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Mirror modes in collisionless high-temperature plasmas represent macroscopic high-
temperature quasi-superconductors with bouncing electrons in discrete-particle
resonance with thermal ion-sound noise contributing to the ion-mode growth beyond
quasilinear stability. In the semi-classical Ginzburg-Landau approximation the conditions
for phase transition are reviewed. The quasi-superconducting state is of second kind
causing a magnetically perforated plasma texture. Focussing on the interaction of mirror
bubbles we apply semi-classical Josephson conditions and show that a mirror perforated
plasma emits weak electromagnetic radiation which in the magnetosheath should be in the
sub-millimeter, respectively, infrared range. This effect might be of astrophysical
importance.
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1 INTRODUCTION

The mirror mode (Chandrasekhar, 1961; Vedenov et al., 1961; Hasegawa, 1969; Davidson, 1972;
Hasegawa, 1975; Gary, 1993; Southwood and Kivelson, 1993; Kivelson and Southwood, 1996;
Pokhotelov et al., 2000; Pokhotelov et al., 2001; Constantinescu, 2002; Pokhotelov et al., 2002;
Constantinescu et al., 2003; Pokhotelov et al., 2004; Sulem, 2011; Rincon et al., 2015; Noreen et al.,
2017; Yoon, 2017) which, in high temperature plasma, evolves under anisotropic Ai � Pi⊥/Pi‖ − 1> 0
pressure conditions, can be interpreted as a phase transition from (unstable) normal to a (stationary)
second-kind quasi-superconducting state (Treumann and Baumjohann, 2019; Treumann and
Baumjohann, 2020). It causes the plasma to become magnetically perforated. This raises the
question, investigated in this letter, in what way closely spaced mirror bubbles may interact,
possibly producing identifiable effects other than localized diamagnetic field depletions.

This second-kind superconducting phase transition (Ginzburg and Landau, 1950) is known from
low temperature solid state physics (Bardeen et al., 1957; Callaway, 1990), evolving Meissner
diamagnetism based on electron pairing and condensation that pushes the magnetic field locally out.
In mirror modes the possibility of similar condensations has recently been demonstrated (Treumann
and Baumjohann, 2019). The transition is initiated by the mirror instability, which starts under the
necessary condition of positive ion pressure anisotropy Ai > 0. In addition, the sufficient condition
for instability requires the magnetic field strength B to drop below a threshold Bc

B<Bc ≈
���������
2μ0NTi⊥Ai

√
|sinθm| (1)

(with temperature in energy units) which follows from the linear ion-mirror growth rate

c

ωci
≈

k‖λi
1 + Ai

���
βp‖
π

√ ⎡⎢⎣Ai +
���
Te⊥

Ti⊥

√
Ae − k2

k2⊥βp⊥
⎤⎥⎦ (2)
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The electron anisotropy Ae ≈ 0 is assumed negligible initially,
k‖ ≪ k⊥, λi � c/ωi ion inertial length, plasma
βp � 2μ0N(Ti + Te)/B2

0. Sometimes this is inverted into a
condition on the (arbitrary) angle of wave propagation
(Southwood and Kivelson, 1993) θm � tan− 1(k⊥/k‖) but the
relevant physics is contained in the field threshold. The two
conditions together yield that the critical (ion) temperature is
Tci⊥ � Ti‖ which means that

Tci⊥ − Ti⊥ ≥ 0 stability, “normal” state
Tci⊥ − Ti⊥ < 0 instability, “quasi − superconducting”

(3)

which indeed reminds at the solid state superconducting phase
transition.

The mirror instability readily saturates quasilinearly on the
expense of the ion anisotropy (cf., e.g., Davidson, 1972;
Treumann and Baumjohann, 1997) forming elongated k‖ ≪ k⊥
magnetic bottles. Landau diamagnetic theory (cf., e.g., Huang,
1973) suggests that any finite temperature diamagnetism is
macroscopically very small, which is confirmed by simulations
(Noreen et al., 2017) which show the saturation amplitude to
remain minuscule. The observation of large-amplitude localized
quasi-stationary magnetic depletions of (50% (see Treumann
and Baumjohann, 2018a, for examples, in high resolution) must
be enforced by conditions which are not included in linear or
quasilinear theory (Treumann et al., 2004). We do not go into
discussing this problem here as it has been the subject of previous
publications (cf., Treumann and Baumjohann, 2018b; Treumann
and Baumjohann, 2019). We just note that a number of
simulations (Rincon et al., 2015; Yao et al., 2019) and theory
(Sulem, 2011) claim that nonlinear interactions between ions and
waves provide large magnetic amplitudes (see the discussion in
Treumann and Baumjohann, 2019). In simple words, nonlinear
scattering off waves, as sometimes assumed, increases diffusivity
and entropy which primarily thermodynamically inhibits
structure formation. The argument of increased internal
pressure fails because pressure is compensated by the large
elastic volume of the environment. It dilutes the magnetic field
only infinitesimally. Bubbles can deepen only on the expense of
their neighbours along the same flux tube by sucking in plasma,
which contradicts the observation of long mirror chains while
supporting observation of isolated bubbles (Luehr and Kloecker,
1987; Treumann et al., 1990). In thermodynamic terms, entropic
structure formation requires chaotic single particle interactions.
These are provided by condensate formation.

2 QUASI-SUPERCONDUCTING PHASE
TRANSITION

One way out of the above mentioned basic physical dilemma
between observation and theory may be related to the resonance
of bouncing particles in the mirror bubble and the persistent
thermal ion-acoustic background noise which is independent of
the presence of mirror modes (Rodriguez and Gurnett, 1975;
Treumann and Baumjohann, 2018a; Treumann and
Baumjohann, 2019). These resonant bouncing particles (we

here restrict to electrons, but ions if bouncing could contribute
in a similar way as well) form the required condensate for phase
transition.

2.1 Condensate Formation
The resonance is a discrete particle effect. It applies to all electrons
in the Debye sphere and differs from the small number of
Landau-cyclotron-resonant electrons (like in the radiation
belts, Kennel and Petschek, 1966) which generate the banded
whistler lion roars (cf., e.g., Smith and Tsurutani, 1976; Tsurutani
et al., 1982; Zhang et al., 1998; Baumjohann et al., 1999;
Maksimovic et al., 2001; Ahmadi et al., 2018; Breuillard et al.,
2018; Giagkiozis et al., 2018) in mirror bubbles.

Trapped electrons, in contrast, performing their bounce
motion in the quasilinearly-stable mirror bubble, resonate with
the permanently present thermal ion-acoustic background noise
of frequency ωs through v‖ ≈ ωs/k near their mirror points where
their parallel velocity v‖ ≈ cs becomes comparable to the ion-
sound speed cs � �����

Te/mi
√

. This applies to a large number Np of
electrons. In resonance they become locked to the wave and drop
out of their bounce motion while maintaining their large energy
anisotropy. Many such locked electrons form the condensate.
Their anisotropy further increases when they move with the ion-
acoustic wave into the strong magnetic field beyond their mirror
points. This mechanism also causes a weak attractive potential
field at distance in the wake of each resonant electron which by
trapping another electron acts as Pippard’s correlation length in
solid state physics (Fetter and Walecka, 1971)1 The fractional
number density of condensate electrons N � Np/N0 < 1 may in
this case not be small. Under the assumption that initially Ae ≈ 0,
the condensate anisotropy becomes

Ae � 2Te

mec2s
− 1 � 2mi

me
− 1 ≈

2mi

me
(4)

which enters the above ion-mode growth rate at quasilinear
stability with quasilinearly compensated ion contribution
(Treumann and Baumjohann, 2018b), causing the instability
to grow beyond the quasilinear limit. This effect corresponds
to the noted condensate formation by pairing in metals though is
basically different as here it is a high temperature purely classical
effect. Further evolution implies pressure balance and the cause of
surface gradient currents which has the effect of generating the
partial London-Meissner diamagnetic phase transition. This
phase transition can be treated in analogy to Ginzburg-Landau
theory (Treumann and Baumjohann, 2020).

It is, here, instructive to point out that the above noted
discrete-particle ion-resonance with ion-sound waves, though
possible, as can be easily shown in the same way as for
electrons, yields that the condensate-ion anisotropy becomes
merely Ai ≈ Ti/Te − 1. This ion-condensate anisotropy is
positive only in high ion temperature plasma Ti >Te where

1Below we will make considerable use of definitions taken from the theory of super-
conductivity. For clarity we refer the reader to the basic and quite understandable
presentation of the quantum theory of super conductivity in (Fetter and Walecka,
1971), chapters 2 and 3.
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ions have become heated, for instance by the presence of a shock
and behind it, as would be the case in the magnetosheath.
However, in order to compete with the electron anisotropy
Ti ≫Te is required which is probably unrealistic.

2.2 Ginzburg-Landau Theory
The first Ginzburg-Landau equation (Huang, 1973) in the semi-
classical final stationary state is obtained by putting Z→ 0
(Treumann and Baumjohann, 2020). With A magnetic vector
potential it reads

e2

2me
A2ψ + αψ + β

∣∣∣∣ψ∣∣∣∣2ψ � 0 (5)

where ψ is the final condensate wave function, α, β constants.
Clearly β> 0. It has the symmetric normal state solution ψ � 0 for
α> 0, and in condensate formation α � −a< 0 after (spontaneous
gauge) symmetry breaking the solution

β|ψ|2 � a − e2

2me
A2 > 0 (6)

which means that the density Np of resonant electrons is finite.
Here,

∣∣∣∣ψ|2 ∼ Np/N0 ≡ N as we will also use it below when
discussing radiation. Hence phase transition occurs if only
a> (e2/2me)A2. In the magnetosheath we have
|A| ∼ BΔL ≈ 10− 3 Vs/m. Hence the requirement is that
numerically a a10− 14 VAs or ∼ 105 eV, which looks large.
However, β is of the same order of magnitude thus balancing it.

One may note that for ion-condensate formation this value
reduces by more than three orders of magnitude and might thus
energetically favour ions even though their anisotropy cannot
compete with that of electrons, a case which we do not investigate
further here but might turn out important in application to the
magnetosheath or cases where heavy cold ions come into play
which easily resonate with the thermal acoustic noise for instance
when produced by charge exchange as is the case in the
interaction of stellar winds and the cold interstellar matter.
Hence separate investigation of ion-condensate formation is of
vital interest. We here remain in the electron picture for reasons
which will become clear below.

Since we require thatN < 1 for electron condensate formation
the condition on the coefficients in GL-theory becomes simply
that

1< a/β< 1 + (β/105 eV)− 1 (7)

The absolute values of these coefficients are unimportant.
Approximate relations between these coefficients and the
mirror conditions have also been obtained (Treumann and
Baumjohann, 2020) but will not be repeated here. Hence there
is some range where phase transition becomes probable which,
for the purpose of this Letter, should suffice. The physical
meaning is that the discrete resonant-electron condensate
causes macroscopic diamagnetism which substantially
diminishes the magnetic field locally.

2.3 Ginzburg-Landau Parameter
In mirror chains the magnetic field penetrates the quasi-
superconducting region just up to a length λm ≈ κGλLaλL
with London skin depth λL ≈ N −1/2λi. Here λi � (mi/me)1/2λe
is the ion skin depth, λe � c/ωe and ωe the electron plasma
frequency, and κG the Ginzburg ratio, defined below.

In real mirror bubbles, however, depletion of the magnetic
field is partial only. It is not complete, a point which is
fundamental to the above mechanism of phase transition and
the generation of chains of mirror bubbles. Maintenance of a
magnetic field fraction is crucial because it maintains and thus
enables the required trapped-electron bounce motion. The
discrete-particle resonance is only temporary and resolves after
a while but the large number and distribution of bouncing
electrons over the whole bubble volume guarantees for the
permanent presence of a locked electron population forming a
condensate that is distributed over the volume of the mirror
bubble. The property of a second-kind quasi-superconductor is
provided by the Ginzburg-Landau ratio of skin depth to the above
given correlation length ξ ≈ 1.5λD with λD Debye length

κG � λL
ξ

> 1 (8)

The plasma perforates into a large number of bubbles (mirror
chains) with local diamagnetism caused by the condensate in each
bubble. It does not embrace the whole plasma volume. (Clearly,
complete Meissner effects in space, for instance the
magnetosheath, are unrealistic as they would deplete the entire
plasma volume of magnetic fields on the large scale, which is not
observed and thus does not take place). The correlation length ξ is
the scale where the electrons feel their mutual attracting
potentials close to all the continuously distributed mirror
points of the trapped bouncing electrons. Thus it is a natural
correlation length of the electrons in the mirror mode plasma.
Clearly, the correlation length ξ ≈ 1.5λD < λm. In the
magnetosheath one then has about 102 < κG < 104 which
suggests strong magnetic perforation as is clearly observed
and, in addition large skin depth, reflecting that the bubbles
are only partially depleted of the magnetic field.

In this view mirror mode chains can be considered classical
representations of a second-kind superconducting Ginzburg-
Landau phase transition from normal to perforated plasma
state in high temperature plasma. Their observation in the
turbulent magnetosheath behind the bow shock, which is a
strong shock, is due to the capacity of the shock to generate
conditions in the transition region between the shock and
magnetopause which satisfy both the necessary and sufficient
conditions for the evolution of the mirror mode.

Once mirror chains have evolved and the plasma has become
perforated by the quasi-superconducting phase transition
described above, the question arises whether the closely spaced
mirror bubbles may interact. In the following we focus on this
interaction between mirror bubbles and its possible observational
signature.
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3 JOSEPHSON EFFECT INMIRRORMODES

The problem of interaction of two superconductors (in our case
two quasi-superconducting partially magnetic field-depleted
mirror bubbles separated by a non-superconducting
magnetized sheet) is the celebrated Josephson problem
(Josephson, 1962; Josephson, 1964). It makes use of the
Landau-Ginzburg mesoscopic theory of superconductivity
(Ginzburg and Landau, 1950) which is applicable in this case.
The order parameter is the expectation value of the wave function
ψ given by 〈ψψ*〉 � N , which in our case is the above introduced
fractional density N of the bouncing electrons in resonance with
the ion-acoustic thermal background fluctuations that form the
condensate.

The interaction includes of course the boundaries of the two
bubbles and hence takes into account the current while, in the
mutual interaction, the interior is of little interest. It just
responses by the exponential partial Meissner screening of the
magnetic field B � B0exp(−x/λm) with λm the actual penetration
depth which for N < 1 is larger than the inertial length λi �
c/ωi ≈ 43λe and the London length in a proton plasma. Since
mirror bubbles are ion modes even though driven unstable by
electrons, one here must use the ion inertial length, with ωi the
ion plasma frequency. Observations suggest that the mirror
penetration length is roughly λm ≈ (10 − 20)λL which on its
own suggests that N(10− 2.

The wave function of superconduction which in the above
spirit we apply to the case of mirror modes obeys the above used
first Ginzburg-Landau equation (as was proposed in Treumann
and Baumjohann, 2018b; Treumann and Baumjohann, 2019).
The current, being purely electronic, is given by the well known
quantum mechanical expression (Ginzburg and Landau, 1950;
Bardeen et al., 1957; Huang, 1973), the second Ginzburg-Landau
equation

j(x, t) � −ieZN0

2me
(ψ*∇ψ − ψ∇ψ*) − ∣∣∣∣ψ∣∣∣∣2N0

κG

A

μ0λ
2
e

(9)

� eZN0

me
|ψ|2(∇ϕ − e

ZκG
A) (10)

with A the magnetic vector potential, ϕ the phase of the complex
wave function, and boundary condition that the normal current
must be continuous

n · [(Z∇ − ieA
κG

)ψ]
2−1

� 0 (11)

where the brackets mean the difference between the quantities to
both sides of the boundary, as indicated by the subscript 2 − 1,
and n is the normal to the boundary. Clearly, in a purely classical
treatment only the last term in the current expression survives
when putting Z � 0. In our semiclassical approach we retain the
quantum part of the current, which is the Josephson
approximation. Classically the quantum part is neglected, and
one has

j(x) � −∣∣∣∣ψ∣∣∣∣2N0

κG

A

μ0λ
2
e

(12)

and from Mawell’s equations trivially

□A � −∣∣∣∣ψ∣∣∣∣2N0

κG

A

μ0λ
2
e

(13)

whose stationary solution in one dimension only is clearly
B � B0exp(−x/λm), the explicit partial Meissner skin effect
caused by the condensate

∣∣∣∣ψ|2. (Note again that the current does
not explicitly depend on mass, which implies that a hypothetical ion
condensate would as well contribute to the phase transition.) Thus
the important physics is contained in the generation of the
condensate as described in the previous section. If assuming
B/B0 ≈ 0.5 as is typical in the magnetosheath, one has that
λm ≈ 1.5x, where x is the measured penetration length. This, in
the magnetosheath, is about x ≈ 100 km. Hence, with λi ∼ 10 km
one confirms the order of magnitude of λm as given above.

Now, when in contrast to the above semi-classical use of the
first Ginzburg-Landau equation considering the interaction of the
mirror bubbles, the quantum property of the phase has to be
retained because it is just the phase which contains the
microscopic information. Moreover, space plasmas are ideal
conductors and no resistors. Hence the normal current will
naturally be different from zero and will reflect the
microscopic effect of the interaction. For this reason the
quantum part of the current must be retained. We will see
that this is important in the case under consideration.

There is, however, a difference in the region between the two
bubbles. It is void of any condensate and thus that narrow domain is
void of theMeissner effect. Themagnetic field and density it contains
are spatially constant. Hence the difference between the two regions
is just in the quantum mechanical term in the boundary condition
and thus cannot be neglected while the conditions in the two
adjacent bubbles may be different. Moreover, the tangential
currents (which we do not consider here as they contribute to
the partial Meissner effect but are not involved into the normal
current which must by itself be continuous) flowing in the adjacent
bubble boundaries are in opposite directions. This implies that the
two bubbles do not merge. They do not attract each other because of
the repulsive Lorentz forces such that they remain separated.
Nevertheless one may assume that the separation is narrow with
non-compensating currents.

Since all regions are conducting a normal current will
necessarily flow. In real superconductors separated by
insulators electron tunnelling takes care of normal currents.
Here, in the classical case, these currents are real. Nevertheless
because of the retained quantum mechanical part of the current,
Josephson conditions of current continuity apply to both its sides
are given as

znψ1 −
ie
ZκG

Anψ1 � bψ2 (14)

znψ2 −
ie
ZκG

Anψ2 � −bψ1 (15)
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with b � const some real constant whose value is only of
secondary importance here. These boundary conditions follow
directly from the general condition of continuity of the normal
current (11) writing it in the normal coordinates not as a
difference but as the finite mismatch between the two wave
functions. This is easily seen when subtracting them. As the
mismatch is not known a priori because it depends on the
properties of the transition region, it can be accounted for
simply by the constant b. One may note that for a perfect
insulator with no classical current flow b � 0. However, the
medium between two mirror bubbles clearly permits current
flow. So b≠ 0 is an appropriate assumption2. This means that
seen from each bubble’s side the effect of the other on the
transition is constant and opposite. It is thus assumed that the
transition layer between the bubbles is thin enough to consider a
constant current when crossing it, thereby for simplicity
neglecting any spatial fluctuation or divergence of the current.
This may hold as long as the transition distance is short compared
with the bubble diameter, a condition satisfied in the
magnetosheath, for instance. Moreover, the layer is neither an
ideal conductor nor an ideal insulator such that current flow
across it is permitted. In the case when it is an ideal conductor it
should be narrower than the skin depth outside the mirror
bubbles, but even if this does not apply current flow is
permitted anyway.

Inserting these boundary conditions into the current Eq. 9 and
cancelling some terms yields for the perpendicular current
crossing the thin layer that

jn � −iebZN0

2me
(ψ*

1ψ2 − ψ1ψ
*
2) � jJsin(ϕ2 − ϕ1) (16)

where jJ � (ebZ/me)N0

∣∣∣∣∣ψ|2 is the Josephson current, and we for
simplicity assumed condensate symmetry

∣∣∣∣ψ1| � |ψ2

∣∣∣∣ up to the
phases. (One may note that this current is a pure electron current;
any ion-condensate contribution can be neglected because of the
inverse proportionality to the mass. Clearly this is an effect of the
large electron mobility.) This is most easily seen when replacing
the functions ψ1,2 by the sum of their real and imaginary parts
ψ � ψr + iψi. The difference in the round brackets is the phase
difference between the two wave functions ψ � ∣∣∣∣ψ∣∣∣∣eiϕ in the two
bubbles which distinguishes them.

This transverse current is a retained quantum effect even in the
macroscopic case. One might argue that the two phases might be
the same and thus cancel the current. There is, however, no
reason for this to happen even when the condensates are identical.
Continuity of the current does not require equal phases if only it
can be achieved otherwise. Its importance comes into account
when remembering that the gauge potentials are defined just up
to additional functions which leave the fields unaffected. The

vector potential A→A + ∇U is defined up to the gradient of a
potentialU, and consequently the electric field E � −∇V − ztA up
to its time derivative ztU . This implies from Eq. 9 that the phase
changes as ϕ→ ϕ + eU/ZκG and the electric potential as V →V −
ztU or after comparison and elimination of U

ztϕ � eV/ZκG (17)

showing that the phase is affected by the gauge potential thereby
exhibiting a real change in the phase.

Before continuing, it is most interesting to reflect about what
has happened. In principle the electrodynamic equations are
gauge invariant which means that the vector and scalar
potentials can be changed by adding particular gauge
functions while leaving the fields unchanged. This it true also
here. However, by applying an external potential V to the two
mirror bubbles one fixes one particular gauge. This still does
not change anything on the fields, it however breaks the gauge
symmetry locally. By providing the mirror modes with a
particular electric potential field V(x) they shift to one
special particular gauge, and no other gauge can be chosen
anymore. In the following we will see which consequences this
produces.

The gauge is in fact a (Weyl) gauge like in field theory. Time
integration, with applied constant external potential V, yields the
well known form of the Josephson phase

ϕ2 − ϕ1 � (ϕ2 − ϕ1)0 − ωJ t, ωJ � e
ZκG

(V2 − V1) (18)

which enters into the exponent of the wave function ψ. In the
presence of a potential difference V2 − V1 the current (16) in the
junction consisting of the two mirror bubbles with their common
boundary of finite thickness will thus oscillate at the Josephson
circular frequency ωJ . Correspondingly the normal current
becomes

jn � jJsin(Δϕ0 − ωJ t),Δϕ0 � (ϕ2 − ϕ1)0 (19)

This current is a real oscillating classical normal current flowing in
the boundary region of the two adjacent mirror bubbles. It is a
current that varies with time, oscillating back and forth between
the bubbles (For instance, for Δϕ0 � 0 one has

jn � −jJsinωJ t (20)

showing that the normal current in the boundary oscillates
spatially back and forth between the two bubbles, which is a
real classical spatially localized effect.) Physically it is not difficult
to understand the origin of this oscillation. The two oppositely
directed tangential currents at the boundaries of the mirror
bubbles could indeed be closed by a normal current across the
highly conducting gap which separates them. In the presence of
an electric potential this happens on the small scale when the
transverse current temporarily for a very short time breaks
through and connects the two tangential currents. This break
through happens however on the microscopic scale and
transports very few magnetic flux elements only. Therefore its
high frequency. Interestingly, there should as well be a spatial
dependence of this process along the bubbles which we have not

2Classically indeed the normal derivatives would vanish, as one would naively
assume. Retaining them just retains the quantum effect even under classical
condition. This is the essence of what is done below though it cannot be
anticipated from the equations by looking at them. In fact its realization was
the great discovery of Josephson which was honoured by the Nobelprize and
subsequently was most successfully been applied in SQUIDS.
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considered here. It causes a tangential variation of the oscillation
frequency.

Denoting the potential difference as V2 − V1 � ΔV and
introducing the magnetic flux quantum Φ0 � πZ/e, the
observable Josephson frequency becomes

]J � ΔV
Φ0κG

,Φ0 � 2 × 10− 15 Vs. (21)

This frequency corresponds to an energy κGZωJ ≈ 1 evmultiplied
by the applied potential difference ΔV . For ΔV ≈ 1V the
oscillation frequency is κG]J ≈ 5 × 1014 Hz, which is in the
near-optical infrared. The applied potential is measured in
units of the elementary magnetic flux. It thus reflects the
oscillations or transport of elementary flux tubes at high
frequency, perfectly suited to measure very small potential
differences as used in Josephson SQUIDs.

4 RADIATION

This result discovered by Josephson (Josephson, 1962) is
remarkable as, according to the above discussion, it also
occurs under semi-classical conditions if only an electric
potential V(t) is applied to the two adjacent mirror bubbles.
This is the case in a streaming plasma with plasma flow across the
magnetically depleted region or where an externally applied cross
potential exists.

Examples are the magnetosheath (Lucek et al., 2005) or other
regions like, for instance, mirror mode chains in the solar wind
(Winterhalter et al., 1994; Zhang et al., 2008). Other examples are
collisionless shocks (Balogh and Treumann, 2013) which have
comparably narrow transition scales, develop current sheet
overshoots between magnetic depletions resembling a similar
kind of junctions. Ion-inertial scale plasma turbulence or flow-
driven reconnection are further examples.

The Josephson frequency of oscillation is comparably high. Its
large value is due to retaining the quantum effect which implies
normalization of the potential difference ΔV to the small flux
quantum Φ0. Thus the Josephson current oscillates at high
frequency. For any classical macroscopic process it averages
out as neither the flow nor the density can follow the
fluctuation. It is just the current whose real phase oscillates
between the two adjacent mirror bubbles. The quantum effect
on the macroscopic plasma behaviour of the fields thus
disappears. This is, of course, what is expected if considering
the flow or evolution of the magnetic field.

However, there is one effect that, in addition to the fluctuating
electric potential, is retained even in classical physics. This is
radiation which can, in principle, be observed even though its
cause is to be found in quantum physics. In this sense the
Josephson effect and the frequency resemble the generation of
electromagnetic radiation by atomic processes, which are pure
quantum effects with macroscopically measurable consequences:
emission of radiation. In close similarity the Josephson radiation
can, in principle, be observed from remote by monitoring its
intensity.

Oscillating currents represent sources of electromagnetic
radiation, as prescribed by the wave equation

□Arad(x, t) � −μ0 j(x, t) (22)

where Arad is the radiated vector potential, and j � jnn, the
sinusoidal real current Eq. 19, where it should once more be
noted that this is a real classical current. Any natural system
which acts, even semi-classically, like a Josephson junction should
therefore emit electromagnetic radiation at frequency around
]J � ωJ /2π. The spectral width of the radiation depends on the
spectral width Δω of the applied time dependent external
potential V(t), whose Fourier transform is

V(ω) � ∫

dt V(t)eiωt (23)

whose width can be quite large, compared with the theoretical
sharpness of the Josephson frequency, in particular when the flow
is highly turbulent. It leads to a time dependent Josephson phase

ϕJ(t) � Δϕ0 −
e

ZκG
∫  t

0
dt′V(t′) (24)

and, consequently, to a radiation spectrum of some typical width
Δ] in frequency. An electric oscillation spectrum V(ω) yields for
the fluctuating part of the phase

ϕJ(t) − Δϕ0 � − e
2πiZκG

∫  dω
ω

V(ω)(e−iωt − 1) (25)

which, for the realistic case of comparably low frequency
oscillations ωt≪ 1 yields that the Josephson frequency becomes

]J ≈
1

4πκGΦ0
∫ 

dωV(ω) ≈ V(ωmax)
4πκGΦ0

Δω (26)

The emission spectrum is only as broad as Δω. Since the electric
potential arises from external motions in plasma its spectrum is
limited from above by the plasma frequency Δω(ωe ≪ωJ . As the
plasma frequency is low, any radiation of Josephson frequency ]J
will therefore remain to be of very narrow bandwidth Δ]≪ ]J and
thus, when observed, will form a narrow emission line. Any
spectral broadening would then have other reasons having to be
retraced to the angle or the tininess of the applied potential. One
does of course not expect that this kind of radiation would be
intense. Its intensity per unit volume and frequency is well known
(Jackson, 1975) to be proportional to the average spectral square
of the radiated vector potential,

d2I
dΩdω

∝ |Arad(ω)|2 ∝ μ20|jJ(ω)|2 ∝(ebZ
m

)2

μ20N
2
0N 2 (27)

where we have just noted the proportionalities without solving
the above wave equation as this would go beyond the purpose of
the present letter.

Because of the weakness of the maximum Josephson current jJ ,
any susceptibly high enough radiation intensity requires a large
number of emitters closely distributed in the volume, i.e., a large
number of interacting mirror bubbles and hence large volumes, a
condition that is probably not realistic in near-Earth space but

Frontiers in Astronomy and Space Sciences | www.frontiersin.org March 2021 | Volume 8 | Article 6487446

Treumann and Baumjohann Mirror Mode Junctions and Radiation

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


may sometimes be realized under astrophysical conditions.
Hence there should be little doubt about the presence of such
a radiation effect, its detectability might however be questioned.

5 EXAMPLES

5.1 Streaming Mirror Mode Plasmas
The case of a streaming plasma is of particular interest. Let the
plasma, like that in the magnetosheath, flow at a convection speed
v such that in a frame stationary with respect to the plasma the
measured electric field is E � −v × B, where B is the local
magnetic field. Then we have dimensionally

ΔV ≈
vΦ
ΔL sinθ (28)

where ΔL is the typical length scale, Φ � NΦΦ0 the magnetic flux
in the magnetic field, NΦ the usually large total number of flux
elements, and θ the angle between the velocity v and the magnetic
field B. The Josephson frequency then becomes

]J � vΦ
ΔLΦ0κG

sinθ ≈
vNΦ

ΔLκG
sinθ Hz (29)

As for an example, in the magnetosheath we have va104 ms−1,
Ba10 nT, and ΔL ∼ 104 m, which gives κG]Ja5 × 1014sinθHz
just the above estimated frequency. This may become
substantially reduced when the angle of plasma flow is close to
parallel.

A texture of mirror bubbles closely spaced to each other in the
magnetosheath should thus glow in the infrared, a frequency
which can, without any problem leave the region of its excitation.
Mirror mode chains in the solar wind on the other hand are
roughly perpendicular to the flow and of generally larger
extension. Hence their frequency will be higher closer to the
optical range in the very near infrared where they occasionally
could be observed. However they seem to occur rather rarely
which is in contrast to the region behind shocks like the bow
shock. Here they seem to be present almost at any time.

Similarly one expects that the heliosheath region behind the
heliospheric termination shock evolves into magnetic turbulence
where the mirror mode will constitute its lowest frequency
contribution. The flow speed of the solar wind will become
reduced to values similar to the magnetosheath, while the
magnetic field drops to B ≈ 0.14 nT, as expected roughly by
two orders of magnitude (Burlaga et al., 2016; Fichtner et al.,
2020). The unknown length scale will partially compensate for
this drop. One may thus expect that the heliosheath in the region
where the mirror mode will become excited behind the
termination shock will also glow in the infrared, possibly
however at slightly longer wavelengths. In general, any
infrared glow around stellar winds might indicate the position
of their external boundaries by this kind of Josephson effect which
evolves solely in mirror mode turbulences. For very weak
magnetic fields or otherwise reduced magnetic fields or slower
speeds the frequency of this glow may drop into the microwave
domain.

5.2 The Case of Reconnection
In this context it is of particular interest to refer to reconnection
as these results are independent of the direction of the magnetic
field. Reconnection and mirror modes may be closely related
(Volwerk et al., 2003; Phan et al., 2005) as one can easily imagine
that mirror modes when encountering an antiparallel magnetic
field could ignite reconnection. Moreover, they may also evolve in
the reconnection process as recent MMS observations (Hau et al.,
2020) of reconnection at the magnetopause and Grad-Shafranov
reconstructions suggest.

Consider the case of reconnection when two plasmas of
oppositely directed magnetic fields approach each other. Let
them be separated by a non-magnetic plasma which by
definition is ideally conducting. Then the magnetic fields
penetrate it only up to their skin depth λe. When the two
plasmas approach each other the nonmagnetic sheet between
themwill become compressed and ultimately some plasma will be
squeezed out into jets escaping from the compressed region in all
directions but ultimately preferably parallel/antiparallel to the
two external magnetic fields (Savin et al., 2008). When the two
plasmas are roughly ∼ 2λe apart, the separating sheet is a field-
free superconductor in whose center two antiparallel
exponentially weak fields get into contact and merge.
However, the current normal to the boundaries of the sheet
will be a Josephson current and oscillate at frequency ]J in the
potential ΔV of the approaching plasmas. Hence the
reconnection region should radiate at high frequency. If many
such regions contact in a large volume the volume may glow in
the emitted frequency. Since the plasma is highly diluted, there is
no problem for the radiation to escape and become visible from
remote if only being composed of many such radiators such that
the volume emissivity becomes susceptibly large. A single
reconnection region will of course emit very weak radiation only.

This is probably the case in completely evolved low frequency
plasma turbulence. Recently (Treumann and Baumjohann, 2015)
we suggested that the main energy dissipation in fully developed
plasma turbulence may be provided at the shortest (electron)
scales λ ∼ λe by reconnection in the turbulently generated small-
scale current vortices into which the streaming turbulent plasmas
will necessarily decay on these scales. In general this reconnection
in each single small-scale (microscopic) current sheet is weak.
However since there are very many such current vortices
distributed over the large-scale turbulent volume the
integrated dissipation will become substantial such that it
under stationary conditions will balance the mechanical energy
input at large scales by the large scale flow of the plasma. Since
such plasmas are filled by a multitude of small-scale reconnection
regions each of them representing a magnetic field-free small
region, adjacent reconnection sites represent Josephson junctions
and thus should radiate at the local Josephson frequency which
when measured provides direct information about the
reconnection potential ΔVrec, a quantity which is highly
desired to know.

Since the reconnection potential is a most interesting quantity,
it would be worth the effort to measure it. The Josephson effect
could provide such a possibility by putting a SQUID onto a
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spacecraft or otherwise trying tomeasure radiation in the infrared
from reconnection sites.

5.3 Thermal Background Effects
In the magnetosheath like in any other high temperature plasma
mirror modes are embedded into a relatively intense thermal
background of ion-sound fluctuations (Rodriguez and Gurnett,
1975; Lund et al., 1996). The mean thermal level of these
fluctuations (Treumann and Baumjohann, 1997), assuming an
isotropic Maxwellian background (Krall and Trivelpiece, 1973;
Baumjohann and Treumann, 2012), is

Ws ≡ 〈1
2
ϵ0
∣∣∣∣δE∣∣∣∣2〉 ≈

Te

λ3D
(30)

where λD is the Debye length. At temperature Te ≈ 30 eV, density
N0 ≈ 107 m−3 this gives an average electric fluctuation amplitude
level of 〈δE〉 ≈ 3 × 10− 5 Vm−1. Since 〈δE〉 ≈ 〈ΔV〉ΔL−1 this
yields a Josephson frequency

κG]Ja1010ΔL Hz (31)

If ΔL ≈ 10λD ∼ 102 m is a typical wavelength of the ion sound
noise, then the Josephson frequency is in the range ∼ 103 GHz,
and the radiation produced is of wavelength λ ∼ 10− 4 m, in the far
infrared or millimeter radio wavelength range. For larger ΔL it
again shifts closer to the infrared. Considerations of this kind may
be of interest in astrophysical objects, in particular in regions of
high streaming velocities across collisionless shock waves.
Observations in the infrared and short wavelength radio wave
spectrum could provide information about its origins.

On the other hand radiation in some frequency domain may
provide information about the potential difference ΔV of natural
systems where either mirror modes evolve or the semi-classical
superconducting Meissner effect is generated. For instance
radiation at ZωJ � 100 eV in the X-ray domain caused by the
Josephson effect indicates the presence of potential differences of
the order of 102 V . These may not necessarily belong to very
strong electric fields, as their strength depends on the scale of the
potential differences.

5.4 Remarks on Shocks
In collisionless shocks this may indeed be of particular interest.
They separate regions of vastly different magnetic field
strengths while on the scales of the shock remain
collisionless. Moreover, shock fronts exhibit various regions
of different properties with spatially highly variable magnetic
fields evolving into overshoots and, relative to the shock also
“holes” in both quasi-perpendicular and quasi-parallel shocks
(Balogh and Treumann, 2013). Some of these regions may well
be considered of similar properties as natural Josephson
junctions. Since there the cross shock flow naturally applies
a substantial electric potential difference ΔV ≠ 0, shock
transitions of such properties, in particular when relativistic
(Bykov and Treumann, 2011) should become visible as sources
of soft X-rays becoming emitters, as is frequently observed in
astrophysics. Such X-ray radiation is conventionally attributed

to shock acceleration of electrons when interacting with the
shock front. However, part of the radiation may also be caused
by the Josephson junction effect inside the shock as well as in
any texture of mirror modes downstream of the shock. The
distinction between the two regions is given by a difference in
the emitted spectrum. The much higher velocity difference
prevalent to the shock transition than downstream places the
former into the X-ray domain, while downstream radiation
would be substantially softer reaching into the optical to
infrared spectral ranges. Of course, in any case the intensity
of the radiation will be low, depending on the number of mirror
bubbles, the velocity of the cross flow, and magnetic field. On
would expect the highest intensity from strong relativistic
shocks or otherwise from a large volume of turbulence.

In the magnetosheath, the region where near Earth one
observes mirror modes, the conditions are that the plasma is
dilute of the order of N0 ∼ 106 m−3. The responsible applied
electric field is that of the streaming plasma which in mirror
modes is quite slow, of the order of v ≈ 104 ms−1 in a magnetic
field of some B ≈ 10 nT . This yields an electric field of the order of
E ≈ Bvsinθ ∼ 10− 4sinθ vm−1. This gives an oscillation frequency
]J ∼ 1010ΔLHz, where ΔL is the width of the sheet crossed by the
magnetosheath flow in meters. It probably compensates for the
reduction of the frequency, but if the flow is mostly parallel to the
magnetic field, then the oscillation frequency may be reduced
substantially. A nearly parallel flow may nevertheless bring it
down into the microwave domain of GHz. In any case, the mirror
mode should become a high frequency radiator. Thus, if a
comparably large volume is filled with an ensemble of mirror
modes it may manifest itself as a source of incoherent radiation at
high frequency if the plasma experiences a cross flow.

6 SUMMARY

Following earlier work on condensate formation in magnetic
mirror modes we have provided the conditions for a quasi-
superconducting phase transition in high temperature
plasma, following the linear mirror instability. In this
process bouncing charged particles in discrete particle
resonance with the thermal ion acoustic background noise
lock to the ion sound wave and temporarily escape from
bounce motion while generating a large anisotropy. These
particles form a condensate in the mirror bubble. Since
bouncing particles are abundant, the condensate is quite
dense and permanently present, longer than the life time
of the discrete resonance of each single particle. It
continuously reforms. Through production of a weak
attracting electric potential in their wakes the condensate
particles give rise to a correlation length ξ. The phase
transition is governed by the semi-classical GL theory and
results in a second-kind quasi-superconducting state
exhibiting a partial Meissner effect. Since the Ginzburg
ratio κG > 1 is large, the phase transition perforates the
plasma causing a magnetic texture which consists of
chains of mirror bubbles.
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We then investigated the interaction of two closely spaced
bubbles finding that it can be described as a Josephson junction
which produces a classical signature in weak high frequency
electromagnetic radiation at frequency depending on the
equivalent electric field and direction of the plasma flow. Its
frequency is sufficiently far above the plasma frequency cut-off
such that it would be observable from remote. Though weak and if
observable it maps the mirror mode region into frequency space.
Similar effects are expected in reconnection and shocks and could
be of interest in application to astrophysical objects. On the other
hand, putting SQUIDS onto spacecraft in order to measure
potential differences produced in mirror bubbles, reconnection,
and shocks with extremely high accuracy in situ might be
advantageous.
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