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Visualizing and Interpreting
Unsupervised Solar Wind
Classifications
Jorge Amaya*, Romain Dupuis, Maria Elena Innocenti and Giovanni Lapenta

Mathematics Department, Centre for Mathematical Plasma-Astrophysics, KU Leuven, Leuven, Belgium

One of the goals of machine learning is to eliminate tedious and arduous repetitive work.

The manual and semi-automatic classification of millions of hours of solar wind data

from multiple missions can be replaced by automatic algorithms that can discover, in

mountains of multi-dimensional data, the real differences in the solar wind properties. In

this paper we present how unsupervised clustering techniques can be used to segregate

different types of solar wind. We propose the use of advanced data reduction methods to

pre-process the data, and we introduce the use of Self-Organizing Maps to visualize and

interpret 14 years of ACE data. Finally, we show how these techniques can potentially

be used to uncover hidden information, and how they compare with previous empirical

categorizations.
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1. INTRODUCTION

The effects of solar activity on the magnetic environment of the Earth have been observed since
the publication of Edward Sabine’s work in 1852 (Sabine, 1852). During almost 200 years we
have learned about the intimate connection between our star and the plasma environment of
the Earth. Three main physical processes connect us to the Sun: the transfer of electromagnetic
radiation, the transport of energetic particles, and the flow of solar wind. The later is a continuous
stream of charged particles that carries the solar magnetic field out of the corona and into the
interplanetary space.

The name solar wind was coined by Parker in 1958 because “the gross dynamical properties of
the outward streaming gas [from the Sun] are hydrodynamic in character” (Parker, 1958). Over
time we have learned that the wind also has many more complex properties. Initially, it was natural
to classify the solar wind by defining a boundary between fast and slow winds (Neugebauer and
Snyder, 1966; Schwenn, 1983; Schwenn and Marsch, 1990; Habbal et al., 1997). The former has
been associated with mean speed values of 750 km/s (or in some publications with values larger
than 600 km/s), while the later shows a limit at 500 km/s, where the compositional ratio (Fe/O)
shows a break (Feldman et al., 2005; Stakhiv et al., 2015). The solar wind also carries information
about its origins on the Sun. At certain solar distances the ion composition of the solar wind is
expected to be frozen-in, reflecting the electron temperature in the corona and its region of origin
(Feldman et al., 2005; Zhao et al., 2009; Stakhiv et al., 2015). These particles have multiple energies
and show a variety of kinetic properties, including non-Maxwellian velocity distributions (Pierrard
and Lazar, 2010; Matteini et al., 2012).
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The solar wind is also connected to the Sun by Interplanetary
Magnetic Field (IMF) lines directed toward the Sun, away from
the Sun, or in the case of flux ropes, connected at both ends
(Gosling et al., 2010; Owens, 2016). The region separating IMF
lines of opposite polarity (directed away or toward the Sun) is
called the Heliospherc Current Sheet (HCS) (Smith, 2001). When
a spacecraft crosses the HCS instruments onboard measure
the change in polarity of the magnetic field. In quiet wind
conditions the plasma around the HCS presents discontinuities
in density, temperature velocity and magnetic field (Eselevich
and Filippov, 1988). This perturbed region surrounding the
HCS is called the Heliospheric Plasma Sheet (HPS). The passage
of the spacecraft from one side of the HPS to the other is
known as a Sector Boundary Crossing (SBC) (Winterhalter et al.,
1994). In spacecraft observations these are sometimes confused
with Corotating Interaction Regions (CIR), which are zones
of the solar wind where fast flows have caught up with slow
downstream solar wind, compressing the plasma (Fisk and Lee,
1980; Richardson, 2004).

From the point of view of a spacecraft SBCs and CIRs can
show similar sudden changes in the plasma properties. These two
in turn are often grouped and mixed with other transient events,
like Coronal Mass Ejections (CME) and Magnetic Clouds (MC).
Since 1981 when Burlaga et al. (1981) described the propagation
of MC behind an interplanetary shock, it was suspected that
CMEs and MC where coupled. However, more recent studies
show that CMEs observed near the Sun do not necessarily
become MC, but instead “pressure pulses” (Gopalswamy et al.,
1998; Wu et al., 2006).

Much more recently it has been revealed, by observations
from Parker Solar Probe, that the properties of the solar wind can
be drastically different closer to the Sun, were the plasma flow
is more pristine and has not yet mixed with the interplanetary
environment. Patches of large intermittent magnetic field
reversals, associated with jets of plasma and enhanced Poynting
flux, have been observed and named “switchbacks” (Bale et al.,
2019; Bandyopadhyay et al., 2020).

The solar wind is thus not only an hydrodynamic flow, but
a compressible mix of different populations of charged particles
and electromagnetic fields that carry information of their solar
origin (helmet streamer, coronal holes, filaments, solar active
regions, etc.) and is the dominion of complex plasma interactions
(ICMEs, MC, CIRs, SBCs, switchbacks).

To identify and study each one of these phenomena we
have relied in the past on a manual search, identification and
classification of spacecraft data. Multiple authors have created
empirical methods of wind type identification based on in-situ
satellite observations and remote imaging of the solar corona.
Over the years the number and types of solar wind classes
has changed, following our understanding of the complexity of
heliospheric physics.

Solar wind classification serves four main roles:

1. it is used for the characterization of its origins in the corona,
2. to identify the conditions where the solar wind is geoeffective,
3. to isolate different plasma populations in order to perform

statistical analysis,

4. to study the basic transport effects of space plasmas of
different nature.

Among the existing classifications we can include the original
review work by Withbroe (1986), the impressive continuous
inventory by Richardson et al. (2000) and Richardson and Cane
(2010, 2012), and the detailed studies by Zhao et al. (2009)
and (Xu and Borovsky, 2015). These publications classify the
solar wind based on their ion composition, and on the transient
events detected. Each system includes two, three, or four classes,
generally involving coronal-hole origins, CMEs, streamer belt
origins, and sector reversal regions.

The precise point of origin of the solar wind can be
traced back from spacecraft positions to the solar corona and
the photosphere: multiple authors (Neugebauer et al., 2002;
Zhao et al., 2009, 2017; Fu et al., 2015) have used a ballistic
approximation coupled to a Potential Field Source Surface
(PFSS) model to trace back solar wind observations to their
original sources on the Sun. This procedure relies on multiple
assumptions, including a constant solar wind speed and a
force free magnetic field configuration of the solar corona. The
uncertainty on the source position is estimated around ±10◦

by Neugebauer et al. (2002). This is currently the best method
to acquire the ground truth about the origin of the solar wind.
Unfortunately, to our knowledge, there is no central repository
of solar wind origins for any space mission that we can use to
train or verify our novel machine learning techniques.

We are moving now toward a new era of data analysis,
where manual human intervention can be replaced by intelligent
software. The trend has already started, with the work by
Camporeale et al. (2017) who used (Xu and Borovsky, 2015)
classes to train a Gaussian Process algorithm that autonomously
assigns the solar wind to the proper class, and by Roberts et al.
(2020) who used unsupervised classification to perform a 4 and
8 class solar wind classification. A recent publication by Bloch
et al. (2020) uses unsupervised techniques to classify ACE and
Ulysses observations, and Li et al. (2020) have successfully tested
10 different supervised techniques to reproduce the categories
introduced by Xu and Borovsky (2015).

The most basic ML techniques learn using two approaches:
(A) in supervised learning the algorithms are shown a group
of inputs, X ∈ R

n, and outputs, Y ∈ R
o, with the goal of

finding a non-linear relationship between them, ξs :X → Y,
(B) in unsupervised learning the machine is presented with a
cloud of multi-dimensional points, X ∈ R

n, that have to be
autonomously categorized in different classes, either performing
associations with representative points in the same data space,
ξu :X → W ∈ R

n, or by grouping neighboring data points
together into an assigned set, ξu :X → g ∈ R. This means that
we can program the computer to learn about the different types
of solar wind using the existing empirical classifications using
method (a), or allowing the computer to independently detect
patterns in the solar wind properties with method (b).

In the present work we show how the second method,
unsupervised classification, can be used to segregate different
types of solar wind. In addition, we show how to visualize and
interpret such results. The goal of this paper is to introduce the

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 2 September 2020 | Volume 7 | Article 553207

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Amaya et al. Visualizing and Interpreting Solar Wind Classifications

use of unsupervised techniques to our community, including the
best use practices and the opportunities that such methods can
bring. We promote the use of one specific type of classification,
called Self-Organizing Maps, and we compare it to simpler
classification techniques.

In the next sections we present in detail the techniques of
data processing (section 2.1), data dimension reduction (sections
2.2.1, 2.2.2 and 2.2.3) and data clustering (section 2.2.4) that we
have used. We then present in detail the Self-Organizing Map
technique and all its properties in section 2.2.5. We show how
to connect all of these parts together in section 2.2.6, and finally
we show how the full system can be used to study 14 years of solar
wind data from the ACE spacecraft in section 3.

2. MATERIALS AND METHODS

2.1. Data and Processing
2.1.1. Data Set Used
The solar wind data used in this work was obtained by the
Advanced Composition Explorer (ACE) spacecraft, during a
period of 14 years, between 1998 and 2011. The data can
be downloaded from the FTP servers of The ACE Science
Center (ASC) (Garrard et al., 1998). The files in this repository
correspond to a compilation of hourly average data from
four instruments: MAG (Magnetometer) (Smith et al., 1998),
SWEPAM (Solar Wind Electron, Proton, and Alpha Monitor)
(McComas et al., 1998), EPAM (Electron, Proton, and Alpha
Monitor) (Gold et al., 1998), and SWICS (Solar Wind Ion
Composition Spectrometer) (Gloeckler et al., 1998). A detailed
description of the entries in this data set can be found in the ASC
website listed in the Data Availability Statement.

A total of 122,712 data points are available. However, routine
maintenance operations, low statistics, instrument saturation
and degradation produce gaps and errors in the data. The
SWICS data includes a flag assessing the quality of the calculated
plasma moments. We retain only Good quality entries. Our
pre-processed data set contains a total of 72,454 points.

2.1.2. Additional Derived Features
We created additional features for each entry, based on previous
knowledge of the physical properties of the solar wind. Some
are derived from the existing properties in the data set,
others computed from statistical analysis of their evolution. We
introduce here the additional engineered features included in our
data set.

Multiple techniques have been proposed in the literature to
identify ejecta, Interplanetary Coronal Mass Ejections (ICME),
and solar wind origins in the ACE data. Zhao et al. (2009) suggest
that, during solar cycle 23, three classes of solar wind can be
identified using its speed, Vsw, and the oxygen ion charge state
ratio, O7+/O6+. It has been shown that slow winds originating
in coronal streamers correlate with high values of the charge
state ratio and fast winds coming from coronal holes present low
values (Schwenn, 1983; Withbroe, 1986; Schwenn and Marsch,
1990). Plasma formed in coronal loops associated with CMEs also
show high values of the charge state ratio (Xu and Borovsky, 2015;

Zhao et al., 2017). The classification boundaries of the Z09model,
proposed by Zhao et al. (2009), are presented in Table 1.

Xu and Borovsky (2015) suggested an alternative four classes

system based on the proton-specific entropy, Sp = Tp/n
2/3
p

[K cm2], the Alfvén speed, VA = B/(µ0mpnp)
1/2 [Km s−1],

and the ratio between the expected and the measured proton
temperature, Texp/Tp = (Vsw/258)

3.113/Tp [–], where np is the
proton number density, mp is the proton mass, and µ0 is the
permeability of free space. The classification boundaries used for
the X15 model, proposed by Xu and Borovsky (2015), are also
presented in Table 1. For each entry in the data set we have
included the values of Sp, VA, Texp, Tratio = Texp/Tp, and the
solar wind type.

Two additional empirical threshold methods will be included
in this work for comparison. These two methods were derived
from the compositional observations of the solar wind at higher
heliospheric latitudes, using data from the Ulysses mission
(Wenzel et al., 1992). The first model, that we call vS15,
comes from the work by von Steiger and Zurbuchen (2015),
where the first figure shows a clear division between Coronal
Hole (CH) sources and non-Coronal Hole (NCH) wind. The
boundary between the two classes is presented in Table 1. The
second threshold model was presented as an example by Bloch
et al. (2020). This boundary, named here B20, is an empirical
approximation that divides CH and NCH origin winds. The
threshold values are shown in Table 1.

In addition to the instantaneous properties of the solar wind
used in all previous classifications, we can perform statistical
operations over a window of time of 6 h, including values of the
maximum, minimum, mean, standard deviation, variance, auto-
correlation, and range. We expect to capture with some of these
quantities turbulent signals or sudden jumps associated with
different transient events. These additional rolling operations are
a complement to the stationary solar wind parameters mentioned
above and add information about the temporal evolution of
the plasma. The selection of the statistical parameters and the
window of time is arbitrary and will require a closer examination
in the future.

An additional term, which has been successfully used in the
study of solar wind turbulence (D’Amicis and Bruno, 2015;
Zhao et al., 2018; Magyar et al., 2019; Adhikari et al., 2020), is
included here to account for additional time correlations. The
normalized cross-helicity, σc, is defined in Equation (1), where
b = (B− 〈B〉) /(µ0mpnp)

1/2 is the fluctuating magnetic field
in Alfvén units, v = Vsw − 〈Vsw〉 is the fluctuating solar wind
velocity, and 〈.〉 denotes the averaging of quantities over a time
window of 3 h (Roberts et al., 2020).

σc = 2 〈b · v〉 /
〈

b2 + v2
〉

(1)

Due to gaps in the data, some of the above quantities can not be
obtained. We eliminate from the data set all entries for which the
derived features presented in this section could not be calculated.
This leaves a total of 51,374 entries in the data set used in the
present work.
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TABLE 1 | Solar wind types and boundaries as defined by the empirical models: Z09, X15, vS15, and B20.

# SW type Condition References

0 CH log10 O
7+/O6+ ≤ 0.145 Zhao et al., 2009

2 NCH 0.145 < log10 O
7+/O6+ < 6.008e(−0.00578Vsw )

4 TR log10 O
7+/O6+ > 6.008e(−0.00578Vsw )

0 CH Not type TR, and Xu and Borovsky, 2015

log10(Sp) > −0.525 log10(Texp/Tp)− 0.676 log10(VA) +1.74

2 SB Not type CH, TR, or SR

3 SR Not type TR, and

log10(Sp) < −0.125 log10(Texp/Tp ) −0.658 log10(VA) +1.04

4 TR log10(VA) > 0.055 log10(Texp/Tp) +0.277 log10(Sp) +1.83

0 CH log10 O
7+/O6+ × log10 C

6+/C5+ ≤ 0.01 von Steiger and Zurbuchen, 2015

2 NCH Not type CH

0 CH 1.25× log10 O
7+/O6+ + 6.75 < log10(Sp) Bloch et al., 2020

2 NCH Not type CH

The four types are: fast solar wind of coronal hole origin (CH), slow wind of non-coronal hole origin (NCH), transients, including ejecta, ICMEs, CIRs, MCs or other sudden jumps in solar

wind parameters (TR), solar wind originated in the streamer belt (SB), and solar wind of sector reversal origins (SR). The ID value in the first column is arbitrary and has been chosen to

simplify the visualization of our results.

To account for the differences in units and scale, each feature
column F in the data set is normalized to values between 0 and 1,
using: f = (F −min F) / (max F −min F).

Not all the features might be useful and some of them can be
strongly correlated.We do not perform here a detailed evaluation
of the inter dependencies of the different features, and we leave
that task for a future work. The present manuscript focuses on
the description of the methodology and on the visualization
and interpretation capabilities of unsupervised machine learning
classification.We limit our work here to test and compare a single
model that incorporates a total of 15 features. These are listed in
Table 2.

2.1.3. Complementary Data Catalogs
We support the interpretation of our results using data from
three solar wind event catalogs. The first is the well-known Cane
and Richardson catalog that contains information about ICMEs
detected in the solar wind in front of the Earth (Cane and
Richardson, 2003; Richardson and Cane, 2010)1. We used the
August 16, 2019 revision. As the authors state in their website,
there is no spreadsheet or text version of this catalog and offline
editing was necessary. We downloaded and re-formatted the
catalog to use it in our application. The CSV file created has been
made available in our repository.We call this, the Richardson and
Cane catalog.

The second catalog corresponds to the ACE List of
Disturbances and Transients2 produced by the University of

1Near-Earth Interplanetary Coronal Mass Ejections Since January 1996:

http://www.srl.caltech.edu/ACE/ASC/DATA/level3/icmetable 2.html
2ACE Lists of Disturbances and Transients: http://www.ssg.sr.unh.edu/mag/ace/

ACElists/obs_list.html

New Hampshire. As in the previous case, the catalog is only
available as an html webpage, so we have manually edited the
file and extracted the catalog data into a file also available in our
repository. This is hereafter referred to as the UNH catalog.

Finally, we also included data from the Shock Database3

maintained by Dr. Michael L. Stevens and Professor Justin C.
Kasper at the Harvard-Smithsonian Center for Astrophysics.
Once again we have gathered and edited multiple web-pages in
a single file available in our repository. In this work this database
will be known as the CfA catalog.

2.2. Dimension Reduction and Clustering
2.2.1. Dimension Reduction Using PCA
Principal Component Analysis (PCA) is amathematical tool used
in data analysis to simplify and extract the most relevant features
in a complex data set. This technique is used to create entries
composed of linearly independent principal components. These
are the eigenvectors, v, of the covariance matrix 6 = (6ij)
applied to the centered data (Equation 2), ordered from the
largest to the smallest eigenvalue, λ1 ≥ λ2 ≥ . . . ≥ λn,
where X is the mean value of each one of the n original features
(Equation 3), and m is the total number of entries in the data
set. The projection of the data onto the principal component
space ensures a maximal variance on the direction of the first
component. Each subsequent principal component is orthogonal
to the previous ones and points in the direction of maximal

3Harvard-Smithsonian, Center for Astrophysics, Interplanetary Shock Database—

ACE: https://www.cfa.harvard.edu/shocks/ac_master_data/
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TABLE 2 | List of features used for the AE+DSOM model.

ID Name in the database AE + DSOM

0 proton_speed X

1 proton_density X

2 O7to6 X

3 C6to5 X

4 FetoO X

5 avqFe X

6 proton_temp X

7 sigmac(∗) X

8 Sp X

9 Va X

10 Tratio X

11 proton_speed_range X

12 Bn_range X

13 FetoO_range X

14 O7to6_range X

Initial year 1998

Final year 2011

Neurons / encoding layer [15, 10]

Optimizer Adam

Learning rate 0.042

Lattice nodes 10×10

ǫ 0.005

η 3.0

The logarithm of all quantities was used, except for the features marked with an asterisk

(*). Bottom: data range and hyper-parameters of the AE and the SOM.

variance in the residual sub-space (Shlens et al., 2014).

6ij =
1

m

m
∑

k=1

(

Xk
i − Xi

) (

Xk
j − Xj

)

(2)

X = 1

m

m
∑

i=1

Xi (3)

6v = λv (4)

The PCA transformation creates the same number of
components in the transformed space, X̃, as features in the
original data space X. However, components with small
eigenvalues belong to a dimension where the variance is so small
that it is impossible to separate points in the data. It is a general
practice in data reduction to keep only the first k components
that explain at least a significant portion of the total variance

of the data,
∑k

i=1 λi/Tr(6) > ǫ. This allows for a selection of
information that will effectively differentiate data points, and for
a reduction of the amount of data to process during analysis.
Many techniques have been suggested for the selection of the
values of k and the cut-off ǫ (Rea and Rea, 2016). We use the
value of ǫ = 0.95.

2.2.2. Dimension Reduction Using Kernel PCA
PCA has a limitation: the principal components are a linear
combination of the original properties of the solar wind. The
Kernel PCA (KPCA) is an extension of the PCA that allows to
perform non-linear transformations of the original data. The goal
in KPCA is to perform the original PCA operations in a high
dimensional space.

For a list of m data points composed of n features, it is
sometimes difficult (or impossible) to build a linear hyper-plane
that dissects regions of different density. However, it is possible to
conceive a function, ξ :X ∈ R

n → X̃ ∈ R
m, that will transform

all the data into a space where each cluster of points can be
linearly separable. The goal is then to avoid explicitly calculating
the high-dimensional function ξ by building a Kernel, K , which
is the inner product of the high-dimensional space:

K = k(Xi,Xj) = ξ (Xi)
Tξ (Xj) (5)

In this space the projected points are linearly separable using the
same principles of the PCA. In this case the covariance matrix
would be expressed as:

6ij =
1

m

m
∑

k=1

ξ (Xi)ξ (Xi)
T (6)

v =
n

∑

i=1

aiξ (xi) (7)

Popular kernel functions include Gaussian, polynomial and
hyperbolic tangent. The transformation is reduced to solving the
eigenvalue problem: Ka = λa, where a are the coefficients of the
linear combination of the eigenvectors (Equation 7). Although a
powerful tool, KPCA requires the creation of an m × m matrix
that can consume large amounts of time and memory resources.

In this work we use KPCA with a polynomial kernel of order
eight (8). We also apply the procedure described before to select
the total number of retained components: we impose ǫ = 0.95.
Cutting off the number of components implies a loss of data.
To verify that only minimal information is lost, we perform
a transformation of all our data set followed by an inverse
transformation. The relative error between the two is normally
distributed around zero with<1% of variance.

2.2.3. Dimension Reduction Using Autoencoders
An alternative to data reduction is the use of Autoencoders
(AE). These are machine learning techniques that can create non-
linear combinations of the original features projected on a latent
space with less dimensions (Hinton and Salakhutdinov, 2006).
This is accomplished by creating a system where an encoding
function, φ, maps the original data X to a latent space, F ∈ R

d

(Equation 8). A decoder function, ψ , then maps the latent space
back to the original input space (Equation 9). The objective of
the autoencoder is to minimize the error between the original
data and the data produced by the compression-decompression
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FIGURE 1 | Density of points, projected on two arbitrary components, for each of the four X15 classes. The axis titles indicate the corresponding component (C1 for

component 1, C8 for component 8, etc.). Colors, normalized between 0 and 1, correspond to solar wind classes: CH (red), SB (blue), SR (green), and TR (purple). The

three columns correspond to three possible data transformations: (A) Original normalized data, (B) data transformed with the Kernel Principal Component Analysis,

and (C) data encoded with our Autoencoder. Black lines are isocontours of data point density.

procedure as shown in Equation (10).

φ :X → Z ∈ F (8)

ψ :Z ∈ F → X (9)

φ,ψ =argmin
φ,ψ

∥

∥X − (φ ◦ ψ)X
∥

∥

2
(10)

Autoencoders can be represented as feed-forward neural
networks, where fully connected layers lead to a central
bottleneck layer with few nodes and then expands to reach again
the input layer size. An encoded element, z ∈ F , can be obtained
from a data entry, x ∈ X, following the standard neural network
function (Equation 11), where W is the weights matrix, c is the
bias, and f is the non-linear activation function.

z = f (Wx+ c) (11)

x̂ = f ′
(

W′z + c′
)

(12)

L(x, x̂) =
∥

∥x− x̂
∥

∥

2
(13)

The decoding procedure, shown in Equation (12), transforms
z → x̂, where the prime quantities are associated with
the decoder. The loss function, L(x, x̂), is the objective to be
minimized by the training of the neural network using gradient
descent. Once training is completed, the vector z is a projection
of the input vector x onto the lower dimensional space F .

Additional enhancements and variations of this simple
autoencoder setup exist in the literature, including multiple
regularization techniques to minimize over-fitting (Liang and
Liu, 2015), Variational Autoencoders (VAE) that produce
encoded Gaussian distribution functions (Kingma and Welling,
2013), and Generative Adversarial Networks that automatically
generate new data (Goodfellow et al., 2014). In this work we use
the most basic form of autoencoders, presented above.

In the present work we will be showing different
representations of the solar wind data, transformed with
different techniques and projected on flat planes. Figure 1

presents our data set in three different projections: (A) the
original feature space, normalized between zero and one, (B)
the transformed data set using the KPCA method, and (C) the
AE transformed data. In each panel four histograms present the
distribution of the X15 classes, on two arbitrary components
identified by the axis title.

2.2.4. Clustering Techniques
The goal of unsupervised machine learning is to group data
points in a limited number of clusters in the N-dimensional space
� ∈ R

n, where n is the number of features (components or
properties) in the data set. Multiple techniques can be used to
perform multi-dimensional clustering. We present in Figure 2

the application of two basic clustering techniques to classify our
data set. Following the same order as before, the first column
in the figure contains all data points projected in the original
normalized feature space; column two contains scatter plots of
the points after KPCA transformation; column three contains
the same points encoded in the AE latent space. Each row
corresponds to a different clustering method. The colors in
the top row were obtained using the k-means method (Lloyd,
1982), while the colors in bottom panels were obtained using the
Bayesian Gaussian Mixture (BGM) (Bishop, 2006).

The k-means technique has already been used in multiple
publications for the determination of solar wind states (Heidrich-
Meisner andWimmer-Schweingruber, 2018; Roberts et al., 2020).
The BGM technique has also been recently used by Bloch et al.
(2020) to classify solar wind observations by the ACE and
Ulysses missions. Mixture models similar to the BGM have also
been recently used to classify space plasma regions in magnetic
reconnection zones (Dupuis et al., 2020). None of these previous
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FIGURE 2 | Scatter plot of all data points projected on two of the components of the three transformed spaces: the original normalized space (left column), the KPCA

space (central column), and the AE space (right column). In the left column the components C0 vs. C8 correspond to the proton temperature, Tp, vs. the proton

specific entropy, Sp. Colors correspond to the classes obtained by two unsupervised clustering methods: k-means (first row) and BGM (second row). Black lines are

isocontours of data point density.

publications used data transformation to solve the classification
problem in a more suitable latent space.

The colors used in Figure 2 are assigned randomly by
each clustering technique. The most glaring issue with them
is that different methods can lead to different clusters
of points. The BGM and the k-means do not agree on
their classification in the PCA and the AE space. More
importantly, for each technique, slight modifications of the
clustering parameters, e.g., using a different seed for the
random number generator, can lead to very different results.
We address this last issue using an algorithm that launches
the k-means (the BGM) algorithm 100 (30) times until the
method converges to a global minimum. The final results are
implementation dependent.

In the present data set, the cloud of points is convex and
well-distributed in all components. This raises one additional
issue, observed more clearly in the second column of Figure 2:
when classical clustering methods are applied to relatively
homogeneously dense data, it divides the feature space in
Voronoï regions with linear hyper-plane boundaries. This is
an issue with all clustering techniques based on discrimination
of groups using their relative distances (to a centroid or to
the mean of the distribution). To avoid this problem density-
based techniques, such as DBSCAN (Ester et al., 1996), and
agglomeration clustering methods, use a different approach.

However, we can not apply them here because in such
homogeneous cloud of points these techniques lead to a trivial
solution where all data points are assigned to a single class.
An alternative projection was used by Bloch et al. (2020), who
performed a Uniform Manifold Approximation and Projection
(UMAP). We performed the same projection unsuccessfully:
the Ulysses data used in that publication contains a very
dense and large number of CH observations. ACE lacks such
a rich variety of CH data, so applying a UMAP leads to a
single class.

There is no guarantee that a single classification method,
with a particular set of parameters will converge to a physically
meaningful classification of the data if the points in the data do
not have some level of separability, or have multiple zones of
high density. This is also true for other classification methods
based on supervised learning. The same issues will be observed
when the training data include target classes derived from dense
data clouds using simple hyper-plane boundaries, as done for
the Z09 and X15 classes. An example of such application was
published by Camporeale et al. (2017) and Li et al. (2020).
The authors used the X15 classification to train supervised
classifiers. No new information is gained with such methods,
as the empirical boundaries are already mathematically known.
A more compelling task would be to compare all classification
methods against a ground truth, i.e., against a catalog of footpoint
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locations on the solar surface. But such catalog, to our knowledge,
does not exist.

2.2.5. Self-Organizing Maps

2.2.5.1. Classical SOM
Following the definitions and notations by Villmann and

Claussen (2006), a class can be defined as Ci
def= {x ∈ �|8(x) =

wi}, where 8 is a function from � to a finite subset of k points
{wi ∈ R

N}i=1··k. A cluster Ci is then a partition of �, and {wi}
are the code words (also known as nodes, weights or centroids)
associated. Themapping from the data space to the code word set,
8 :�→ W , is obtained by finding the closest neighbor between
the points x and the code words w (Equation 14). The code word
ws, the closest node to the input xs, is called the winning element.
The class Ci corresponds to a Voronoï region of � with center
in wi.

8 : x → argmin
i∈N

(‖x− wi‖) (14)

A Self-Organizing Map (SOM) is also composed of structured
nodes arranged in a lattice, each one assigned to a fixed position
pi inR

q, where q is the dimension of the lattice (generally q = 2).
The map nodes are characterized by their associated code words.
The SOM learns by adjusting the code words wi as input data x
is presented.

The SOM is the ensemble of code words and nodes {wi, pi} ∈
(� × R

q). For a particular entry xs, the code word s ∈ N is
associated to the winning node ps if the closest word to xs is ws.
At every iteration of the method, all code words of the SOM are
shifted toward x following the rule:

1wi = ǫ(t)hσ (t, i, s)(x− wi) (15)

with hσ (t, i, j) defined as the lattice neighbor function:

hσ (t, i, j) = e
−

∥

∥

∥pi−pj

∥

∥

∥

2

2σ (t)2 (16)

where ǫ(t) is the time dependent learning rate (Equation 17), and
σ (t) is the time dependent lattice neighbor width (Equation 18).
The training of the SOM is an iterative process where each data
point in the data set is presented to the algorithm multiple times
t = 0, 1, ··, tf . In these equations the subscript 0 refers to initial
values at t = 0 and the subscript f to values at t = tf .

ǫ(t) = ǫ0

(

ǫf

ǫ0

)t/tf

(17)

σ (t) = σ0

(

σf

σ0

)t/tf

(18)

This procedure places the code words in the data space� in such
a way that neighboring nodes in the lattice are also neighbors in
the data space. The lattice can be presented as a q-dimensional
image, called map, where nodes sharing similar properties are
organized in close proximity.

The main metric for the evaluation of the SOM performance
is called the quantization error:

QE = 1

m

m
∑

i=1

∥

∥xi − wxi

∥

∥ (19)

wherem, is the total number of entries in the data set. It has been
shown that the SOM tends to converge in the mean-square (m.s.)
sense to the probabilistic density center of the multi-dimensional
input subset (Yin and Allinson, 1995). This means that, if the
SOM hyper-parameters are chosen correctly, the code words of
the SOM will have a tendency to move toward high density
regions of subsets of the input data, and will be located close to
the mean of the subset points.

Once the training of the SOM is finished, the code words wi

can be grouped together using any clustering technique, e.g., k-
means. The nodes of the SOM with close properties will be made
part of the same class. The classes created are an ensemble of
Voronoï subspaces, allowing a complex non-linear partitioning
of the data space�.

The final number of clusters is an input of the algorithm, but
can also be calculated autonomously. The Within Cluster Sum of
Squares (WCSS) can be used as ametric of the compactness of the
clustered nodes. As its name implies the WCSS is the sum of the
squared distances from each node to their cluster point. If only
one class is selected, the large spread of the nodes would produce
a high WCSS. The lowest possible value of the WCSS is obtained
for a very high number of classes, when the number of classes
is equal to the number of nodes. But such extreme solution is
also unpractical. The optimal number of clusters can be obtained
using the Kneedle class number determination (Satopaa et al.,
2011). We use this automatic technique to let the machine select
the optimal number of solar wind classes.

2.2.5.2. Dynamic SOM
The time dependence of the SOM training allows the code
words wi to reach steady coordinates by slowing down their
movement over the iterations. Due to the minimization of the
distance in Equation (14) code words tend to agglomerate around
high density zones of the feature space. The Dynamic Self-
Organizing Map (DSOM), introduced by Rougier and Boniface
(2011), eliminates the time dependence and allows to cover larger
zones of the space outside of the high density regions.

The DSOM is a variation of the SOM where the learning
function (Equation 15) and the neighbor function (Equation 16)
are replaced by Equations (20) and (21), respectively:

1wi = ǫ ‖x− wi‖� hη(i, s, x)(x− wi) (20)

hη(i, s, x) = e
− 1
η2

∥

∥

∥pi−pj

∥

∥

∥

2

‖x−ws‖2� (21)

where ǫ is a constant learning rate, hη(i, s, x) is defined as the
new lattice neighbor function, and η is the elasticity parameter.
In their work (Rougier and Boniface, 2011) show that DSOM can
be used to draw a larger sample of the feature space �, reducing
the agglomeration of code words around high density zones. The
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main parameters of the DSOM, η and ǫ, control the convergence
of the method. A large ǫ moves the code words, w, very fast with
each new iteration; a very low value moves the points slowly in
the space. A high elasticity, η, keeps all the nodes extremely close
to each other, while a low value does not induce movement on
far away code words. The best compromise is to use a very low
value of the learning rate coupled with a mid-range elasticity, and
a large number of training epochs. This can ensure a relative good
convergence to a steady set of code words.

One special advantage of the DSOM is that it can be trained
online, i.e., it is not necessary to re-train all the model when new
data arrives: it adapts automatically to new information.

2.2.5.3. Visualization of SOM and DSOM
Most clustering techniques do not guarantee to converge
to a steady immutable solution. Differences in the training
parameters or slight changes in the data can have an important
impact on the final classification. Clustering tools can be used for
statistical analysis, comparisons, data visualization and training
of supervised methods. But it will be practically impossible to
claim the existence of a general objective set of states discovered
only by the use of these basic clustering techniques.

However, SOMs and DSOMs provide an important tool
for the study of the solar wind: the maps are composed of
nodes that share similar properties with its immediate neighbors.
This allows for visual identification of patterns and targeted
statistical analysis.

We used the python package MiniSom (Vettigli, 2013) as the
starting point of our developments. Multiple methods of the
MiniSom have been overloaded to implement the DSOM, and
to use a lattice of hexagonal nodes. All auxiliary procedures used
to calculate inter-nodal distances, node clustering, data-to-node
mapping, and class boundary detection have been implemented
by us. All visualization routines are original and have been
developed using the python library Matplotlib (Hunter, 2007).

Figure 3 shows the basic types of plots that can be generated
using the SOM/DSOM techniques. We present in this figure
the outcome of our model, combining a non-linear AE
transformation of the ACE data set with the unsupervised
classification of the encoded data using the DSOMmethod. Panel
(A) shows a histogram of two components of the feature space
�, with dots marking the position of the code words wi. The
colors of the dots represent their DSOM classification. The red
lines connect a single code word ws with its six closest neighbors.
Panel (B) shows the same information as in the previous panel,
but using a scatter plot colored by the DSOM classification.
This image shows the domain of influence of each one of the
DSOM classes.

Panel (C) shows the hit map of the DSOM. It contains the
lattice nodes pi associated to the code wordswi. They are depicted
as hexagons with sizes representing the number of data points
connected to each node and colored by their DSOM class. The
thickness of the lines between lattice nodes represent the relative
distance to its neighbors in the feature space�. Red lines connect
the node ps, associated to the code word ws in panel (A), to its
closest neighbors.

Figure 3D displays three components of the code words wi

associated to each one of the pi nodes. The node components
have been mapped to the basic colors Red, Green and Blue (RGB)
and combined together to produce the composite color shown in
the figure.

These four representations are only a few examples of the
variety of data that can be represented using SOMs. The most
important aspect of the SOMs is that data is represented in simple
2D lattices where the nodes share properties with their neighbors.
Here we also decided to use hexagonal nodes, connecting 6
equidistant nodes, but other types of representations are also
valid, e.g., square or triangular nodes.

2.2.6. The Full Architecture
The previous sections introduced all the individual pieces that
we use for the present work. Here, we give a global view of
the full model. Figure 4 shows how all the components are
interconnected. At the center of the image is the processed and
normalized original ACE data set. The blue dashed lines show the
unsupervised techniques already presented by Heidrich-Meisner
and Wimmer-Schweingruber (2018), Bloch et al. (2020), and
Roberts et al. (2020). The KPCA step is added to the data
pipelines used in the literature in order to project the data into
a hyper-space where the class boundaries are better defined.

On the right side of the same figure we present our main
approach: we perform first a data encoding using an AE, then
we perform unsupervised classification of the solar wind with
the k-means, BGM and DSOMmethods. After training, the code
words of the DSOM are clustered to group together nodes that
share similar properties. This second level classification is done
using the k-means++ algorithmwith 100 re-initializations (it is in
general recommended to use between 50 and 500 initializations,
searching for a global optimum, as different random runs can
lead only to a local minima). We use the Kneedle method
to automatically select the number of classes that the DSOM
will produce (Satopaa et al., 2011). The BGM and the k-means
clustering techniques are included for comparison.

All the software was implemented in Python using as main
libraries PyTroch (Paszke et al., 2019), Scikit-learn (Pedregosa
et al., 2011),Matplotlib (Hunter, 2007), MiniSom (Vettigli, 2013),
Pandas (McKinney, 2010), and NumPy (Oliphant, 2015).

2.2.6.1. Feature selection
Table 2 lists all the features used in our model. A detailed
description of each feature can be found in the ACE Level
2 documentation. To spread the data over a larger range of
values in each component, we have used the logarithm of all the
quantities, except of those marked with an asterisk in the table.

Features 11–15 contain an additional suffix, corresponding to
a statistical operation performed on the corresponding feature.
In our model we only include range operations, but we have
provided our software with the ability to calculate also the mean,
the standard deviation and the auto-correlation of quantities over
a window of time of 6 h. This window allows to capture temporal
(spatial) fluctuations in some of the solar wind parameters.

On the lower part ofTable 2we present the range of dates used
for the model. The same table also contains the hyper-parameters
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FIGURE 3 | Visualization of the Self-Organizing Maps. (A) Histogram with the normalized density of data points superposed by the code words of the DSOM,

projected on two components of the latent AE space. A single node is connected to its closest neighbors by red lines. (B) Scatter plot of all data points, colored by

the DSOM class. (C) Hit map: the size of the hexagon corresponds to the number of data points associated to the map node, and the color is the corresponding

DSOM class. Black lines between nodes represent their relative distance. Red lines connect the nodes similarly highlighted in (A). (D) Map of the nodes colored by

three of their components, combined as a single RGB color. White lines mark the boundaries between DSOM classes.

FIGURE 4 | General overview of the pipelines tested in this work. Starting from the center, the ACE data set is processed and normalized. Blue dashed lines show the

work done in previous publications by different authors. Black lines show how data in this work is first transformed and then classified using multiple methods. The

original techniques presented in this paper are highlighted in red.
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selected to run the two models. The number of neurons per layer
in the encoding half of the neural network is listed in the table.

2.2.6.2. Autoencoder architecture
We use a basic, fully connected feed-forward neural network for
the encoding-decoding process. The neural network is symmetric
in size but the weights of the encoder,W, and the decoder,W′, are
not synchronized (see Equations 11, 12). Each layer is composed
of a linear regressor, followed by a GELU activation function. The
output layer of the network contains a linear regressor followed
by a sigmoid activation function. The AE has been coded in
python using the PyTorch framework (Paszke et al., 2019).

The final architecture of the AE and its hyper-parameters have
been optimized automatically using the Optuna library (Akiba
et al., 2019). We instructed this Hyper-Parameter Optimization
(HPO) to select the optimal values for the following parameters,
given the corresponding constraints:

• Number of layers: an integer between 2 and 6.
• Number of neurons per layer: it must be larger than 3 and

smaller than the number of neurons in the previous encoder
layer.

• The neural network optimizer: selected among Adam,
Stochastic Gradient Descent, and RMSprop.

• The learning rate: a float value between 10−5 and 10−1.

The automatic HPO is based on a technique called Tree-
structured Parzen Estimator (TPE) (Bergstra et al., 2013), which
uses Bayesian Optimization to minimize a target function, H,
provided by the user. We use the test loss of the AE as target
function to be minimized.

The HPO performs a total of one thousand (1,000) different
trials. However, to accelerate the optimization process, we built a
smaller complementary data set. To avoid over-fitting on a sub-
set of the original data we used the k-means algorithm to produce
a representative sample ofm′ = 4

√
m data points. This allows to

explore a much broader set of hyperparameters in a short period
of time. This artificial data set is then discarded and the AE is
trained on the real data set.

TheHPO selected the Adam optimizer (Kingma and Ba, 2014)
for the gradient descent with a learning rate of 0.042. The total
number of layers selected is 2, and the number of nodes in the
bottleneck is 10. The loss function is the Mean Squared Error
(MSE). We train the network for 500 epochs, after which no
additional improvement in the loss function is observed. The
full data set was randomly divided 50/50% between training and
testing sets. We track the evolution of both data sets during
training. We did not observe any variance or bias error.

The final architecture is trained using the full data set for 500
epochs. Figure 5 shows the distribution of data in the original
feature space, panel (A), and in the AE latent space, panel (B). The
data in the original space contains extreme data points far from
the mean value, and most features present a normal distribution.
The combination of these two properties makes it difficult for
any unsupervised clustering technique to separate points and
accurately categorize different kinds of solar wind.

Panel (C) shows the error in the encoding-decoding procedure
of the AE. It shows a histogram of the relative error, Er = X̂/X−

1, observed between the input data, X, and the decoded values,
X̂. A normal distribution function has been fitted to the values
of the histogram. It shows that the relative error is centered near
zero and its variance is around 1%.

2.2.6.3. Selection of parameters for the DSOM
In this manuscript we have introduced the use of the DSOMs for
the classification of solar wind data. This technique requires the
selection of four main Hyper-Parameters (HPs): the size of the
lattice, (Lx × Ly), the constant learning rate, ǫ, and the elasticity,
η. These last two parameters where chosen manually, while
the lattice size was automatically selected by Hyper-Parameter
Optimization (HPO) using Optuna (Akiba et al., 2019).

For the selection of the number of nodes in the lattice
we propose the use of the objective function, H, described in
Equation (22):

H
(

σ , η, Lx, Ly
)

=
QE(σ , η, Lx, Ly)

Q0
+ α Lx

mmax
+ β

Ly

nmax

+ γ
LxLy

max (mmax, nmax)
(22)

where QE is the quantization error at the end of the training, Q0

is a reference quantization error before training, Lx and Ly are the
number of lattice nodes in each dimension, and mmax and nmax

are the given maximum number of possible nodes. The weight
factors α, β , and γ are used to impose restrictions on each term.
We have fixed their value to α = β = 0.08 and γ = 0.6. When
a large number of nodes is available smaller values of QE are
automatically obtained because the mean distance from the data
set entries to the code words is reduced. The second and third
terms on the RHS ofH leads the optimizer to reduce the number
of nodes in the SOM. The squaring term γ LxLy forces the map to
be as squared as possible.

After a total of 500 trial runs of the model using different
HPs, the optimizer selected the parameters presented in the lower
section of Table 2. The optimization was accelerated using the
same technique as in the optimization of the AE: we generated
a reduced number of points using the k-means algorithm, with a
total number of entries equal to one twentieth the size of the full
data set,m′ = 1

20m.
The two remaining parameters of the DSOM, the elasticity

η = 3.0 and the learning rate ǫ = 0.005, have been manually
selected. These two values control the speed at which the code
words move toward the data entries, and the attraction between
neighboring code words. It has been shown by Rougier and
Boniface (2011) that high values of the elasticity, η, lead to tightly
packed code words, while low values lead to loose connections.
The elasticity takes in general values between 1 and 10. On the
other hand, the learning rate indicates to the code words how
fast they should move toward new incoming data. Very small
learning rates could lead to very slow convergence to a solution,
while very large values might produce code words that jump from
value to value without converging to a global solution. The value
of the learning rate can be set somewhere between 0.001 and 0.9.

Figure 6 shows how the elasticity and the learning rate can
affect the convergence of the DSOM. In this figure we evaluate
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FIGURE 5 | Violin plots showing the data distribution in (A) the original normalized data set, and (B) the AE transformed data set. (C) Shows a histogram of the

relative error produced by the lossy compression-decompression procedure in the AE. The error is close to zero, with a variance of <1%.

the effect of using different values of η and ǫ. Three different
graphs are used to understand the evolution of the training and
its convergence to a stable solution. The first row shows how the
code words move away from their original position during the
training: as the iterations advance the code words move until
they find a stable location. It is clear that lower values of ǫ and
η, as presented in the left panel of the first row, lead to very
long convergence times. At the other extreme, very high values of
the two parameters produce strong movements with a compact
group of code words, leading to a non-converging solution.

In the second row of the same figure we show the distance
traveled by the code words at each iteration of the training. In
the best case scenario this distance is large at the beginning of
the training and converges toward zero as the iterations pass. The
third panel of this row shows how large values of η and ǫ produce
solutions of the DSOM that do not converge.

The third row of Figure 6 shows the evolution of the
quantization error (Equation 19). This value explains the
compactness of the data points around the code words. Scattered
points will show large QE, while dense clouds of points gathered
around the code words will show low QE values. Once again in
this last row we see that there is a compromise between a slow
convergence with small values of ǫ, and large values of the two
parameters that can lead to unstable solutions.

This figure also shows that, even if the DSOM is a dynamic
technique that does not use a decay of the learning rate with
time, it is a method that converges to a steady solution, if the
parameters are properly selected.

2.2.6.4. Budget
Machine learning models require fine tuning of different
parameters, from the selection and testing of multiple methods,
to the parameterization of the final architecture. Dodge et al.
(2019) suggests that every publication inmachine learning should
include a section on the budget used for the development and
training of the method. The budget is the amount of resources
used in the data processing, the selection of the model hyper-
parameters (HP), and its training.

The most time-consuming task in the present work has been
the data preparation, the model setup and debugging and the
writing of the SOM visualization routines. All the techniques
described in the previous sections have been coded in python
and are freely accessible in the repositories listed in the Data
Availability Statement. We estimate the effort to bring this work
from scratch to a total of two personsmonth. Of these, one person
week was dedicated to the manual testing an selection of different
model HPs (autoencoder architecture, feature selection, learning
rates, initialization methods, number of epochs for training,
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FIGURE 6 | Effects of the elasticity, η, and the learning rate, ǫ, on the training of the DSOM. (Top row) Mean value of the difference between the position of the code

words at each iteration,W, and their original position, 〈|W0 −W|〉. (Middle row) Moving average (1,000 iterations) of the mean distance traveled by the code words in

one iteration, 〈1W〉1000. (Bottom row) Quantization error per iteration, QE .

selection of data compression method, size of the time windows,
etc.).

All classic clustering techniques presented in section 2.2.4
require only a few lines of code and can be trained in minutes
on a mid-range workstation (e.g., Dell Precision T5600, featuring
two Intel(R) Xeon(R) CPU E5-2643 0 @ 3.30GHz with four cores
and eight threads each). The most time consuming tasks of our
models are the training of the autoencoder (5% of the total run

time), the multiple passages of the clustering algorithms (15% of
the run time), and the optimization of the hyper-parameters (80%
of the run time). The training of the DSOM is performed in less
than a minute.

For reference, the total run-time of our model is 30 min. The
python scrips used do not contain any particular acceleration
(e.g., using GPUs) or optimizations (e.g., using Numba), so there
is large room for improvement of the computational efficiency.
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3. RESULTS AND COMPARISONS

3.1. Interpretation of the DSOM Plots
When the DSOM method converges to a solution, each one
of the code words is a representative of their N-dimensional
neighborhood. We perform then a k-means clustering of the
code words and apply the Kneedle method (Satopaa et al., 2011),
presented in section 2.2.5.1, to select the final number of classes.
Here, the automatic procedure selects a total of six classes,
numbered from 0 to 5. The Class Map on the first panel of
Figure 7 shows that all nodes are organized in continuous groups.

The weights of the code words can be decoded and scaled to
obtain the corresponding physical properties of the associated
solar wind. These physical quantities are plotted in Figure 7 for
each one of the solar wind features.

Black continuous lines in the maps mark the boundary
between different DSOM classes. All of the maps show
uninterrupted smooth transitions between low and high values,
without sudden jumps or incoherent color changes. Inside
DSOM classes solar wind properties can present variations. This
is an expected consequence of projecting 15 dimensions in a
2D lattice.

The most obvious class to identify is the DSOM class 0, with
clear indications of coronal hole origin. It is characterized by very
low values of the O7+/ O6+ and C6+/ O5+ ratios, associated
with plasma originating from open magnetic field lines (Zhao
et al., 2009; Stakhiv et al., 2016), high wind speed, low proton
density, high absolute values of σc (a sign of Alfvenicity), high
proton entropy, high proton temperature and moderately high
values of Alfven speed [associate by Xu and Borovsky (2015) with
coronal holes].

The proton density has a very broad range of values for class 1.
A close examination of the map of cross-helicity, σc, shows that
this class also contains Alfvénic solar wind with both polarities.
Class 1 also showcases high proton temperatures, high solar wind
speeds, but average oxygen and carbon ionization ratio, and
average iron charge. All these observations point toward solar
wind originated at the boundary of coronal holes (Zhao et al.,
2017).

Class 5 can be associated to transient event, such as ICME and
ejecta. It presents the very high O7+/ O6+ ratio values that Zhao
et al. (2009), Xu and Borovsky (2015), and Stakhiv et al. (2016)
associate to CME plasma, and the low proton temperature values
usually found in ICMEs. It is also characterized by the high (but,
quite surprisingly, lower than for class 0) solar wind velocity,
σc ∼ 0 (Roberts et al., 2020), the high values of Alfvén speed
which are usually associated to explosive transient activity (Xu
and Borovsky, 2015).

Class 4 has similar properties as class 5 and can be mainly
composed of transient events, but it also contains more Alfvénic
plasma, and very high carbon charge state ratios, C6+/C5+.
Fluctuations in this class are slightly less significant than the ones
observed in class 5, except for jumps in the normal magnetic field,
range Bn. These can point toward a class that contains magnetic
clouds or Sector Boundary Crossing (SBC) events. Classes 4
and 5, identified as transients, remain rare, as clearly shown in
Figure 3C.

At this point is important to remember that a different set
of initial conditions or a different number of map nodes could
lead to a slightly different repartition of the data, or to a different
number of classes. However, points with similar properties will
always remain topologically close and the interpretation of a
different set of DSOM classes will lead to similar results. This
is not necessarily the case with other unsupervised methods,
like k-means, as the topological organization of the data is not
maintained, so different runs can produce different results for
which previous interpretations can not be re-cycled.

Class 2 and 3 are composed of slow, dense solar wind, the
kind of wind that Zhao et al. (2017) associates to the Quiet Sun
and that Xu and Borovsky (2015) associates to either Streamer
Belt (SB) or Sector Reversal (SR) region plasma. As expected for
the slow wind, the cross helicity is low, the proton temperature
intermediate between the low values associated to ICMEs and
the higher values observed in the fast wind, the proton entropy
and the Alfvén speed are low (Xu and Borovsky, 2015). The
high O7+/O6+ and C6+/C5+ ratios (lower only to the values
associates to class mappable to transient events, class 4 and 5),
point to plasma originating in closed field lines (Zhao et al., 2009;
Stakhiv et al., 2016). Of the two classes, class 2 is characterized
by lower wind speed, higher density, lower proton temperature,
lower entropy.

In summary we can group our classes on three major
categories: CH wind (classes 0 and 1, colored in red), quiet
or transitional wind (classes 2 and 3, colored in green), and
transients (classes 4 and 5, colored in blue).

3.2. Verification of the DSOM Classes
In addition to the interpretation of the maps presented in the
previous section, we have extracted histograms of the occurrence
frequency of O7+/O6+ ratio (Figure 8) and proton speed, Vsw

(Figure 9). The panels in the figures contain the histograms for
six (6) different categorizations: k-means (AE), k-means (KPCA),
BGM (AE), BGM (KPCA), DSOM, and the X15 classification.
All the histograms have been normalized row by row (class
by class), following the work done by Zhao et al. (2017). This
representation of the data is inspired by Figure 5 of that paper,
where the authors showed an important overlapping among
different solar wind classes, and a bi-modal velocity distribution
for coronal hole wind including an important population of
slow wind.

The assignment of class numbers by the clustering algorithms
is random. We have sorted the classes so they present an
ascending value of the O7+/O6+ ratio in Figure 8. It has been
shown that solar wind originated in Coronal Holes present very
low values of the O7+/O6+, while at the other extreme transient
events present very highO7+/O6+ ratios (Zhao et al., 2009, 2017;
Stakhiv et al., 2016). Figure 8 confirms the class identification we
presented in the previous section.

von Steiger and Zurbuchen (2015) and Bloch et al. (2020)
examine the O7+/O6+ ratio in Ulysses data, which include
abundant measures of wind originating from the polar CHs.
Our data is composed of ACE observations from the ecliptic
plane. For this reason, in all different classifications in Figure 8,
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FIGURE 7 | Map colored by the DSOM classes (top left panel), and composition of the solar wind associated to each one of the map nodes. The black line marks the

boundaries between DSOM classes.

including the X15 empirical categorization, class 0 does not reach
log10 O

7+/O6+ ≈ −2, where the peak of points is observed in
publications using Ulysses data.

In our data set, the majority of points can be mapped to
Quiet Sun (QS), conditions, i.e., slow solar wind. Even in these
conditions, the DSOM method is able to sample and distribute
enough data to each one of the classes. The BGM method
applied to Kernel PCA transformed data also provide a good
sample of the different classes, in particular for transient solar
wind (classes 4 and 5). The X15 classification was designed with
clear boundaries in O7+/O6+, for this reason the differences
among the four classes is clear in the histograms. However, this
observation contradicts the foot point back tracing performed
by Zhao et al. (2017): X15 shows almost no overlap in the
distribution functions between the different classes, while the
back tracing shows important overlaps. We express caution in
the use of this classification to train any type of supervised
machine learning technique, or in the evaluation of the accuracy
of unsupervised techniques.

Figure 9 shows how velocity is distributed among the different
classes for each unsupervised classification method, and for the
X15 categories. Zhao et al. (2017) remarks that the different
classes are more difficult to identify using the solar wind speed

histograms. We verify in these plots that three conditions
are satisfied: (1) the classes we associate to the QS (class
2 and 3 in the DSOM classification) are associated to low
velocity regions (Neugebauer et al., 2002), (2) high oxygen
state ratios are associated with low solar wind speeds, and
(3) CH wind has a highly spread velocity distribution, with
two possible peaks around 400 and 600 km/s (Zhao et al.,
2017).

The fact that class 0 and 1, that we associate to wind
of CH origin, contains slow wind data points is particularly
significant. D’Amicis and Bruno (2015) has provided proof of
the presence, at 1 AU, of highly Alfvénic slow wind originating
from the boundaries of coronal holes. This slow, Alfvénic wind
has the same composition signature and high cross helicity that
characterized the classic fast Alfvénic wind of CH origin, but
presents lower speed and lower proton temperature. This way of
visualizing our results seems to suggest that slow Alfvénic wind
is classified together with fast Alfvénic wind in the classes that we
associate to CH origin.

Figure 9 shows that CHwind in the k-means and DSOMplots
present a broad range of speeds, with a bimodal distribution.
The BGM (KPCA) method separates these two populations in
two different classes (0 and 1). the k-means (KPCA) method
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FIGURE 8 | Histograms of the distribution of log10 O
7+/O6+ ratio on each one of the classes obtained by multiple classification methods and by the X15 classification.

differentiates the fast solar wind, in the first two classes, from the
slow wind in the remaining classes.

Balancing the results from Figures 8, 9 we conclude that the
BGM (KPCA) and the DSOM are the techniques that approach
the most the direct observations of the solar wind origins
obtained by Zhao et al. (2017). The X15 model creates a very
sharp separation of solar wind types, with fast winds clearly
segregated in class 0, slow winds in classes 1 and 2, and transients
in class 3. The X15 model does not recognize that plasma of CH
origin also contains an important population of slow winds.

3.3. Hit Maps of Empirical Classifications
Another advantage of the SOM/DSOM method is that it can be
used to visualize additional hidden statistics. Figure 10 shows
what nodes are activated by the Z09 and X15 classes. To perform
this analysis, instead of using the full data set, we extract three
subsets corresponding to the entries categorized as CH, ICME,
and NCH wind in the Z09, and CH, SB, SR, and ICME in the
X15 catalogs. Each one of these three (four) subsets is passed
through the DSOMmodel and we observe how each one activates
the nodes.

We see that CH wind, in column 1 of the figure, activates very
similar nodes for both classifications, in classes 0 and 1. Most
of the hits are located on nodes where the absolute value of the

cross-helicity σc is the largest, i.e., in regions of open field lines
associated with coronal holes.

NCH wind from the Z09 classification is distributed over
classes 2, 3, and 4, but also includes a node from class 1
characterized by an extremely negative cross-helicity. The same
zone is activated by the SB class from X15. The two affected
nodes also feature a very low Texp/Tp. The X15 model splits
solar wind points using hyperplanes in a three-dimensional space
composed by Sp, O

7+/O6+, and Texp/Tp, None of those planes
cuts the points in the Texp/Tp dimension (Xu and Borovsky,
2015). However, in our maps this dimension seems to play an
important role in the separation between quiet and CH winds.

The X15 Sector Reversal (SR) class activates nodes at the
boundaries of classes 1, 2, and 3. These nodes separate the quiet
sun from the coronal hole wind, and coronal holes to transients.
It also contains a large population of slow quiet solar wind.

Finally transients, in both the Z09 and X15 categorizations, are
associated to our class 4 and 5. However, a large portion of the
X15 transients is associated to class 3 of the DSOM, particularly
in nodes showing low proton temperatures and specific entropy
Sp, characteristics of ICMEs.

Figure 10 shows also that, on average, the values of the
O7+/O6+ ratio do not change radically among the nodes, except
for small variations in the CH and the ICME classes of X15.
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FIGURE 9 | Histograms of the distribution of solar wind speed, Vsw, on each one of the classes obtained by multiple classification methods and by the X15

classification.

FIGURE 10 | DSOM plots showing the activation of nodes for the different classes of the Z09 and X15 classifications. All maps are colored by the log10 O
7+/O6+

ratio, and the size of the hexagon represents the frequency of points, or number of hits.

3.4. Quantitative Comparison With
Empirical Classifications
We have included a Matching Matrix in Table 3 showing
the frequency of occurrences of our model with respect
to the Z09 and X15 classifications. Bold numbers in
the table mark the highest common frequency and
regular fonts mark the second highest frequency for

each one of the columns. Matching matrices must not
be confused with confusion matrices, as the later imply

that there is a ground truth. Matching matrices are used
in unsupervised learning to compare the frequency of

occurrence of classes between models, so we can not
perform additional metrics, like accuracy, precision, sensitivity,

or specificity.
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TABLE 3 | Matching matrix comparing the DSOM, X15, and Z09 classifications.

DSOM Class Z09

0 1 2 3 4 5 CH NCH TR

X
1
5

CH 7,727 3,994 3,330 125 502 47 14,273 993 459

SB 7,423 6,295 7,194 916 950 138 12,904 9,244 768

SR 3,233 392 1,404 584 434 157 877 4,747 580

TR 1,263 575 387 2,373 403 1,362 1,343 3,011 2,009

D
S
O
M

C
la
ss 0 13,357 5,966 323

1 9,040 2,213 3

2 6,173 5,789 353

3 637 2,848 513

4 170 987 1,132

5 20 192 1,492

Values in bold (underline) font represent the highest (second highest) frequency for each

column (row) in the top (bottom) half of the table.

In this matrix we see that CH and SB categories from the X15
classification are mostly associated with classes 0, 1, 2, and 4 in
the DSOM model, while TR winds are associated with classes 3
and 5. No particular class is clearly associated with SR winds, but
the highest frequency is observed for class 0.

CH in the Z09 classification are accurately associated with
classes 0 and 1, but a big part of the NCH wind is also grouped in
class 0. Transients are correctly distributed among classes 4 and
5 of the DSOM.

We highlight that the X15 and Z09 models, the two
classifications most used for the verification of machine learning
results (see Camporeale et al., 2017; Li et al., 2020), are not fully
compatible among themselves. A large number of CH winds
from the Z09 classification is associated with SB winds in the
X15 classification, and a considerable number of transients are
cataloged as sector boundary crossings (SB).

3.5. Time Series Comparisons
A complementary method to compare the different classification
techniques is to visually inspect windows of time and check, with
the help of a human expert, that the time series are in agreement
with the previous analysis. Figure 11 shows, in two columns,
two windows of time of 4 months. The left column contains a
high solar activity period, from May 2003 to September 2003,
and the right column contains a period of low solar activity,
between January 2008 and May 2008. Each one of the eight (8)
rows contains a plot of the solar wind speed colored by a different
classification method, from empirical models (Z09, vS15, and
X15) to unsupervised methods (k-means, k-means, BGM, and
DSOM). The colors of the empirical methods in the time series
correspond to the labels assigned in Table 1, and the colors of
the models were all assigned by manually ordering the classes
following the frequency log10(O

7+/O6+), from low values (low
category number) to high values (high category number).

In the same figure vertical gray zones correspond to
Richardson and Cane ICME catalog entries (Richardson and
Cane, 2012), and vertical lines to entries in the UNH and
CfA catalogs.

It is clear that among the empirical models, the vS15, based on
observations by the Ulysses mission, is the most restrictive in the
selection of CH origin winds, however during the plotted quiet
time in the right column, which corresponds to the declining
phase of the solar cycle, a significant part of the solar wind
originates in coronal holes, and in fact High Speed Stream and
Corotating Interaction regions, associated to wind of CH origin,
are the main driver of geomagnetic activity during the declining
phase of the cycle (Tsurutani et al., 2006; Innocenti et al., 2011).
During both solar activity windows the Z09 and X15 models
assign an important number of observations to coronal holes.
von Steiger and Zurbuchen (2015) shows that the threshold used
in the Z09 classification to identify coronal holes is not accurate
and can misclassify NCH as CH. Both models accurately identify
transients in the data. Quiet solar wind is more clearly visible
during the low solar activity window in the X15 model.

k-means (KPCA) and BGM (KPCA) correctly classify CH
origin winds (classes 0 and 1). A clear transition between class 1,
CH wind, and class 3 can be observed on both panels. Transients
are also well-captured with classes 4 and 5. On the other hand,
classifications based on the k-means (AE) and BGM (AE), do
not show high accuracy in these two windows of time, but are
able to detect transients. These two methods show difficulties in
discerning QS winds from CH solar winds.

The DSOMmodel shows good performances. The two classes
associated with CH origin wind, classes 0 and 1, are more
restrictive than the Z09 and X15 classes. Classes 4 and 5
distinguish between two different types of transients. ICMEs in
these time windows are mainly associated with class 5, except
for transients observed around 2003-05-20 and 2003-06-15. The
model also detects a very slow transient around 2003-07-10.
The 27 days solar period is also evident on the oscillations of
the solar wind speed and the periodic nature of the solar wind
types. In the low solar activity window the solar wind is more
homogeneous and shows mainly CH and QS origin winds, as
expected (Tsurutani et al., 2006).

Different classification methods lead to different classes with
different properties. Roberts et al. (2020) performed detailed
descriptions of the categorized solar wind classes based on the
mean values observed in each subset of points. Zhao et al. (2017)
shows that it is important to look at the frequency distribution
and not only the mean. Our model shows that some features can
present very large distributions inside a single class, evenmultiple
peaks, as is the case of the solar wind speed for the CH classes.

We will perform further refinements of the model and its
interpretation in a future work. These preliminary results show
the great potential of the techniques introduced in this paper.
DSOMs show the variability of solar wind and how it can be
visually characterized. The DSOM is a helpful guide in the study
of the different types of solar wind, but is not necessarily an
objective, unbiased and final classificationmethod. In our current
understanding, the main factor that determines classification
results is the choice of the solar wind parameters used in
the DSOM training. Choosing parameters that, according to
previous studies and our physical understanding of the wind,
can discriminate between specific wind types can guide the
classification results. On the other hand, the possibility exists that

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 18 September 2020 | Volume 7 | Article 553207

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Amaya et al. Visualizing and Interpreting Solar Wind Classifications

FIGURE 11 | Solar wind speed observed by ACE in two windows of time: during high solar activity (left column) and during low solar activity (right column). Each row

corresponds to a different solar wind classification method. Vertical gray zones and lines correspond to entries in the Richardson and Cane, UNH, and CfA catalogs

described in section 2.1.3.

an unsupervised classificationmethods, such as the one used here
will highlight the presence of solar wind types that could warrant
future physical investigation. DSOMs open the possibility for a
fast visual characterization of large and complex data sets.

4. DISCUSSION

In this paper we show how the categorization of solar wind can
be informed by classic unsupervised clustering methods and Self-
OrganizingMaps (SOM).We demonstrate that a single technique
used in isolation can be misleading in the interpretation of
automatic classifications.We show that it is important to examine
the SOM lattices, in conjunction with solar wind composition
and velocity distributions, and time series plots. Thanks to
these tools we can differentiate classes associated with known
heliospheric events.

We are convinced that basic unsupervised clustering
techniques will have difficulties in finding characteristic solar
wind classes when they are applied to unprocessed data. A

combination of feature engineering, non-linear transformations
and SOM training leads to a more appropriate segmentation of
the data points.

The classification of the solar wind also depends on the
objectives that want to be attained: if the goal is to classify the
solar wind to study its origin on the Sun, features related to solar
activity must be included in the model; however, if the goal is
to identify geoeffectiveness, other parameters should be added to
the list of features, including geomagnetic indices.

In this work we have presented a first test of the capabilities
of the SOMs for the analysis of data from a full solar cycle.
Due to the extent of the work done, in this paper we introduce
all the methods and techniques developed, but we leave for a
future publication a more refined selection of all the model
parameters, and the corresponding interpretation of the solar
wind classification.

Finally, we advocate for the creation of a catalog of foot
point locations for every solar mission, that connect solar wind
observations to points on the solar surface. Due to the uncertainty
of on the exact foot point, such catalog should be composed of
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a set of probabilities for each possible solar origin. This ground
truth will vastly improve the efficacy of our classification models,
which in turn can be used to reduce the initial uncertainties of
the catalog.

All the tools and the techniques presented here can be applied
to any other data set consisting of large amounts of points with a
fixed number of properties. All the software and the data used in
this work are freely available for reproduction and improvement
of the results presented above.
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