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The origin of high-energy particles in the Universe is one of the key issues of high-energy
solar physics, space science, astrophysics, and particle astrophysics. Charged particles in
astrophysical plasmas can be accelerated to very high energies by electric fields. Based on
the characteristics of interactions between charged particles and electric fields carried by
the background plasma, the mechanisms of charged particle acceleration can be divided
into several groups: resonant interactions between plasma waves and particles,
acceleration by electric fields parallel to magnetic fields, and acceleration caused by
drift of the guiding center of particle gyro-motion around magnetic fields in magnetic field
in-homogeneity-related curvature and gradient, etc. According to macroscopic energy
conversion mechanisms leading to acceleration of particles, several theories of particle
acceleration have been developed: stochastic particle acceleration by turbulent
electromagnetic fields, diffusive shock acceleration of particles, and particle
acceleration during magnetic re-connections. These theories have their own
assumptions and characteristics and find applications in different astrophysical
contexts. With advances in high-energy astrophysical observations and in combination
with analyses of characteristics of high-energy particle acceleration and radiation, we can
better understand the underlying physical processes in dramatically evolving astrophysical
environments.
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1 INTRODUCTION

The origin of high-energy astrophysics can be traced back to the early 20th century when cosmic rays,
high energy particles that can ionize gases in the atmosphere, were discovered by Victor Francis Hess
(1936 Nobel Laureate in Physics)1. Later with the birth and advances of radio astronomy, X-ray
astronomy, γ-ray astronomy, as an important branch of astrophysics, high-energy astrophysics has
been playing an increasingly important role in astrophysics research. High-energy particles are the
main emitter of varieties of high-energy astrophysical sources. Given the high energy of these
particles, they can emit efficiently in all electromagnetic wave bands ranging from radio to gamma
rays (Blumenthal and Gould, 1970; Kelner et al., 2006). High-energy astrophysical sources therefore
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can be readily detected and constitute an important kind of
astrophysical objects ubiquitous in the Universe.

With the development of space astronomy, people started to
realize that plasma disturbances in solar flares, Earth’s
magnetosphere, and interplanetary space can also produce a
large amount of high-energy particles. The acceleration of
energetic particles then becomes a key issue in high-energy
space science, high-energy solar physics, high-energy
astrophysics, and particle astrophysics. The radiative
characteristics of high-energy astrophysical sources depend on
properties of high-energy particles they produced. High-energy
particles from the Sun or outer space can also be detected directly
by satellites in space. Cosmic rays with energies exceeding ∼1013

eV can be detected indirectly via observation of the cascading
shower they produce in the atmosphere. Observation and analysis
of properties of high-energy particles in high-energy astrophysics
sources play an essential role in exploring the underlying physical
processes.

It is generally accepted that most of the observed high-energy
particles originate from acceleration of charged particles in the
background plasma ubiquitous in the Universe. These high-
energy charged particles may collide with nuclei in the
background producing energetic secondaries. They can also
produce energetic neutrals via charge exchange process2. Since
Lorentz force of a magnetic field does not change the energy of
charged particles, acceleration of charged particles needs to be
realized through an electric field. In most astrophysical
environment, conductivity of the background plasma is high
and the corresponding electric field parallel to magnetic field
is too weak to accelerate particles to observed high energies.
Considering the fact that particle acceleration always occurs in
intense energy dissipation processes of magnetized plasmas,
motion of the background plasma with respect to magnetic
field can produce inductive electric fields, and some
electromagnetic fluctuations can effectively suppress the
conductivity giving rise to electric field parallel to the
magnetic field. In a strong magnetic field with very low
density of charged particles, a strong electric field parallel to
the magnetic field may also exist due to lack of current carriers to
drive evolution of the magnetic field. All in all, under appropriate
physical conditions, electric fields generated in a free energy
dissipation process can effectively accelerate charged particles.

Since the discovery of cosmic rays at the beginning of last
century, several mechanisms have been proposed for quantitative
modelling of acceleration processes. Generally speaking, intense
release of free energy of a magnetized plasma will produce a
variety of plasma disturbances. Stochastic interaction of charged
particles with electric field fluctuations on average will lead to an
increase in the particle energy, which constitutes the base of the
theory of stochastic particle acceleration. Some of the electric field
fluctuations may be described as waves that can exchange energy
with charged particles via resonant interactions. The energy

distribution of charged particles accelerated by electric field
fluctuations depends on statistical properties of these electric
fields. The theory of stochastic particle acceleration is developed
to address this dependence. The stochastic particle acceleration
process is generic to all free energy dissipation in magnetized
plasmas. However as a second order Fermi acceleration process
(Fermi, 1949), which corresponds to diffusion in the momentum
space, the corresponding acceleration efficiency may not be
very high.

Over the past few decades, the so-called diffusive shock theory
of particle acceleration has been introduced and studied
extensively. Based on theories of magneto-hydrodynamics
(MHD) and transport of charged particles in a magnetized
plasma, the diffusive shock acceleration theory shows that
particles can be accelerated in shock dissipation process via
repeated crossing of the shock front. In particular, if the
particle distribution is isotropic in the co-moving frame of the
background plasma, it can be shown that the energy distribution
of accelerated particles follows a power law with the spectral
index determined by the compression ratio of the shock. Since the
theory naturally links the energy distribution of accelerated
particles to macroscopic properties of the fluid with rather
general assumptions, this theoretical result is considered
generic to energy dissipation via collionless shocks. In fact, it
can be shown that as far as the particle distribution is isotropic,
the energy of particles can only be changed by compressible
modes of a fluid for the first order processes, which correspond to
convection in the momentum space. Moreover high-energy
astrophysical observations are generally consistent with this
theory. This theory was developed independently by several
teams in the 1970s (Blandford and Ostriker, 1978; Bell, 1978a,
Bell, 1978b; Axford, 1981) and has drawn widespread attentions
in high-energy astrophysics community (Drury, 1983).

When there is a large-scale magnetic field, charged particles in
the background plasma can be accelerated by parallel electric
fields associated with the reconnection current sheet and by
inductive electric fields via coupling with curvature and/or
gradient of the magnetic field. Compression of a large scale
magnetic field can also lead to betatron acceleration (Bogachev
and Somov, 2005), the underlining process for betratron
accelerators that, as the magnetic gradient draft acceleration,
leads to an increase of the perpendicular momentum of
accelerated particles. Detailed processes of particle acceleration
depends on the structure of the large scale magnetic field, which
may lead to a variety of energy distribution of accelerated
particles. However, given the importance of magnetic field in
the process of particle acceleration, particle acceleration during
magnetic reconnection is considered generic to magnetic energy
dissipation process.

It should be noted that not all processes pertaining to energy
gain of charged particles in the background plasma are
considered as particle acceleration process. If an energization
process is not selective resulting in comparable energy gain of all
charged particles in the background plasma, it is considered as a
plasma heating process. The corresponding distribution function
of charged particles can be approximated as a Gaussian in velocity
(Maxwellian in energy). The theory of particle acceleration

2Although decay or annihilation of some heavy particles beyond the standard
model of elementary particles may also produce energetic particles, conclusive
evidence for these processes has not been discovered yet.
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mainly studies momentum distribution and transport of particles
with their energy much higher than the mean energy of the
background particles. The selective acceleration of some low-
energy charged particles in the background plasma to high
energies so that these particles may participate in the
acceleration processes at larger scales is called the injection
problem. The above-mentioned resonant wave-particle
interaction, resonant interaction of waves and charged dust,
and some particular configuration of the magnetic field can
cause charged particles in the background plasma to be
selectively accelerated to high energies (Ellison et al., 1997;
Meyer et al., 1997). Neutral atoms moving with a high speed
relative to the background plasma will appear as high-energy
charged particles when being ionized, which can also be an
effective mechanism for injection under appropriate
astrophysical conditions. In high-energy solar physics and
space science, where the energy spectrum can be measured
from the thermal background to very high energies, injection
of particles into the acceleration process is an important issue.

When charged particles with increasing energy decouple from
background particles, they can interact with electromagnetic
fields on larger scales due to their relatively long mean free
paths. An important aspect of high-energy astrophysics
research is to analyze acceleration and radiation mechanisms
of these energetic particles via interactions with the background
plasma. The stochastic particle acceleration mechanism originally
proposed by Fermi (i.e., charged particles are accelerated
gradually to higher energies via stochastic interactions with
electromagnetic field fluctuations carried by the background
plasma) is still the starting point of most macroscopic theories
of particle acceleration (Fermi, 1949; Parker, 1958; Toptygin,
1980; Petrosian and Liu, 2004). Current researches in this area
focus on using the associated radiation mechanisms to infer
distribution function of energetic particles from observations,
then in combination with the relevant energy release processes
(such as magnetic reconnection, shocks, MHD instabilities, etc.),
analyzing the related particle acceleration and transport, plasma
heating, and magnetic field amplification processes.

This review is organized as the following: General
Characteristics of HIGH-ENERGY Particle Acceleration in a
Fluid discusses microscopic interactions leading to changes in
particle energy; Specific Acceleration Mechanisms summarize
particle acceleration in specific astrophysical conditions;
Conclusions are drawn in Conclusion.

2 GENERAL CHARACTERISTICS OF
HIGH-ENERGY PARTICLE ACCELERATION
IN A FLUID
In what follows, we take the energetic particles to sufficiently rare
that they do not affect the background thermal plasma or
electromagnetic field, so the electric and magnetic fields are
determined by the ambient thermal plasma. This test-particle
limit is usually a good approximation for the energetic particles
emphasized in this review. In reality, there are situations (notably
supernova blast waves) where the effects of cosmic rays on the

background plasma and magnetic field must be considered
(Lucek and Bell, 2000; Blasi, 2004; Bell et al., 2013).

2.1 Energy Change and Instantaneous
Acceleration Rate
Let us begin with some general comments regarding charged
particle acceleration in astrophysical plasmas. Since particle-
particle collisions are extremely rare in the plasmas which we
are considering, and neglecting the gravitational force, motion of
a particle with charge q velocity w and moment p is determined
by the electric and magnetic fields E and B. We have

_p � dp
dt

� q(E + w × B
c

) (1)

where c is the speed of light and the upper dot indicates a
derivative with respective to time t. Then, the rate change of
the energy T of a charged particle in such a plasma is via the
electric field E(r, t) and may be written as

_T � dT
dt

� w · _p � qw · E(r, t) (2)

The electric field may be ambient or associated with scattering by
turbulent fluctuations. Clearly, in order to evaluate the energy
change, we must know the particle trajectory in the
electromagnetic field. This leads to the general requirements
that acceleration and spatial transport be intimately coupled
and both E(r, t) and B(r, t) must be considered together.

It turns out that the spatial scales of the plasma and magnetic-
field variations which are most important in determining cosmic-
ray motions are those comparable to or larger than the particle
gyro-radii, which are much larger than the thermal particle gyro-
radii. Therefore, the relevant plasma scales are such that the
MHD approximation is valid and the ambient electric field in a
nonrelativistic plasma may be determined from the fluid velocity
U≪ c and magnetic field by the relation

E � −U × B
c

+ j
σ

(3)

where j � (c∇ × B − zE/zt)/4π is the electric current density, σ is the
ordinary conductivity, and j/σ is the electric field in the fluid frame.
Note that in the relativistic theory, both j and σ varywith the frame. For
nonrelativistic fluids with U≪ c, we can ignore their frame
dependence. The corresponding corrections are on the order of
U/c. The zE/zt term can also be ignored in nonrelativistic plasmas
since it is much smaller than c∇ × B and is on the order of (U/c)2.

In this case, the rate of energy gain of the particle is given by

dT
dt

� −qw · (U × B
c

− j
σ
) (4)

which, upon using a basic vector identity to rearrange the terms,
can be rewritten as

dT
dt

� q(U · w × B
c

+ w · j
σ
) (5)

Then the instantaneous energy change rate of a particle can be
written as
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dT
Tdt

� q(U · w × B
cT

+ w · j
σT

) (6)

where the first term on the right-hand side gives the acceleration
rate by the inductive electric field:U⊥(c + 1)cosϕsin2θ/crg , where
c � (1 − w2/c2)−1/2, rg � pcsinθ/qB, θ, and ϕ are the Lorentz
factor, gyro-radius, pitch angle, and gyro-phase angle of the
particle, respectively, U⊥ represents the component of U in
perpendicular to B, and the second term on the right-hand
side corresponds to acceleration by resistive electric fields.

Note that T � (c − 1)mc2 � cpw/(c + 1), wherem is the mass
of the particle, _T/T � _p(c + 1)/pc � (c + 1)c _w/w, and the
acceleration rates are proportional to the charge to mass ratio
q/m. The change rate of the amplitude of momentum _p by the
inductive electric field only depends on the direction of the
velocity and rigidity of the particle R � p/q explicitly. The
instantaneous rate of acceleration by the inductive electric field
reaches the maximum value of

τ−1acc.int �(dT
Tdt

)
max

�U⊥(c+1)qB
cpc

�U⊥(c+1)
crg

� ]g2πU⊥(c+1)
cw

<]g

(7)

for sinθ � 1 and cosϕ � 1, where ]g � w/2πrg is the gyro-
frequency, and the gyro-phase averaged acceleration rate is
negligible if the changes of U and B on the scale of rg are
negligible. Variations of U and/or B on the scale of rg
therefore play an essential role in the acceleration of particles
by the inductive electric field (Zhang and Lee, 2013).

In the presence of electric fields parallel to the magnetic
field or electromagnetic fields varying on the same scales of the
particle gyro-motion, the acceleration process will depend on
the charge and/or mass of the particles, and therefore become
selectively. These processes are essential at low energies when
the particle velocity is comparable to the flow velocity and the
particle distribution may not be isotropic. The details of these
accelerations are complicated, depending on properties of the
plasma waves and parallel electric fields. The former usually
leads to stochastic particle acceleration, a second order
process, while the latter leads to direct acceleration, a first
order process.

If the variation scale of B is much larger than the particle gyro-
radius, one may use the guiding center approximation to describe
the motion of charged particles in an in-homogeneous B. Besides
moving along magnetic fields with a speed of w‖, the guiding
center of particle gyro-motion also drifts across magnetic field
lines with a velocity (Northrop, 1963):

vD ≃ U⊥ + 2μcw2
‖

qcw2
⊥
[b × (b · ∇)b] + μc

qcB
[b × (∇B)]

� U⊥ + rgw2
‖

w⊥
[b × (b · ∇)b] + rgw⊥

2B
[b × (∇B)]

(8)

where U⊥ � cE × B/B2, p⊥ � cmw⊥, b � B/B is the unit vector
along B, μ � p2⊥/2mB is the magnetic moment of the particle
motion, and we have ignored resistive electric field and terms on

higher orders of U/w. Note that the magnetic moment μ is
approximately conserved for slowly varying B.

It can be shown that drift of the guiding center in magnetic
field gradients (3rd term on the right-hand side of Eq. 8) and
curvatures (2nd term on the right-hand side of Eq. 8) will lead to
changes of energies associated with motions in perpendicular and
parallel to B, respectively (Zhou et al., 2015):

d(cw⊥)2
2dt

� μzB
mzt

+ μw‖
m

b · ∇B + (cw⊥)2
2B

U⊥ · ∇B (9)

d(cw‖)2
2dt

� −μw‖
m

b · ∇B + (cw‖)2U⊥ · [(b · ∇)b] (10)

where the last terms on the right-hand side of Eqs 9, 10 can
lead to changes in the particle speed and may be rewritten
as (cq/m)E · vDg⊥ and (cq/m)E · vDc⊥, respectively, where
vDg⊥ � (rgw⊥/2B)[b×(∇B)] and vDv⊥ � (rgw2

‖ /w⊥)[b×(b ·∇)b] .
Since the betatron and the Fermi mechanism can lead to the
increase of the perpendicular and the parallel momentum of
charged particles, respectively, Eqs 9, 10 are associated with the
betatron and Fermi processes, respectively (Bogachev and Somov,
2005). It is interesting to note that since the drift velocity
associated with magnetic curvature and gradient is inversely
proportional to the charge to mass ratio, the acceleration
caused by drift in magnetic gradient and curvature only
depends on the particle velocity and does not depend on the
charge and mass! Since rg depends on the sign of the charge q,
particles with opposite charges drift in opposite directions leading
to identical speed change. (The corresponding current can lead to
magnetic energy conversion and/or dissipation via coupling with
the inductive electric field.) One would expect identical speed
distribution for all particle species if the acceleration is dominated
by drift in magnetic gradient and/or curvature. Compared with
the acceleration rate given by Eq. 6, the acceleration rate caused
by drift in magnetic gradient and curvature is lower by a factor of
L/rg , where L represents the curvature radius of B or the variation
scale of B, due to average over gyro-motion of the particle:

τ−1acc.drf ≃
U
L

(11)

In principle, in combination with particle trajectory, Eqs. 5 or 9
and 10 can be used to study acceleration of individual particles
(Turkmani et al., 2006; Zhou et al., 2015). However, the results
heavily depend on the structure of B and E covering many orders
of magnitude in spatial scales. Direct comparison of such
simulations with observations is challenging given the
complexity of the structure of B and E in actual astrophysical
situations. To have statistically converging results, such test
particle simulations can also be computationally extensive.
Moreover, such studies are only valid when the density of
accelerated particles are too low to affect the evolution of E
and B, which may not be true for acceleration of particles near the
shock front (Bell et al., 2013).

The problem can be simplified dramatically for test particles in
MHD. Jones (1990) first pointed out that the microscopic energy
exchange between charge particles and electromagnetic fields
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discussed above can be expressed in terms of compression of the
fluid ∇ · U:

dT
dt

≃ qE · vD + q2B
2πcmc

∮
C

E · dl (12)

≃ − cmw2
⊥

2
∇ · U⊥ − cmw2

‖
B

(U × B) · (b × (b · ∇)b)

+ cmw2
⊥

2B
(U × B) · (∇ × b)

(13)

For isotropic particle distributions, the last two terms cancel if
averaged over the direction of motion. The mean energy gain is
then proportional to the divergence of U. Since we only consider
the inductive electric field, the parallel component of U does not
show up in Eq. 13. In ideal MHD, compression along magnetic
field needs to be associated with collisions. We also note that
isotropy of the particle distribution is assumed here in the
laboratory frame instead of the fluid frame as we will assume
in the following.

Using Eqs 1, 3 for _p and E above, respectively, Eq. 5 may be
written as

dT
dt

� U · _p + q(w − U) · j
σ

(14)

Again by simply rearranging terms this may then be rewritten as

d
dt
(T − U · p) � −p · dU

dt
+ q(w − U) · j

σ
(15)

Noting that T′ ≃ T − U · p + cmU2/2 is the particle kinetic
energy in the fluid frame, and writing p′, the momentum in
the fluid frame as p′ ≃ p − cmU, Eq. 4 may be written as

dT′

dt
� −dU

dt
· p′ + q(w − U) · j

σ

� −(zU
zt

+ w · ∇U) · p′ + qw′ · j
σ

(16)

where the particle velocity in the fluid frame w′ � w − U and we
have ignored the relativistic effects. Using dT′ � w′dp′,

w′dp′
dt

� −(zU
zt

+ w · ∇U) · p′ + qw′ · j
σ

(17)

where we have used the notation that for an arbitrary vector V,
dV/dt � zV/zt + (w · ∇)V. Eq. 17 is quite general, depending
only on the MHD approximation for the ambient electric field E
given above.

One may also obtain Eq. 17 by considering the Lorentz force
in the fluid frame (Zhang and Lee, 2013):

dp′
dt

� −cm dU
dt

+ q( j
σ
+ w′ × B

c
) (18)

where the first term on the right hand side corresponds to
acceleration of the fluid. Then from dT′ � w′ · dp′ and
p′ � cmw′, one obtains Eq. 17 by projecting Eq. 18 in the
direction of w′.

For energetic particles, w≫U. For most astrophysical
plasmas, σ ∼ ∞. Eqs. 1,3 show that the magnetic force on the
particle that changes the direction of motion is much stronger
than the electric force that changes the particle energy, magnetic
irregularities can scatter particles efficiently (Zhang and Lee,
2013). The angular distribution of energetic particles should be
nearly isotropic, which is confirmed by observations. If the
particle angular distribution is isotropic in the fluid frame, (so
that the averages over pitch angle: 〈w′ · j/σ〉 � 0,
〈w′ip′j〉 � δijw′p′/3, and 〈U · p′〉 � 0), then one may average
Eq. 17 over angle at a given momentum p’ to obtain

〈dp′
dt〉 � −p′

3
∇ · U (19)

This is precisely the rate of energy change appearing in the Parker
equation (Parker, 1965) and corresponds to the adiabatic
thermodynamic process. The averaged acceleration rate is then
determined by the compression rate and does not depend on the
particle charge and mass as far as the particle distribution is
isotropic. Although for an isotropic particle distribution, Eq. 18
shows that the momentum change rate averaged over angle 〈p′〉
is always 0, the averaged change rate of the amplitude of
momentum 〈 _p′〉 is proportional to ∇ · U, which is intimately
related to non-vanishing gyro-motion averaged energy change
rate of a particle for variations of B and U over the gyro-period
(Zhang and Lee, 2013). Eq. 18 shows that the energy change is
associated with the acceleration of the fluid and does not depend
on the details of the microscopic interactions. Eq. 19 therefore is a
direct consequence of the fluid theory and can be used to describe
plasma heating as well.

Eq. 19 for energy change clearly also applies at discontinuities
in the flow and/or magnetic field, such as shocks or current sheets,
if scattering is sufficient to keep the anisotropies small. In what
follows, we will suppress the angular brackets in Eq. 19. Also, in
most applications, w≫U and we may neglect the distinction
between p′ and p. It follows from Eq. 19 that one must have
anisotropies to obtain efficient acceleration of energetic particles
when ∇ · U � 0, such as in in-compressible ideal MHD flows.

In most cases, the anisotropies will, like the electric field, be
proportional to the flow speed or its derivatives. Hence in these
cases, the acceleration rate will be of the second order in the flow
velocity U. This also follows for resonant acceleration by hydro-
magnetic waves (Petrosian and Liu, 2004). For energetic particles
with w≫U , the second-order terms are generally much smaller
than the first-order term in ∇ · U, and the acceleration is
consequently slower than that given by Eq. 19.

However, the amount of energy gain via the adiabatic
process is limited by the extent of compression of the
background plasma (Schatzman, 1963; Drury, 1983). The
acceleration also does not depend on the charge and mass
of accelerated particles. Without consideration of other
physical processes, the compression process alone clearly
cannot account for the observed high energies of cosmic
ray particles and spectral variations among different
particle species. As we will see below, the acceleration rate
will be further reduced from
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τ−1acc.MHD � ∇ · U (20)

when considering other processes.

2.2 Transport Equations of Cosmic Rays
and Energetics
Asmentioned above, the acceleration process is intimately related
to the spatial transport of particles. A robust and widely
applicable transport theory, applicable to particles with w≫U ,
has been developed. It may be viewed as an expansion in powers
of the ratio U/w. The theory utilizes the fact that the plasmas in
space are turbulent, with broadband fluctuations over scales
including the particle gyro-radii. Magnetic field fluctuations
(either in terms of curvature or gradient) on scales near the
particle gyro-radii in the ambient magnetic field will lead to
fluctuations of the particle pitch angle, which can lead to chaotic
trajectories and very efficient scattering (Figure 1) (Buechner and
Zelenyi, 1989; Xie and Liu, 2020). The particle motions are
described statistically, and the magnetic fluctuations “scatter”
the particles in angle, making them nearly isotropic relative to the

local plasma coordinate frame (on scale larger than the gyro-
radius of the particle), and resulting in diffusive transport. As
pointed out in the previous section, this near-isotropy is observed
in the cosmic-rays.

The resulting spatial diffusion coefficient can be obtained in
terms of the statistical properties of the turbulent magnetic field
by using a variety of approximations: quasi-linear theory
(Ptuskin, 1988; Bykov and Toptygin, 1993) and integration of
particle orbits in a synthesized magnetic field are the most often
used. The trajectories become effectively randomized and are
made isotropic in the local frame (Figure 1). Under a wide range
of conditions this drives them to near-isotropy in the fluid frame
(or, more generally, the frame of the scatter) with a time scale τ,
which usually depends on the charge to mass ratio of particles.
Unfortunately, a general theory for lower-energy particles whose
speeds are comparable to U or smaller is not yet available3 and
observations of narrow band radio bursts from solar flares suggest

FIGURE 1 | Computed orbits of two particles in a specified magnetic field that is axisymmetric along the z axis. The two particles are started with nearly the same
initial velocity and position, but behave quite differently. This sensitivity to initial conditions results in chaotic or random trajectories (Buechner and Zelenyi, 1989; Xie and
Liu, 2020).

3See the section on stochastic particle acceleration below.
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that these lower-energy particles can be highly an-isotropic
(Kliem et al., 2000).

We work in terms of the energetic-particle distribution
function f (r, p, t). If we neglect U entirely (zeroth order in
U/w) and consider time scales much larger than τ, the
resulting particle motion may be approximated as diffusive,
and the phase space distribution satisfies

df
dt

� d
dxi

[κij dfdxj] + Q (21)

where κij is the diffusion tensor, determined by the spectrum of
the magnetic fluctuations, and Q represents any source. The flow
velocity of the background fluid does not appear, and because
E � 0 in this limit, advection or energy change do not appear.
This equation gives a crude, but sometimes acceptable description
of the behavior of very high energy particles (with
correspondingly fast diffusion) occasionally emitted by the
Sun. However, it is too simple for most purposes.

Proceeding to the next order in U/w we obtain a much more
useful equation, the Parker transport equation Parker (1965),
which may be written in the following form:

zf
zt

� z

zxi
[κij zf

zxj
] (diffusion)

−Ui
zf
zxi

(convection)

−Vdi
zf
zxi

(guiding–center drift)
+ 1
3
zUi

zxi
[pzf
zp

] (energy change)
+Q(xi, t, p) (source)

(22)

� z

zxi
[κij zf

zxj
− Uif] − z

zpi
[pif ] − Vdi

zf
zxi

+ Q(xi, t, p) (23)

� z

zxi
[κij zf

zxj
+ Ui

3
pzf
zp

] − Ui
z

zxi
[f + 1

3
pzf
zp

] − Vdi
zf
zxi

+ Q(xi, t, p) (24)

� z

zxi
[κij zf

zxj
+ Ui

3
pzf
zp

] − 1
p2

z

zp
(p2p

3
Ui

z

zxi
f) − Vdi

zf
zxi

+ Q(xi, t, p) (25)

where we have used Eq. 19 for _p. Here the diffusion tensor κij may
be written in terms of the magnetic field, the parallel diffusion
coefficient, κ‖, and the perpendicular diffusion coefficient, κ⊥ as:

κij � κ⊥δij + (κ‖ − κ⊥)BiBj

B2
(26)

The associated streaming flux (in the observer’s frame) of the
particles may be written as:

Fi � −κij zf
zxj

− Ui

3
pzf
zp

(27)

where the second term on the right hand side is due to the
Doppler effect. The associated anisotropy is given by:

δi � 3Fi
wf

(28)

The drift velocity of the guiding center Vd is given by Isenberg
and Jokipii (1979):

Vd � pwc
3q

∇ × (B
B2
) (29)

In this equation we have the spatial diffusion contained in the
zeroth order Eq. 21, with new terms containing the advection and
acceleration/deceleration caused by the fluid flow. Note that the
electric field does not appear explicitly in Eq. 22. However, as
shown above on the energy change, it is nonetheless contained in
the terms involving the flow velocity U. Eq. 22 was first written
down by Parker (1965). It is the basis of most current work on
cosmic-ray transport and is often called the Parker equation. The
equation is a good approximation for energetic particles
(U/w≪ 1) if there is enough scattering by magnetic
irregularities so that τ is much shorter than the macroscopic
time scales and the distribution is nearly isotropic. It applies at
shocks (which appear as discontinuities inU ) and at thin current
sheets. In this limit, if the divergence of the flow velocityU is zero,
there is no energy change to first order in U/w.

Upon carrying out the expansion to second order in U/w, we
obtain new effects involving the viscosity of the cosmic rays and
the acceleration of the flow (Earl et al., 1988; Webb, 1989;
Williams et al., 1993). These give additional terms
representing acceleration of cosmic rays caused by the fluid
velocity shear, other gradients in velocity, and fluid
acceleration. The viscosity can give acceleration in divergence
free flows, which are absent in the first-order equation. For
κ‖ � κ⊥ � κ � τw2/3, we have:

zf
dt
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,

(30)
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]
(32)

where the source and guiding-center drift terms have been
ignored and the coefficient of viscous momentum transfer Γ
and the fluid acceleration vector Ai are defined by

Γ � 1
10

[zUi

zxj
+ zUj

zxi
]2

− 2
15

zUi

zxi

zUj

zxj
(33)

Ai � zUi

zt
+ Uj

zUi

zxj
(34)

In Eq. 30, the first term on the right-hand side describes diffusion,
the second: convection, the third: adiabatic energy change and the
last four terms describe energy changes due to velocity shear and
fluid acceleration. The order of magnitude of the new terms are of
the second order ofU/w for the reasons discussed above. Also, the

Frontiers in Astronomy and Space Sciences | www.frontiersin.org June 2021 | Volume 8 | Article 6518307

Liu and Jokipii Particle Acceleration

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


temporal and spatial scales of the variation of U must be larger
than the scattering time τ or the associated scattering mean free
path λ � τw, respectively, for the validity of the diffusion
approximation (Earl et al., 1988). In Eq. 32, one may also
incorporate gradual momentum change due to radiative loss
or acceleration by resistive electric fields into the convection
term in the momentum space. Stochastic particle acceleration due
to resonant wave-particle interaction may be incorporated as a
diffusion term in the momentum space (Petrosian and Liu, 2004).
With Eq. 30, one can readily distinguish the first and the second
order Fermi acceleration. The first order Fermi acceleration is
defined as a convection term in the momentum space while the
second order Fermi acceleration contributes to the diffusion term
in the momentum space.

Using Eq. 33, Earl et al. (1988) (ELM) derived the average rate
of momentum change:

〈Δp〉
Δt � Γ

p2
d
dp

[p4 κ
w2

] (35)

and the average rate of momentum dispersion:

〈Δp2〉
Δt � 2Dpp � 2Γp2 κ

w2
(36)

Note that this momentum or energy change is caused by the
fluctuating electric fields associated with the moving magnetic
scattering centers, and results in both deceleration and
acceleration. The associated viscosity introduced by high-
energy particle acceleration is given by:

] � −4π
15

∫wτp4
zf
zp

dp (37)

where the integration is for p satisfying wτ≪ L, the variation scale
of U.

This mechanism is distinguished from previous discussions in
which the energy change was associated with compression. The
transport equation of EJM has been solved using stochastic
integration for an idealized, divergence-free flow similar to
that in 2-dimensional reconnection with the flow vector in the
x-z plane given by the expression

U(x, y) � U0[tanh(xL) ex − y
L
sech2(x

L
)ez] (38)

It is readily shown that the values of 〈Δp〉/Δt and 〈Δp2〉/Δt given
above in Eqs. 35, 36 are non-zero and acceleration occurs because
of the shear (Ohira, 2013). In this case, the acceleration rate is
slow on the order of

τ−1acc.vis �
U2κ

w2L2
∼ (U

w
)2(λ

L
)2

τ−1 � (λ
L
)(U

w
)(U

L
)<U

L
� τ−1acc.dft

(39)

Although the derivation of Eq. 30 assumes that λ≪ L for the
diffusion approximation to valid, the particle acceleration by
shearing flow is most efficient when λ is comparable to L,
reminiscence of resonant interactions. In fact, even in the case
where λ≫ L, viscous dissipation still exists. Acceleration of
cosmic rays is expected if there are repeated crossings of a

shearing flow layer. The corresponding acceleration rate
should be on the order of (U2/w2)τ−1. The viscosity induced
by cosmic ray acceleration is a feedback of cosmic rays on the
shearing flow of the background plasma. Similarly, the
acceleration of the flow may be treated as a pressure term of
cosmic rays.

Finally, the acceleration of particles is directly related to
dissipation of energy stored in the magnetic field and/or
damping of the flow velocity (Melia et al., 2001). From MHD
equations, we have

z

zt
(B2 + E2

8π
) � − c

4π
∇ · (E × B) − j · E

� − c
4π

∇ · (E × B) − j2

σ
+ 1
c
j · (U × B) ,

(40)

z

zt
(1
2
ρU2) � −∇ · (1

2
ρU2U) − U · ∇P

−1
c
j · (U × B) + 2U∇ · (S]) + ξU · ∇(∇ · U)

(41)

where ρ and P are the mass density and pressure of the
background plasma, respectively, the second and the last two
terms on the right-hand side of Eqs 40, 41 are associated with
dissipation via resistive and inductive electric fields, respectively,

Sij � 1
2
(zUi

zxj
+ zUj

zxi
− 2
3
δij∇ · U)

and the coefficient of viscous momentum transfer
Γ � 2SijSji/5 � 2S2/5. ξ is the second viscosity or the volume
viscosity, which is related to anisotropy of the pressure p.

Both the acceleration via drift in magnetic gradient and/
curvature (Eqs. 9, 10) and the acceleration due to
compression (Eq. 19) are associated with kinetic energy
dissipation via the inductive electric field. The Fermi
mechnism and shock drift acceleration are associated with the
inductive electric field as well (Fermi, 1949; Jokipii, 1982). In the
MHD, the dissipation of magnetic energy via the inductive
electric field also leads to acceleration of the flow and vice
versa via the third terms on the right-hand side of Eqs. 40,
41. The particle acceleration by the shear and by deceleration of
the flow is associated with scattering of particles by the
background plasma leading to viscosity and cosmic ray
pressure which can cause damping of the shear and a force
acting to decelerate the background flow, respectively. These
accelerations are caused by inductive electric fields at small
scales directly, reminiscence of acceleration by compression.

Resistive dissipation in MHD usually leads to heating of the
background plasma:

z(ρϵ)
zt

� −∇ · (Uρϵ) − ∇ · q − P∇ · U + j2

σ
+ 2]S2 + ξ(∇ · U)2

(42)

where ρϵ is the internal energy density of the background plasma
and q is the heating flux. At the presence of high-energy particles,
some of the magnetic energy dissipated via resistive electric fields
can go into particle acceleration directly via the _p term in Eq. 32.
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Therefore in the context of MHD, the acceleration of high-
energy particles can be classified into two kinds: direct
acceleration by resistive electric fields, which can be very
efficient and only operates in particular astrophysical
environments where the resistivity may be high, and
acceleration by inductive electric fields via effective scattering
with the background plasma, which appears to be ubiquitous and
is relatively less efficient than acceleration by resistive electric
fields. Statistical properties of the latter can be described with the
diffusion coefficient κ, which also determines the spatial transport
of high-energy particles. The issue of high-energy particle
acceleration in MHD then can be fully addressed with κ and
the source term Q, which describes the particle acceleration at
relatively low energies and therefore smaller scales where MHD
may not be appropriate to describe the characteristics of particle
energizing electric fields.

3 SPECIFIC ACCELERATION
MECHANISMS

The basic transport equation discussed above has been used in a
variety of contexts to discuss the acceleration of energetic
particles. The most successful and widely applicable is that of
standard diffusive shock acceleration, which results from the
application of the first-order Eqs. 22 to a planar shock wave.
As we will see, this has the singular property of producing a power
lawmomentum spectrumwhich is extremely insensitive to model
parameters and is close to that observed.

3.1 Diffusive Shock Acceleration
Consider a steady, plane shock propagating in a uniform
medium. Define the x-direction as the direction of
propagation and let particles be introduced uniformly and
steadily at the shock with a rate of A at an injection
momentum p0. Work in the shock-normal coordinate system,
with the shock at the fixed position x � xsh. The shock
compression ratio r is defined as the ratio of upstream to
downstream flow speed U1/U2 > 1. It depends on the Mach
number and the adiabatic indexes of the upstream and
downstream flows (Zhang and Liu, 2019). It is readily found
that the steady solution to the Parker equation in this case is given
by (Drury, 1983)

f (x, p) � 3A
4π(r − 1)p30U2

( p
p0
)−3r/(r−1)

H(p − p0)f (x) (43)

where

f (x) � exp⎛⎝∫x

xsh

U(x′)
κxx(p, x′) dx′⎞⎠ for x < xsh and

f (x) � 1 for x > xsh
where H is the Heaviside step function. Note that in the limit of a
strong non-relativistic shock, r→ 4, the momentum dependence
of the distribution function becomes f (p)∝ p−4, which
corresponds to an energy spectrum dn/dT∝T−2 for

relativistic particles and dn/dT∝T−3/2 for non-relativistic
particles which is not far from the distribution of energetic
electrons inferred from radio observation of supernova
remnants (Reynolds et al., 2012), the distributions of Galactic
cosmic rays (Strong et al., 2007), and solar energetic particles
(Mewaldt et al., 2007). This energy dependence is independent of
shock speed, diffusion coefficients and other parameters. Since
shocks in astrophysics tend to be strong, this is in effect the
desired “universal” spectrum.

One should note that since the diffusion coefficient κ usually
depends on the momentum, the particle distribution in the
upstream of the shock is usually not a power law. The
distribution function integrated in the upstream is given by

F(p)�∫−∞

xsh

f (x,p)dx � 3Aκ(p)
4π(r−1)p30U2U1

( p
p0
)−3r/(r−1)

H(p−p0)
where we have assumed that κ is independent of x in the
upstream. Therefore in the shock precursor, one may have a
distribution harder than that in the downstream of the shock. If
one has an escape boundary in the upstream, the particle
distribution will be softer (Zhang and Liu, 2020).

Solving the time-dependent version of Eq. 22 with particles
injected at a low momentum p0 turned on at a specific time
reveals that the spectrum is indeed the universal power law given
in Eqs. 43, but with a high-momentum cutoff, pc which increases
at a rate d ln(pc)/dt ≈ 4U2

1 /κxx for κxx increasing rapidly with the
increase of p (Forman and Drury, 1983). For a weak dependence
of the κxx on p, one will have a distribution gradually softening
toward high energies and approaching the steady-state one with
the increase of time (Zhang et al., 2017). The rate of particle
acceleration by shocks ((Lagage and Cesarsky, 1983)) is therefore
on the order of

τ−1acc.shk ∼
U2

κ
∼ (U

w
)2

τ−1 � (L
λ
)2

τ−1acc.vis (44)

which is higher than the rate caused by shearing by a factor of
(L/λ)2. From this we may see that quasi-perpendicular shocks
will in general accelerate particles faster than will quasi-parallel
shocks. For quasi-perpendicular shocks κxx � κ⊥ which is
generally significantly smaller than κ‖, which is the relevant
diffusion coefficient for quasi-parallel shocks.

Although the Parker equation and the discussion leading to
Eq. 22 apply for arbitrary direction of the local average magnetic
field with appropriate diffusion tensor, the acceleration at a shock
is physically quite different for quasi-parallel shocks (upstream
plasma flow velocity nearly parallel to the magnetic field) than for
perpendicular shocks, where the upstream flow is nearly
perpendicular to the magnetic field (Jokipii, 1982; Drury, 1983;
Jokipii, 1987). For quasi-parallel shocks the particle acceleration
is best thought of as resulting from particles being scattered by
upstream and downstream scattering centers which in the shock
frame are converging and accelerating the particles which cross
the shock more than once. Statistically, some particles will cross
the shock many times and others not so many. This process can
be shown to produce the power-law spectrum (Drury, 1983).
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The acceleration process is physically quite different for
quasi-perpendicular shocks. In this case the average magnetic
field magnitude jumps suddenly at the shock by the shock
ratio r, which causes a gradient drift along the shock face in
the direction of the electric field E � −(U × B)/c. As long as

the scattering rate is sufficient to maintain near-isotropy, this
acceleration can be much faster than the rate for a parallel shock
(Jokipii, 1987). This mechanism is illustrated in Figure 2.

A discontinuous change in the flow speed, such as at a
shock, is not necessary for this acceleration to occur. As

FIGURE 2 | Cartoon illustrating the difference in the acceleration of charged particles at parallel (left) and perpendicular (right) shocks. In the former, the particles
can move back and forth across the shock moving along the magnetic field, whereas in the latter, the particles cannot move as easily normal to the shock front and the
energy gain at the shock comes in large part from drift. The electric field is perpendicular to the magnetic field and the flow velocity.

FIGURE3 | Left: Shock (red dashed line) andmagnetic field (blue lines) geometry for an upstream averagemagnetic field perpendicular to the shock normal. U1 and
U2 give the upstream and downstream flow velocities, respectively. Right: Profiles of density of the accelerated particles, for low (black lines), medium (blue dashed lines),
and high (red dot-dashed lines) energy ranges at different locations z � 0.0 (top) and π (bottom), respectively (Guo et al., 2010).
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demonstrated by Giacalone et al. (2002), when a finite-scale
compression (with characteristic scale Lc) propagating in the
x direction at a speed Ux encounters a charged particle which
has a diffusion coefficient κxx , then if the parameters are such
that the dimensionless quantity UxLc/κxx ≪ 1 the solution is
the same as that for a shock.

Because large-scale astrophysical fluids are generally
turbulent, with large-amplitude fluctuations in fluid
parameters, the theory of diffusive shock acceleration has
been applied to shocks propagating through a turbulent
medium. This gives one possible explanation of the Voyager
1 observations as it crossed the termination shock (Figure 3).
Recently Arthur and le Roux (2013) have considered a similar
model with similar results.

The Parker transport equation has acceleration of particles
occurring only if the term ∇ · U is non-zero. As shown above, this
occurs at shocks. Another possibility is that there are fluctuations
in the fluid density caused by compressional oscillations. This
possibility has been considered by many authors (Ptuskin, 1988;
Jokipii et al., 2003) andmost recently by Jokipii and Lee (2010). In
analogy with the term ‘diffusive shock acceleration’ used for
shocks, Jokipii et al. (2003) termed this acceleration ‘diffusive
compression acceleration’.

Consider the case that the diffusive skin depth
Ld � κ/U ~> Lc, the compression length scale, but where the
flow varies smoothly. Note that the scattering mean free path
λ does not appear explicitly in this inequality. So it is possible
to have λ small compared with Lc (so that the diffusion
approximation applies) but where Ld is of the order of Lc
or larger. We find that such non-shock compression may be
efficient accelerators, even if there are associated expansions.
The corresponding acceleration rate is the same as the
diffusive shock acceleration given by Eq. 44.

The physical basis of the acceleration is the interplay between
1) the energy change caused by the compression or expansion of
the fluid and 2) the diffusion into or away from the region of
compression or expansion. Rapid diffusion leads to the particle
being able to diffuse away from a region of compression or
expansion before the compensating expansion or compression
can occur. Hence, statistically, some few particles will be fortunate
enough to gain energy in several compression regions. In this
process, for large κ, the accelerations dominate the particle energy
change, even in those cases where the compression and
expansions are equally present in the fluid flow. This is
because, statistically, some particles can reach very high
energies, but they cannot be decelerated to energies lower
than zero.

Note also that this acceleration can take place for any
orientation of the magnetic field. Gradient and curvature drifts
can in general significantly affect the particle trajectories as they
are accelerated. To illustrate this process, consider the simple,
periodic one-dimensional velocity profile Ux(x) � U0(1 +
a sin(kx)) and κxx independent of x or p. We have not been
able to solve this analytically for general parameters, but it is
simple to solve numerically, and the solutions depend only on
the dimensionless parameters χ � [U0/κxx]x, τ � [U2

0 /κxx]t and
η � [κxx/U0]k and the amplitude a. The solutions are clearly

periodic in χ with a period 2π/η. For a constant value of κ, the
acceleration timescale is given by κ/U2

0 . The momentum
distribution in the steady-state is then proportional to p−3,
which is confirmed by statistical integration of Parker
equation for test particles.

Using the quasi-linear approximation to the Parker Eq. 22, for
small-amplitude compression, Jokipii and Lee (2010) find an
equation which is diffusive in the momentum space. For no
spatial variations except for the fluctuating density, they find

zf
zt

� 1
p2

z

zp
[p2Dpp

zf
zp
] (45)

where Dpp is the diffusion coefficient in the momentum space
caused by compression. They also concluded that the non-
diffusive equation for compression acceleration found by Fisk
and Gloeckler (2008) does not conserve number of particles.

3.2 Stochastic Acceleration
Acceleration by fluctuating electric and magnetic fields, such
as those found in a turbulent medium has been discussed ever
since the seminal paper by Fermi (1949), who considered
acceleration by randomly moving magnetic clouds. This
has been subsequently generalized to apply to turbulent
fluctuations (Bykov and Toptygin, 1993), and is also often
termed the second-order Fermi acceleration. This form of
acceleration, contained as the diffusion in momentum term
in Eq. 30, has an extensive history. It is quite often the
mechanism of choice for possible diffuse re-acceleration of
cosmic rays in the interstellar medium and in solar flares
(Petrosian and Liu, 2004). Nonetheless, it has at least one
considerable disadvantage. Being of the second order in the
wave or fluid flow velocity, this term, which is generally much
slower than shock acceleration at high energies, may simply be
added to the right side of Eq. 22 and is often invoked where
shocks are believed not to be present or the diffusion
coefficient in the shock upstream is too large to accelerate
particles efficiently.

This acceleration can arise in two physically distinct
processes. One can consider the effect of randomly moving
waves which scatter the particle resonantly (Tverskoǐ, 1968) or
one can consider larger-scale turbulent fluid motions where the
energy change results from the stochastic shear or compression
as discussed in the previous section (Ptuskin, 1988; Jokipii and
Lee, 2010; Ohira, 2013). The former does not produce a power
law spectrum with the desired value in a robust way since both
acceleration time and scattering time, which is inversely
proportional to the diffusive escape time, is inversely
proportional to the wave intensity. The shape of the
spectrum depends sensitively on the transport parameters in
the acceleration region. Hence it is probably not the source of
most of the observed cosmic-ray spectra which are almost-
always power laws. Nonetheless, it may produce power-law with
variable indexes and remains popular in some applications. The
latter can lead to a power law distribution since both the
acceleration and diffusive escape times are inversely
proportional to the scattering time (see discussion below).
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For scattering by Alfvén waves propagating both along the
magnetic field and opposite to the field with a speed Va, Dpp may
be written in terms of the scattering time τ

Dpp � p2
V2

a

w2
τ−1 (46)

The corresponding acceleration rate is given by

τ−1acc.sa �
Dpp

p2
� V2

a

w2
τ−1 � V2

a

U2
τ−1acc.shk (47)

which is lower than the acceleration rate by shocks by a factor
of U2/V2

a . For viscous acceleration in a shearing flow where
U � Ux(y)êx we write

Dpp � 2p2(zUx

zy
)2

τ (48)

Here, τ must be significantly less than L/w for the diffusion
approximation to be valid. Even for the case where the Alfvén
speed and fluid speed are comparable, the viscous acceleration
rate is lower than that by stochastic acceleration by a factor of
L2/λ2. Therefore acceleration caused by shearing flow is usually
less efficient than stochastic acceleration, which is less efficient
than shock acceleration.

Because of the term V2
a /w

2, stochastic acceleration is quite
slow for energetic particles, where Va ≪w. The maximum
acceleration rate can be estimated by setting τ � 2π/ωg , where
ωg is the gyro-period in the ambient magnetic field. Doing this
just beyond the termination shock yields a reasonable upper
bound on the time to accelerate singly charged Oxygen ions to
200 MeV/nucleon yields a time of 200 years. Observations of the
charge state of ACR oxygen place an upper limit of about 1 year
on the acceleration time. It is possible that the magnetic field
becomes larger in the outer helio-sheath, ameliorating this
difficulty if the statistical acceleration occurs there.

Stochastic particle acceleration focuses on addressing the
gradual and statistical energy gain of charged particles via
interactions with a spectrum of turbulent electromagnetic
fields. It is essentially a second order Fermi acceleration
process, where the acceleration of a population of high energy
particles is described with a diffusive term in the momentum
space Webb (1989). For the case where the turbulence is
homogeneous and isotropic with the spectrum given by W(k),
some unified theory has been developed to include the
mechanisms discussed above (Bykov and Toptygin, 1993). The
turbulent velocity δU(k) on a scale of ∼ 1/k is then given by

[∫k

0
W(k′)dk′]1/2. The two point correlation function of the

velocity is given by:

〈Ui(r1, t1)Uj(r2, t2)〉 � (2π)−4 ∫Kij(k,ω)exp[i(k(r1 − r2)
−ω(t1 − t2))d3kdω (49)

where

Kij(k,ω) � T(k,ω)(δij − kikj/k2) + S(k,ω)kikj/k2 (50)

T and S correspond to the transverse (sharing) and the
longitudinal (compressible) component, respectively. Then we

have the ensemble averaged turbulence energy density per unit
mass:

〈Ui(r, t)Ui(r, t)〉/2 � ∫∞

0
W(k)dk (51)

� 2(2π)−3 ∫∞

0
∫∞

0
[2T(k,ω) + S(k,ω)]k2dkdω (52)

and

W(k) � (4π3)−1 ∫∞

0
[2T(k,ω) + S(k,ω)]k2dω (53)

As long as the velocity change of the background plasma over a
particle scattering mean-free-path λ is much smaller than
the particle speed w, the particle distribution in the comoving
frame of the fluid is approximately isotropic with an anisotropy
on the order of δU(λ−1)/w (Earl et al., 1988) and the diffusive
approximation is valid. The spatial diffusion coefficient κ � w2τ/3
can be also enhanced by the turbulent flow (Bykov and Toptygin,
1993):

χ � κ + 1

3(2π)4 ∫ d3kdω [2T(k,ω) + S(k,ω)
Iω + k2χ

− 2k2χS(k,ω)(Iω + k2χ)2]
(54)

where I2 � −1 is used to represent imaginary number. The
diffusion coefficient in the momentum space is then given by:

Dpp � p2χ

9(2π)4 ∫ d3kdω
k4S(k,ω)
ω2 + k4χ2

(55)

For acceleration by acoustic wave with a wave speed of cs,
ω � ± csk, S(k,ω) � S(k)[(δ(ω + csk) + δ(ω − csk)] (Ptuskin,
1988; Jokipii et al., 2003; Jokipii and Lee, 2010):

Dpp � 2p2χ

9(2π)4 ∫ d3k
k2S(k)
c2s + k2χ2

(56)

If the waves have a length of L so that
S(k) � (2π)4〈U2〉δ(k − L−1)/8πk2, then we have

Dpp � p2χ〈U2〉
9[c2s L2 + χ2] (57)

Diffusion of particles in a shear flow can also introduce particle
diffusion in the momentum space (Earl et al., 1988; Ohira, 2013):

Dpp � p2κ
30w2

〈3(zUi

zxj
+ zUj

zxi
)2

− 4(zUi

zxi
)2〉 (58)

� p2κ

30(2π)4w2
∫ d3kdω(6kikjKij + 6kikiKjj − 4kikjKij) (59)

� 2p2κ

15(2π)4w2
∫ d3kdωk2[2S(k,ω) + 3T(k,ω)]

The last integration diverges as k→∞ for typical turbulence
spectra. For the diffusion approximation to be valid, δU(λ−1)
needs to be much less than w. For a power-law turbulence
spectrum with an index of α, i.e., T∝ S∝ k−α.
δU(λ−1)∝ λ(α−3)/2, one can multiply the integral by a factor of
[1 + kU(k)λ/w]β with β> 2 to make the integration converge:
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Dpp � 2p2κ

15(2π)4w2
∫ d3kdω

k2[2S(k,ω) + 3T(k,ω)]
[1 + kU(k)λ/w]3 (60)

where we have assumed β � 3. This theory has been applied to
particle acceleration in the downstream of shocks of supernova
remnants (Fan et al., 2010).

Although stochastic acceleration of high energy particles is
slower than that by shocks by a factor of U2/V2

a , at low

energies, stochastic acceleration can be very efficient for fast
phase speeds of kinetic plasma waves (Petrosian and Liu,
2004), which may address the injection problem of diffusive
shock acceleration. Moreover, shock acceleration is less
efficient since low energy particles may not see the shock
structure for their short scattering mean free path λ ∼ rg ,
and the diffusion approximation may not be valid as
mentioned above. Since different particle species interact
with different kinds of waves at small kinetic scales, the
acceleration at low energies are usually selective for the
resonance condition. Since ultimately energetic particles
origin from low-energy charged particles in the background
plasma, the acceleration at low energies then determines the
overall acceleration efficiency of different particle species,
which is essential to constrain the acceleration mechanism
via observations.

Observations of cosmic rays abundance show that heavier
elements and those in refractories are strongly enhanced.
Figure 4 shows the corresponding results (Meyer et al.,
1997). This can be attributed to the small charge to mass
ratio of these elements and/or corresponding dust (Ellison
et al., 1997) so that they may resonantly interact with larger
scale waves than those with higher charge to mass ratio. For a
given magnetic field, the gyro-radius is inversely proportional
to the change to mass ratio and waves at larger scales usually
carry more energies.

The best example to illustrate resonance wave-particle
interactions is perhaps the prominent enhancement of MeV
3He abundance relative to 4He in small impulsive solar
energetic particle events (SEPs) (Liu et al., 2006). Figure 5

FIGURE 4 |Dependence of the cosmic ray abundance enhancement on
the atomic number A (Meyer et al., 1997).

FIGURE 5 | Relative abundance of Helium isotopes accelerated in solar flares (Ho et al., 2005; Petrosian et al., 2009).
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shows the relative abundance of energetic helium isotopes for
some SEPs (Ho et al., 2005). It can be seen that the fluence of
3He is distributed in a relative narrow range, which the fluence
of 4He can spead out over 4 order of magnitude. The
enhancement of 3He is most prominent for small events
with a lower 4He fluence.

Liu et al. (2006) attributed this phenomenon to resonant
interaction of 3He with proton cyclotron waves. Figure 6 shows
dispersion relations with different Alfvén speed for waves
propagating along the magnetic field lines and the
corresponding resonance conditions for 3He and 4He. It can
be seen different helium isotopes interact with different modes
of waves and this interaction also depends on the particle
energy.

If one approximates the spatial diffusion as an escape term
from the acceleration region, the theory of stochastic particle
acceleration can be simplified as a diffusion equation in the
momentum space with both source and escape terms
(Petrosian and Liu, 2004). This model has been applied to
observation of SEPs with prominent 3He enhancement.
Figure 7 shows such an example. It can be seen that due to
selective acceleration of 3He, all 3He in the background are
accelerated to the MeV energy range. For 4He ions, as a major
component of the background plasma, they affect the
dispersion relations (Figure 6) and cause strong damping of
waves in resonance with the background 4He. As a result, only
a small fraction of 4He is accelerated to MeV, explaining the
observed enhancement of high energy 3He. This also can also

explain the fluence distribution of 3He and 4He (Petrosian
et al., 2009).

4 CONCLUSION

The acceleration of charged particles from low energies in
the background to high energies covers a broad energy
range. The associated spatial and temporal scales are also
wide. These multi-scale couplings make the study of
particle acceleration a very challenging task. To have
quantitative modeling, dramatically simplifications are necessary.

If one concerns very high-energy particles with a very low
number density, the test particle and fluid approaches can be
taken. Then the leading order acceleration is associated with
compression. In the context of acceleration by diffusive
shocks, a simple power-law distribution can be obtained
for the lack of scales in this model. In the case of strong
non-relativistic shocks in supernova remnants (SNRs), one
may consider the feedback of the cosmic ray acceleration to
the shock structure (Bell et al., 2013). Multi-wavelength
observations of a sample of SNRs appears to favor such a
model (Zeng et al., 2019; Zhang and Liu, 2019).

Stochastic particle acceleration is generic to magnetic energy
dissipation processes. Although it is not as efficient as diffusive
shocks, it may dominate the acceleration of low energy particles
(Petrosian and Liu, 2004). In cases where the shock acceleration
is suppressed due to lack of scattering in the upstream, the
stochastic acceleration may dominate in the shock downstream
(Fan et al., 2010). The most prominent feature of this

FIGURE 6 | Resonant interactions of Helium 3 and 4 with plasma waves
in different background plasmas indicated with α, the ratio of the electron
plasma frequency to gyro-frequency (Liu et al., 2006). The straight lines stand
for resonance conditions for helium isotopes with different energies. The
proton gyro-frequency is given by Ωp.

FIGURE 7 | Selective acceleration of 3He in impulsive solar flares (Liu
et al., 2006).
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mechanism is selective acceleration of background particles
with different change to mass ratio. It can not only explain
the abundance enhancement of heavy elements in cosmic rays,
but also account for enhancement of MeV 3He relative to 4He by
up to 4 orders of magnitude in some impulsive SEPs. Such kind
of resonant interactions have been realized in plasma devices
(Zhang et al., 2017). Since both the acceleration and scatter rates
of particles by waves are proportional to the wave intensity, the
resulting particle distribution is very sensitive to the
wave intensity, which can lead to a broad range of spectral
index and may explain the impulsive nature of high
energy burst.

Study of particle acceleration in magnetic reconnection and
in general astrophysical context rely heavily on numerical
simulations due to complexity of the related
electromagnetic field configuration (Kowal et al., 2011,
2012; Guo et al., 2014; Dahlin et al., 2015; Zhou et al., 2015;
Beresnyak and Li, 2016; Comisso and Sironi, 2018). On the
other hand, power-law distribution may result from an
emergence phenomenon due to the lack of characteristic
scales in the system (Mewaldt et al., 2007).
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