations. To compensate this, the effective nucleon–
nucleon interaction used to generate the nuclear states needs
to be modified. The original interaction is typically a realistic
nucleon–nucleon potential adapted to the QRPA configuration
space through many-body perturbation theory.

• Parameter fitting and isospin restoration
The interaction is usually modified independently in the

particle-hole and pairing channels. The strengths of the pairing

interaction are renormalized independently for protons, g
pair
p ,

and neutrons, g
pair
n , to reproduce the pairing gaps. The

strengths of the interaction in the proton–neutron particle-
hole channels are usually renormalized to properly reproduce
the energies of the Gamow–Teller and spin-dipole giant
resonances, altering both the 2νββ and 0νββ matrix elements
somewhat. The particle–particle channel is used to cure the
problem of isospin violation obtained in 2νββ decay. This
is done by adjusting the renormalization constant gT=1

pp to

makeM(2ν)
F vanish (Šimkovic et al., 2013). In order to restore

the isospin symmetry, gT=1
pp should approximately equal to

gpair ’s (Rodin and Faessler, 2011). Then this adjusted value of
gT=1
pp is used in further calculations for the 0νββ decay. The

parameter gT=0
pp is usually independently fitted to reproduce

the measured 2νββ-decay half-life and thus obtained value
is then used in the calculation of the 0νββ NMEs. The
fitted gpp’s depend naturally on the chosen nucleon–nucleon
interaction. However, in Fang et al. (2018), it was found that
even though the parameters that lead to same 2νββ NME are
different for different interactions, they lead also basically to
the same 0νββ NME.

When comparing the matrix elements without and with the
restoration, the reduction is found to be smaller for QRPA
(Hyvärinen and Suhonen, 2015) than for IBM-2. The effect
on light neutrino exchange Fermi matrix elements is found
to be very small or negligible and Gamow–Teller and tensor
parts are found to be hardly affected in disagreement with
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QRPA calculations reported in Šimkovic et al. (2013). This
deviation with different QRPA calculations is discussed further
in section 4.4. For heavy neutrino exchange, the effect on F
NMEs is less than 5% and very small or negligible for GT and
T nuclear matrix elements. It should also be noted that for
A = 110 and A = 124 systems, there are no 2νββ-decay
data available, and in the QRPA calculation beta decay data
were used for A = 110 and for A = 124 2νββ nuclear matrix
element proposed in Šimkovic et al. (2013) was taken. These
two nuclear systems are exactly the ones were nuclear matrix
elements in Tables 2–5 for QRPA and IBM-2 differ the most.
However, in Šimkovic et al. (2013), for these nuclei QRPA
results are presented that are much closer to IBM-2 values.

• Size of the model space
Size of the model space and SPEs play considerable role

in QRPA 0νββ calculations as was pointed out in Suhonen
and Civitarese (2008). In QRPA calculations, the valence space
usually spans more than just one harmonic oscillator shell. In
Suhonen and Civitarese (2010), the effects of different orbital
occupancies andmodel-space sizes on the magnitudes of 0νββ

nuclear matrix elements were studied. It was found that the
contributions coming from beyond the simple shell-model
space are essential in obtaining a reliable value of the nuclear
matrix element. Furthermore, inclusion of spin-orbit partners
in the single particle basis is not only possible in QRPA but also
found necessary in order to avoid underestimation of the 0νββ

NMEs. Also, in QRPA rather different sets of single particle
energies are employed for initial and final nucleus (Suhonen
and Civitarese, 2010).

The size of the model space and SPEs affect also the
fitting of gpp parameters. Usually larger values of parameters
gpp are needed to obtain agreement for the 2νββ transition
probabilities when smaller model space is considered and
the 2νββ NMEs decrease with increasing particle–particle
strength.

• Non-closure approach
In QRPA, the use of closure approximation is avoided

when evaluating 0νββ NMEs. In this so-called non-closure
approach, one needs to calculate the sum through all
intermediate states explicitly, which is an obvious challenge
due to the large number of intermediate states. As noted
earlier, use of closure approximation in the description of
0νββ decay is much more justified than in the case of 2νββ

decay. However, in QRPA 2νββ NMEs are needed to fit the
gpp parameters and thus the use of non-closure approximation
is essential.

The QRPA calculations have also been used to estimate the
difference between closure vs. non-closure and the validity
of used closure energy. For example, results from Pantis and
Vergados (1990) indicate a deviation of about up to 10%
between closure and non-closure NMEs, but its magnitude
and sign depend on the choice of gpp. In Muto (1994),
very small differences between closure and non-closure is
reported, and in most cases the magnitude of the non-
closure results is slightly smaller than the magnitude of the
closure result.

4.2. Short Range Correlations
The short range correlation is important issue in the actual
calculation of 0νββ NMEs. Early calculations use the Miller-
Spencer SRC, which gives rather large reductions to the final
results. More modern Argonne and CD-Bonn SRC behave
much milder.

The short-range correlations affect heavy neutrino exchange,
0νhββ , decay differently than light neutrino exchange, 0νββ . This
is because the neutrino potential for heavy neutrino exchange is
a contact interaction in configuration space and thus strongly
influenced by SRC. For light neutrino exchange, the effect is
very small, especially when going from Argonne SRC to CD-
Bonn SRC, which are the SRC parameterizations used in IBM-
2 and QRPA calculations of interest here, respectively. For
heavy neutrino exchange, however, the effect is considerable. In
Hyvärinen and Suhonen (2015), effect of changing fromArgonne
to CD-Bonn SRC in case of heavy neutrino exchange in QRPA
was studied and CD-Bonn NMEs were found to be roughly 1.5
larger than Argonne NMEs. Similar result is found also for IBM-
2 (Barea et al., 2013a). Taking this into account, the difference
between the results for heavy neutrino exchange obtained in
IBM-2 and QRPA is reduced to factor ∼1.9 for F nuclear matrix
elements and ∼2.5 for GT nuclear matrix elements and full
matrix element.

4.3. Sign of the Tensor Matrix Element and
Full 0νββ Nuclear Matrix Element
In recent papers (Graf et al., 2018; Deppisch et al., 2020),
the mapping of the quark current products to nucleon matrix
elements and finally to nuclear matrix elements was performed
in detail. A different relative sign between GT and T matrix
element was found than in previous papers available in literature.
In case of light neutrino exchange, the tensor contribution is
rather small, ∼1%. However, for heavy neutrino exchange the
sign affects the final 0νhββ NMEs considerably. In Figures 1, 2,
total NMEs obtained with IBM-2 and QRPA using the same form
factor charges, same overall sign for tensor matrix elements, and
the convention thatMν > 0,Mνh > 0, are plotted for light and
heavy neutrino exchange, respectively. The numerical values are
also given in Tables 3, 5. Total nuclear matrix element are found
to be systematically larger in QRPA. However, for light neutrino
exchange the correspondence is very good for A = 76, 82, 100,
and 136 systems where the deviation is less or equal to 15%.
For heavy neutrino exchange, the situation is more complicated
and a factor up to 6.65 difference is found between the two
models when 110Pd and 124Sn are included. When 110Pd and
124Sn are not included and different parameterization of short
range correlation is taken into account, the factor reduces to
∼2−3. However, even for the heavy neutrino exchange, the trend
is found to be similar for IBM-2 and QRPA. The difference also
seems to be rather regular and systematic.

The matrix elements Mν attain their smallest values at the
closed proton and neutron shells due to the form of the transition
operator, which for β−β− decay annihilates a neutron pair and
creates a proton pair. These shell effects are very clear in Figure 1
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FIGURE 1 | Total light neutrino exchange 0νββ nuclear matrix elements Mν

obtained with interacting boson model (IBM-2) and quasiparticle random

phase approximation (QRPA) using same form factor charges, same overall

sign for tensor matrix elements, and the convention that Mν > 0.

FIGURE 2 | Total heavy neutrino exchange 0νhββ nuclear matrix elements

Mνh obtained with interacting boson model (IBM-2) and quasiparticle random

phase approximation (QRPA) using same form factor charges, same overall

sign for tensor matrix elements, and the convention that Mνh > 0.

and it even seems that both calculations suggest a kind of shell
closure at A = 116 system, i.e., around N = 66. Shell effects
are also responsible for the ratio of the matrix elements of two
different isotopes of the same element. For example, a simple
calculation using the pair operators of Equation (42) of Barea
and Iachello (2009) gives Mν(128Te)/Mν(130Te) = 1.11, which
is nicely reproduced by both models.

4.4. Other QRPA Calculations
As already noted, there are also several other calculations
available using QRPA in the description of double beta decay. In
Šimkovic et al. (2013), a significant reduction in the Fermi matrix
element was observed when comparing results without and with
isospin restoration. On the other hand, the values of Fermi
NMEs without isospin restoration were considerably higher
than in the QRPA calculation analyzed here. As a consequence,

FIGURE 3 | Ratio Mνh /Mν in interacting boson model (IBM-2) and

quasiparticle random phase approximation (QRPA) using same form factor

charges, same overall sign for tensor matrix elements, and the convention that

Mν ,Mνh > 0.

after the isospin restoration the Fermi NMEs for light neutrino
exchange of these two QRPA calculations (Šimkovic et al., 2013;
Hyvärinen and Suhonen, 2015) are rather close to each other.
Also the GT NMEs are generally in good agreement in these two
calculations, exceptions being 110Pd and 124Sn, where (Šimkovic
et al., 2013) reports much smaller values that in fact are in good
correspondence with IBM-2 results. In Šimkovic et al. (2013),
the T NMEs are also found to be reduced slightly once isospin
restoration is taken into account. Nonetheless, T nuclear matrix
elements obtained in Šimkovic et al. (2013) are roughly twice as
large compared to Hyvärinen and Suhonen (2015).

The nuclear matrix elements for heavy neutrino exchange
with isospin restoration in QRPA were also calculated in
Faessler et al. (2014) where only full matrix elements are given.
The results of this calculation are somewhere between IBM-2
(Deppisch et al., 2020) and QRPA of Hyvärinen and Suhonen
(2015). The results obtained with CD-Bonn parameterization
of SRC are about 67% of those given in Hyvärinen and
Suhonen (2015) obtained with the same SRC parameterization,
exceptions being 110Pd and 124Sn. Faessler et al. (2014) also
gives results with Argonne parameterization of short range
correlations and those are very similar to the ones obtained with
IBM-2 (Deppisch et al., 2020) and calculated with same SRC
parameterization.

Double beta decay nuclear matrix elements for 76Ge, 82Se,
130Te, 136Xe, and 150Nd have also been calculated using deformed
QRPA in Fang et al. (2018), where the results are presented
for both CD-Bonn and Argonne parameterization of SRC.
It is thus convenient to compare spherical and deformed
QRPA calculations with CD-Bonn parameterization, where as
the comparison with IBM-2 and deformed QRPA is made
using Argonne parameterization. Compared to spherical QRPA
calculations a reduction of ∼30% was found for 76Ge, 82Se, and
130Te, and about 60% for 136Xe, which has a magic neutron
number and different Fermi surfaces of initial non-paired and
final paired neutrons.The reduction was concluded to be mainly
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TABLE 6 | Upper limits on |mββ ||Mν | from current experimental bounds T
exp
1/2 at

90% CL and taking gA = 1.0.

Isotope T
exp
1/2 [yr]

Gν |mββ ||Mν |

10−15yr−1 [eV]

76Ge >1.8× 1026 Agostini et al., 2020 2.36 <0.78

82Se >2.4× 1024 Azzolini et al., 2018 10.19 <3.27

96Zr >9.2× 1021 Argyriades et al., 2010 20.58 <37.14

100Mo >1.1× 1024 Arnold et al., 2015 15.91 <3.86

116Cd >2.2× 1023 Barabash et al., 2018 16.69 <8.43

128Te >1.1× 1023 Arnaboldi et al., 2003 0.59 <63.43

130Te >3.2× 1025 Adams et al., 2020 14.20 <0.76

136Xe >1.1× 1026 Gando et al., 2016 14.56 <0.40

due the presence of BCS overlap factor between the initial and
ground states. This reduction leads to light neutrino exchange
NMEs that are roughly half of those obtained with IBM-2
and spherical QRPA except for 136Xe, where the reduction is
larger. This holds also for heavy neutrino exchange between
the QRPA calculations. The IBM-2 NMEs, however, are very
close to those obtained with deformed QRPA when sign of the
tensor matrix element is taken into account (exception again
being 136Xe).

4.5. Correlation of Light and Heavy
Neutrino Exchange Matrix Elements
It has been suggested that measurement of 0νββ decay
in different nuclei could be used to distinguish between
the two mechanisms, light or heavy neutrino exchange.
Unfortunately, the results in Tables 3, 5 are highly correlated
as is evident from the fact that they are obtained one
from the other just by replacing the potential v(p) with
vh(p). Therefore, this criterion cannot be used to distinguish
between the two mechanisms (Lisi, 2011). The situation
is further illustrated in Figure 3. For QRPA, the heavy
neutrino nuclear matrix elements are roughly 80 times
larger than light neutrino ones. For IBM-2, this factor is
roughly 30.

4.6. Experimental Half-Life Limits
Table 6 summarizes current bounds for T

exp
1/2 at 90% CL from

different experiments. For 76Ge and 136Xe, limit of 1026yr has
already been exceeded. Experimental half-life limits can be
converted to limits on product of neutrino mass parameter |mββ |
and nuclear matrix element as shown in the last column of
Table 6. Once the nuclear matrix element is known accurately
enough, these can be converted to limits on neutrino mass

parameter |mββ |. As mentioned, the stringent limits are currently
found for 76Ge and 136Xe. For these two systems the IBM-2 and
QRPA give rather good correspondence as can be seen from
Figure 1, deviation being ∼15%. As a result, limits of |mββ |
∼100meV are deduced for both 76Ge and 136Xe.

5. SUMMARY

In this paper, a comparison between QRPA and IBM-2
calculations for 0νββ NMEs with isospin restoration in both
models was presented in detailed level, i.e., looking at the
individual NMEs that contribute to F, GT, and T matrix elements
and finally to total 0νββ NME when multiplied with appropriate
form factor charges. Possible explanations, including method
of isospin restoration, short range correlations, single particle
energies, and closure approximation, for obtained similarities
and differences were then discussed. The agreement is found
to be quite good in most cases for light neutrino exchange.
However, there seems to be larger deviations for theA = 110, 124
systems. In these cases, there is no 2νββ data available that is
used in the QRPA to fit parameter gT=1

pp . For heavy neutrino
exchange, the trend is found to be similar, but a factor of ∼3
difference is obtained even when the effect of different short
range correlation parameterization, which affects heavy neutrino
exchange considerably, is taken into account. This suggest a
need for a further investigation on heavy neutrino exchange
0νββ nuclear matrix elements. Once the origin of this systematic
and rather regular difference is better understood, and perhaps
solved, the connection between IBM-2 and QRPA could be used
to combine the strengths of each model, in particular the large
model space and non-closure of QRPA and capability to describe
deformed nuclei of IBM-2.
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