
Robo-AO and SOAR High-Resolution
Surveys of Exoplanet Hosting Stars
Carl Ziegler1*, Nicholas Law2, Christoph Baranec3, Reed Riddle4 and Andrei Tokovinin5

1Department of Physics, Engineering and Astronomy, Stephen F. Austin State University, Nacogdoches, TX, United States,
2Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States, 3Institute for
Astronomy, University of Hawai‘i at M�anoa, Hilo, HI, United States, 4Division of Physics, Mathematics, and Astronomy, California
Institute of Technology, Pasadena, CA, United States, 5Cerro Tololo Inter-American Observatory, La Serena, Chile

In the past decade, space-based transit surveys have delivered thousands of potential
planet-hosting systems. Each of these needs to be vetted and characterized using follow-
up high-resolution imaging. We perform comprehensive imaging surveys of the candidate
exoplanets detected by the Kepler and TESS missions using the fully autonomous Robo-
AO system and the largely autonomous SOAR speckle imaging system. The surveys
yielded hundreds of previously unknown close binary systems hosting exoplanets and
resulted in verification of hundreds of exoplanet systems. Evidence of the interaction
between binary stars and planetary systems was also detected, including a deep deficit of
planets in close binary systems.
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1 INTRODUCTION

Over the past decade, the Kepler telescope (Borucki et al., 2010) and its follow-up mission, the
Transiting Exoplanet Survey Satellite (TESS, Ricker et al., 2014), have detected the majority of known
exoplanets. Each satellite consists of high-precision photometers, able to measure the brightness of
thousands of stars simultaneously. A planet passing in front of one of these stars as seen from Earth, a
transit, will result in a slight dip in brightness (the size of the dip being related to relative sizes of the
planet and star). Periodic dimming of a star is therefore potential evidence of an orbiting exoplanet.

The addition of a second star in the system, so that the light from both is blended together, results
in a shallower brightness dip during transit. The size of the planet, which is estimated based on the
depth of the brightness dip, is biased small when the light from a second object is included. The
nearby star may actually be an eclipsing binary system. When blended with the brighter target star,
the large dips from the eclipsing stars may result in a planet-like signal. Both the Kepler and TESS
missions were blind to wide binary stars, which were not removed from either Kepler (Brown et al.,
2011) or TESS (Stassun et al., 2019) input catalogs. The majority of close binary stars (those within an
arcsecond of separation) are not known in advance due to the typically low-resolution of seeing-
limited observations and the resolution limit of Gaia DR2 (Ziegler et al., 2018b).

Resolving close binary systems requires high-resolution imaging from the ground. Conventional
systems, such as laser GuideStar adaptive optics (LGS-AO) instruments, require long overheads
before observations can begin, typically on the order of 15–20 min [e.g., Keck-AO (Wizinowich et al.,
2006)], and are generally only available on large telescopes (apertures greater than 8 m). With
thousands of targets requiring such observations, approximately a hundred dedicated nights would
be required to complete a comprehensive survey. Practically, this is outside the allocated time that
will be provided for this purpose. In the first few years of the Kepler mission, the follow-up campaign
proceeded with a patchwork of smaller surveys performed on different telescopes observing in both
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visible and infrared bands (Howell et al., 2011; Adams et al., 2012;
Adams et al., 2013; Horch et al., 2012; Lillo-Box et al., 2012; Dressing
et al., 2014; Horch et al., 2014; Lillo-Box et al., 2014; Marcy et al.,
2014). These disparate sources of data limited the broad statistical
studies that could be performed to understand how planets form and
evolve in tight binary systems.

A high-resolution instrument which also has high observing
efficiency is therefore required to perform such a large survey.
Through full automation, Robo-AO achieves observing time
efficiencies that are an order-of-magnitude greater than those
of conventional high-resolution instruments. Between 2012 and
2016, Robo-AO was used by our team to observe every Kepler
Object of Interest (KOI) system (Law et al., 2014; Baranec et al.,
2016; Ziegler et al., 2017; Ziegler et al., 2018a; Ziegler et al., 2018c).
These observations were typically sensitive to nearby stars as close
as the diffraction limit of the telescope (approximately 0.15ʺ) and
to stars up to six magnitudes fainter than the target star. Within
this survey, nearly 95% of Kepler planetary candidates host stars
(3,857 KOIs in total) were observed, and 620 stars with
separations less than a few arcseconds were detected.

Beginning in late 2018 and continuing to present, the Southern
Astrophysical Research telescope (SOAR) has performed speckle
observations of TESS planet candidates. Speckle imaging on
SOAR typically reaches the diffraction limit on bright targets
(V < ∼ 12), including most TESS targets (TESS Objects of
Interest, or TOIs), and the observation sequence is optimized

to be capable of up to 300 observations a night (Tokovinin, 2018).
The first results from this survey, covering 542 TESS targets with
117 detected companions, was recently published in Ziegler et al.,
(2020). Additional 357 TESS targets observed by SOAR will be
presented in an upcoming work.

This article provides a summary of the surveys and their
results. We describe in detail the observations from each
instrument in Section 2 and summarize the results of the
surveys in Section 3. We conclude in Section 4.

2 OBSERVATIONS

2.1 Robo-AO
The objective of the Robo-AO Kepler survey was to take image in
high-resolution of every candidate planet host star detected by the
Kepler telescope. We therefore targeted every KOI from the
available data releases (culminating with the Kepler DR25
catalog based on Q1-Q17 data) (Borucki et al., 2010; Borucki
et al., 2011a; Borucki et al., 2011b; Batalha et al., 2013; Burke et al.,
2014; Rowe et al., 2014; Coughlin et al., 2016; Mathur et al., 2017).
We removed KOIs that were flagged as false positives using
Kepler data at the time of the observation runs.

The properties of targeted KOIs in the Robo-AO survey are
presented in Figure 1. The distributions in magnitude, planetary
radius, planetary orbital period, and stellar temperature of the

FIGURE 1 | The properties of KOIs observed in the Robo-AO survey are compared to the full set of KOIs from Q1–Q17 (Borucki et al., 2010; Borucki et al., 2011a;
Borucki et al., 2011b; Batalha et al., 2013; Burke et al., 2014; Rowe et al., 2014; Coughlin et al., 2016; Mathur et al., 2017).
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observed stars are similar to the full set of KOIs from Q1 to Q17
that have CANDIDATE dispositions based on only Kepler data.
This is a result of the comprehensive nature of this survey. An
example of the Robo-AO images within this survey is presented in
Figure 2.

The Robo-AO instrument was mounted on telescopes at
Palomar and Kitt Peak during the course of this survey
(Baranec et al., 2014b; Baranec et al., 2017; Jensen-Clem et al.,
2018). To correct high-order wavefront aberrations introduced by
atmospheric turbulence, the adaptive optics system of Robo-AO
runs at a loop rate of 1.2 kHz. The delivered performance of the
system (median Strehl ratios of 9% and 4% in the i′-band at
Palomar and Kitt Peak) allowed identification of companion stars
down to the diffraction limit of the telescope. A long-pass filter
that cuts on at 600 nm (LP600) was used for observations of the
KOI targets. This filter is a good approximation of the Kepler
bandpass at redder wavelengths, while also reducing the blue
wavelengths that reduce the performance of the adaptive optics
correction. A comparison of the LP600 passband to the Kepler
passband is presented in Figure 1 of Law et al., (2014). The
majority of the survey (3,313 KOIs) was performed with Robo-
AO mounted on the Palomar 1.5 m telescope between 2012, July
16 and 2015, June 12 (UT). An additional 532 KOIs were
observed with Robo-AO mounted on the Kitt Peak 2.1 m
telescope between 2016, June 8 and 2016, July 15 (UT).

The Robo-AO system achieves a typical FWHM resolution of
0.15ʺ (at the diffraction limit). An electron-multiplying CCD
(EMCCD) is used to record the images. This camera allows short
frame rates, useful for software corrections for tip and tilt using a
faint (mV < 16) natural guide star in the field of view. In Table 1
we summarize the specifications for the Robo-AO KOI survey.

A currently in-development Robo-AO 2 system (Baranec
et al., 2014a) mounted on the UH-88 in telescope on
Maunakea will be used in the future to take image in high-
resolution of Northern TESS planet candidate hosts.

2.2 SOAR Speckle Imaging
We are observing TESS planet candidate hosts with the high-
resolution camera (HRCam) imager on the 4.1 m SOAR
telescope. TESS targets have been observed during 13 separate
runs in 2018–2020. Over the course of these observations, 95%
(707) of the 742 bright (T< 13) candidate planet host stars from the
two-year primary TESS mission that are observable from the South
(dec< + 20°) have been observed in high-resolution in the SOAR
TESS survey. Observations of planet candidates from the extended
TESS mission are ongoing. The properties of the targeted stars are
plotted in Figure 3 and the survey specifications are listed inTable 2.

The observation procedure and data reduction are described in
detail in Tokovinin (2018) and in Ziegler et al. (2020). In summary, an
11 s burst of 400 images is takenwith anAndor iXon-888 camera. Each
image consists of 200 × 200 binned pixels that are centered on the
target star. The images subtend an angular region on the sky that is 6.3″
on a side, giving a plate scale of 0.01575″/pixel. A custom IDL script
reduces the resulting datacube. A power spectrum is computed, and, if
the target star is a binary, characteristic fringes are apparent. Modeling
the power spectrumprovides the separation,magnitude difference, and
position angle of the companion. The Fourier transform of the power
spectrum is the speckle autocorrelation function (ACF). Secondary
stars will appear as mirrored peaks in the ACF, appearing at the
separation and position angle of the companion. The frames in the
datacube are shift-and-added, centering each on the brightest pixel, to
determine the true position of the companion and remove the 180-
degree ambiguity. Examples of typical speckle data are available in
Figure 4 in Tokovinin (2018). The observations in the SOAR TESS
survey were taken in I-band. This bandpass (λcen � 824 nm, Δλ �
170 nm) is similar to the bandpass used by TESS.

3 IMPACT OF BINARY STARS ON
PLANETARY SYSTEMS

3.1 Binary Fractions
Within the Robo-AO Kepler survey, we found 610 stars within 4″
of 559 planetary candidate hosts (out of an observed total of 3,857

FIGURE 2 | Robo-AO centered cutout images of Kepler planetary
candidate host stars. Systems with discovered nearby stars are highlighted.
Shown are ∼10% of the targets from the Robo-AO survey of KOIs, the largest
adaptive optics survey of exoplanet hosts yet performed. Results from
this survey have been used to validate over a thousand planets.

TABLE 1 | The specifications of the Robo-AO KOI survey.

KOI targets 3,857
FWHM resolution ∼0.15” (@600–750 nm)
Observation wavelengths 600–950 nm
Detector format 1,0242 pixels
Pixel scale 43 mas/pix (palomar)

35 mas/px (kitt peak)
Exposure time 90 s
Targets observed/hour 20
Observation dates 2012 July 16 –

At palomar 1.5 m 2015 June 12
Observation dates 2016 June 8 –

At Kitt peak 2.1 m 2016 July 15
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KOIs). This implies a nearby star fraction rate with the detection
sensitivity of Robo-AO (separations between ∼0.15″ and 4.0″ and
typically Δm≤ 6) of 14.5 ± 0.6%. A triple star fraction (two
additional stars within 4.0” of the target) of 1.2 ± 0.2% and a
quadruple star fraction of 0.08+0.06−0.03% were also detected.

Simulations using simulated galactic star fields and
observational evidence suggest that most nearby stars at
separations < 1″ are likely bound (Horch et al., 2014; Ziegler
et al., 2018c). We find that 5.3 ± 0.3% of KOIs have another star
within 1.5″ and 10.7 ± 0.5% within 3″.

The SOAR TESS survey finds companion rates to transiting
exoplanet candidate hosts within 1.5″ and 3″ of 16.2 ± 1.7% and
23.2 ± 2.0% within 1.5″ and 3″, respectively.

The TESS nearby star rates are significantly higher than the
Kepler rates. If we assume a physical separation distribution for
binaries around exoplanet hosts as we find for field stars
(Raghavan et al., 2010) which peaks at 50 AU, many more real
binaries would be resolvable around TESS planet hosts (average
distance of ∼200 pc) compared to Kepler planet hosts (average
distance of ∼500 pc). The TESS system is also generally brighter

(by ∼3 mags on average), making fainter companions more
readily detectable.

3.2 Radius Corrections
The additional flux from a stellar companion will reduce the
transit depth in a photometric light curves. This dilution will
result in an underestimated planetary radius. In general, it is not
known which of the two stars hosts the planet in an S-type
configuration (i.e., a planet in a binary system that orbits only
one of the stars) (Horch et al., 2014). Gaidos et al., (2016)
provide some evidence, however, that typically the primary
(brightest) star is more likely to be the planet host. We
therefore estimated correction factors for radius estimates for
either host scenario. The detailed description of how the radii of
planet candidates are corrected for the presence of a previously
unknown stellar companion is provided in Ziegler et al.,
(2018c).

We find, for the Kepler planets, that, if we assume that all the
planets orbit around the primary stars, the planetary radii
increase by a factor of 1.08 on average. This factor is relatively
small, as generally the companions are much fainter than the
primary stars and thus the dilution of the transit is small. We
found a similar correction factor for TESS planets of 1.11. Instead,
if we assume all planets orbit around the secondary stars (and
assuming these are not line-of-sight asterisms, but gravitationally
bound to the primary), the radii of the TESS planets will increase,
on average, by a factor of 2.55, slightly less than 3.29 found for
Kepler planets. If we instead assume that the planet candidates are
equally likely to be hosted by the primary or secondary star, we
find average radius correction factors for Kepler planets of 2.18
and for TESS planets of 1.82.

FIGURE 3 | The properties of the 653 TESS planet candidate hosts observed in the SOAR TESS survey from Ziegler et al., (2020) and in preparation (this work). A
cumulative density function for each property is overplotted in black. Targets identified as known or likely false positives, 196 in total, have been removed.

TABLE 2 | The specifications of the SOAR speckle TESS survey.

TOI targets 875
FWHM resolution ∼0.06ʺ (@700–900 nm)
Observation wavelengths λc � 824 nm, Δλ � 170 nm
Detector format 2002 pixels
Pixel scale 15.7 mas/pix
Exposure time 11 s
Targets observed/hour ∼30
Observation dates 2018 Oct 21—on-going
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Unassociated background or foreground stars are typically
found at larger separations from the primary star. If we limit our
sample to just TESS systems with separations less than 1ʺ (to
increase the fraction of gravitationally bound companions), we
find, using the assumptions of all primary star hosts, all secondary
star hosts, and equal mix of primary and secondary star hosts,
correction factors of 1.14, 1.90, and 1.55, respectively. The final
figure agrees with the correction factor from the Robo-AO survey
of Kepler planets of 1.54, as well as from two independent studies
of 1.6 (Ciardi et al., 2015) and 1.64 (Hirsch et al., 2017).

In summary, it is clear that the presence of a previously
unknown stellar companion has a significant effect on our

understanding of any possible planets within the system
(increasing their radii by ∼60% on average). The composition
of smaller planets, in particular, is highly dependent on their
estimated radius, particularly if they fall below or above the radius
gap at approximately 1.6–1.9 Earth radii (Rogers, 2015; Fulton
et al., 2017; Van Eylen et al., 2018) between rocky planets (super-
Earths) and those with large gaseous envelopes (sub-Neptunes).

3.3 Giant Planet Migration
It is expected from theoretical planet formation models that the
gravitational influence of a stellar companion may drive planets
that form at large separations inward, into short-period orbits
(Fabrycky and Tremaine, 2007; Katz et al., 2011; Naoz et al.,
2012). Smaller planets may be ejected by migrating larger planets
in this scenario, resulting in a high fraction of short period giant
planets in systems with stellar companions (Xie et al., 2014).

We searched for evidence of these effects using a cleaned
sample of binary targets from the Robo-AO Kepler survey,
removing known or suspected false positives (Morton and
Johnson, 2011; Fressin et al., 2013) and only using likely
bound systems as determined by photometric distance
estimates Ziegler et al. (2018a).

We find that, after successive cuts to improve the sample (see
Figure 4), short-period (1–3 days) giant and small planets have a
binarity rate of 12.8%+5.6%

−2.8% and 2.4%+1.8%
−0.9%, respectively. This is a

2.6σ discrepancy between giant and small planets.1 A significant
difference in the binarity rate of the two populations is not found
at any other orbital period range.

Ngo et al., (2015) found a similar result in an NIR survey of hot
Jupiter hosts, which were twice as likely to have stellar
companions as compared to field stars at a 2.8σ significance.
The binary fraction found in their survey was significantly higher
(51%), likely a result of differences in observational methods and
sensitivity (e.g., increased sensitivity in the infrared to M-dwarf
companions). The binary fraction for hot Jupiter hosts in the
Robo-AO survey is in agreement with the 12% rate found by Roell
et al., (2012), who used seeing-limited observations to detect close
companions.

3.4 Close Binary Suppression of Planets
A close stellar companion can significantly reduce the probability
that planets can form and survive around a star. Yet, we still find
planets in close binary systems. We use the data from the SOAR
TESS survey to understand how binary stars interact with
planetary systems.

Kraus et al., (2016) found that few Kepler host stars are in solar
system scale binary systems (separations within 50 AU), implying
that planets are significantly less likely to form in these systems.
The TESS planets take generally larger and shorter periods than
the Kepler planets, due to the reduced photometric precision of
TESS and survey strategy. Unlike Kepler, however, the TESS
planets are spread across the sky, not in a limited region, and

FIGURE 4 | The binary fraction for two planetary populations (giant and
small) is shown as a function of orbital period, with 1σ uncertainty regions
shaded. The top panel is the original sample, with each subsequent panel
removing systems, as described in the text, to clean the sample. In each
panel, the number of systems used is shown in parentheses.

1Errors for both populations are based on Poissonian statistics (Burgasser et al.,
2003).
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allow us to sample a more diverse set of the Galactic stellar
population.

Similar to Kraus et al., (2016), we use the field binary statistics
of Raghavan et al., (2010) to compare the planet candidate
hosting planets. Any differences between the two samples may
be a result of planet formation suppression. For this analysis, we
first cull the sample of 875 observed TOIs using several
parameters (non-Solar type stars, false positives, and high
contrast systems) to a final sample consisting of 484 stars. We
supplement the SOAR observations with common proper motion
pairs found in Gaia DR2 (Gaia Collaboration et al., 2018).

A histogram of the observed distribution of binaries based on
projected separation compared to the simulated survey of field
stars is shown in Figure 5. A deep deficit of observed exoplanet
candidate systems with close binaries is apparent, indicating that
these systems are treacherous for planet formation and evolution.
A simple two-parameter suppression model, a step function
reduction in binaries by 90+2−3% at 34+9−6 AU physical
separation, fits the observed distribution.

The exact mechanism that suppresses the survival of planets in
these systems is unclear, but several theories have been put forth.
Quintana et al., (2007) suggest that stellar companions may stir
planetesimals, increasing their velocity and reducing their density
in the protoplanetary disc. Naoz et al., (2012) suggest that binary
stars perturb planetary orbits, resulting in tidal migration that can
lead to planetary ejection. Jang-Condell et al., (2008) and Kraus
et al., (2012) find evidence that stellar companions reduce the

material in, and lifetime of, protoplanetary discs. Lastly,
Alexander (2012) suggests that the additional radiation from
the companion increases photoevaporation in the disc, stripping
gaseous planets of their atmospheres. Why can some systems
survive while others are destroyed? More observations of these
systems (to determine association between the two stars, identify
the planet host, and map out physical rather than the snapshot
projected separation) and the detection of more systems,
particularly close binary systems that do host planets, will
likely bring more insight. These systems are relatively rare and
serve as the most stringent tests for theoretical formation models.

4 CONCLUSION

The Kepler and TESS missions provided the community the
significant challenge of needing thousands of high-resolution
images to confirm and characterize exoplanet systems. Robo-
AO and SOAR speckle imaging are uniquely suited to perform
those observations in a comprehensive and uniform manner.
Over four years, Robo-AO imaged nearly all of the Kepler planet
candidates. This corrected the planetary radius estimates for over
600 systems and led to the verification of over a thousand planets
(Morton et al., 2016). The TESS survey is observing every TESS
planet candidate visible from the South. Currently over 800
targets have been observed, with over 200 having nearby
companions, and the speckle observations have contributed to
the confirmation of over 40 planets [e.g.,Espinoza et al., (2019);
Jones et al. (2019); Quinn et al., (2019); Rodriguez et al., (2019);
Vanderburg et al., (2019)]. This has resulted in the best evidence
yet that close, Solar System scale binary systems suppress planet
formation. The TESS survey is ongoing with targets from the
extended mission being observed.

Data from the Robo-AO survey of Kepler planet candidate
host stars are available at the survey website2. Data from the
SOAR telescope observations of TESS planet candidate host stars
are available on the Exoplanet Follow-up Observation Program
website3.

DATA AVAILABLITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: Kepler ExoFOP.
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plotted. These distributions take into account the detection sensitivity of both
SOAR and Gaia. The observed distribution shows a clear paucity of TESS
planet candidate host binaries at projected separations less than ∼40 AU
compared to the field stars and are consistent with field expectations at wider
separations.

2http://roboaokepler.com/.
3https://exofop.ipac.caltech.edu/tess/index.php.
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