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Using our non-local and time-dependent theory of convection and a fixed set of convective
parameters (C1, C2/C1, C3) � (0.70, 0.50, 3.0) calibrated against the Sun, the linear
non-adiabatic oscillations for evolutionary models with masses 1–20 M⊙ are calculated.
The results show that almost all the classical instability strips can be reproduced. The
theoretical instability strips of δ Scuti and c Doradusvariables agree well with Kepler
spacecraft observations. There is no essential difference in the excitation mechanism
for δ Scuti and c Doradus stars. They are excited by the combined effects of the radiative
κ-mechanism and coupling between convection and oscillations. They represent two
subgroups of a broader type of δ Scuti and c Doradus stars, located in the lower part of the
Cepheid instability strip. δ Scuti is the p-mode subgroup and c Doradus is the g-mode
subgroup. The luminous variable red giants observed by MACHO and OGLE are low-order
radial pulsators among low-mass red giant and asymptotic giant branch stars. The
excitation and damping mechanism of oscillations for low-temperature stars is studied
in detail. Convective flux and turbulent viscosity are consistent damping mechanisms. The
damping effect of the convective enthalpy flux is inversely proportional to the frequency of
the modes, so it plays an important role in stabilizing the low-order modes and defining the
red edge of the Cepheid instability strip. The damping effect of turbulent viscosity reaches
its maximum at 3ωτc/16 ∼ 1, where τc is the dynamic time scale of turbulent convection and
ω is the angular frequency of the modes. Turbulent viscosity is the main damping
mechanism for stabilizing the high-order modes of low-temperature variables. The
turbulent pressure is, in general, an excitation mechanism; it reaches maximum at
3ωτc/4 ∼ 1, and it plays an important role for the excitation of red variables. Convection
is not, in fact, a pure damping effect for stellar oscillations. The relative contributions of
turbulent pressure, turbulent viscosity, and convective enthalpy flux for excitation and
damping effects change with stellar parameters (mass, luminosity, effective temperature)
and with the radial order and spherical harmonic degree of the oscillation mode; therefore,
the combined effect of convection is sometimes damping, and sometimes the excitation of
oscillations. Our research shows that, for low-luminosity red giants, the low-order modes
are pulsationally stable, while the intermediate- and high-order modes are unstable.
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Toward higher luminosity, the range of unstable modes shifts gradually toward the lower
order. All of the intermediate- and high-order modes become stable, and a few low-order
modes become unstable for high-luminosity red giants. They show the typical pulsational
characteristics of Mira-like variables. The variable red giants are, at least for the high-
luminosity RGs, self-excited. For red giants, the frequency of the maximally unstable
modes predicted by our theory is similar to that given by the semi-empirical scaling relation.

Keywords: variables, interior-stars, convection-stars, oscillations-stars, evolution-stars

INTRODUCTION

Convection occurs within most stars. Convection brings
about the transport and exchange of energy and
momentum, and the mixing of matter in the stellar
interior. Therefore, it strongly influences the structure,
evolution, and pulsational stability of stars. Unfortunately,
up to now no perfect convection theory has been accepted by
the community. The most popularly applied convection
theory is still the mixing-length theory (MLT, Bohm-
Vitense, 1958). The most obvious advantage of MLT is its
straightforwardness in physical picture and simplicity of use.
However, the MLT is not a dynamic theory following the
hydrodynamic equations and turbulence theory, but is a
phenomenological theory based on a simple analogy of
turbulence with the kinetic theory of gas molecules. As
such, it cannot give an exact description for turbulent
convection, particularly for non-local and time-dependent
convection. We developed a non-local and time-dependent
theory of convection (Xiong et al., 1980; Xiong, 1981; Xiong,
1989; Xiong et al., 1997; Deng et al., 2006) based on
hydrodynamic equations and turbulence theory in order to
improve the treatment of overshooting in the calculation of
stellar structure and evolution, and the treatment of coupling
between convection and oscillations in the calculations of
stellar oscillations. In Part Ⅰ of this article, a non-local and
time-dependent theory of convection developed by us was
briefly described, and its applications in theoretical
calculations of the structure of the solar convection zone,
of massive star evolution, and of the lithium depletion in the
atmospheres of late-type dwarfs were presented. Here in Part
Ⅱ, we illustrate its applications in the calculations of stellar
oscillations. These applications are not only the primary
motivation of our research on convective theory, but also
the means for testing convection theory.

Stellar pulsation theory is being perfected thanks to the
continuous work of generations of researchers for over
7 decades. Among others, we name four classical books by
Ledoux and Walreven (1958), Cox (1980), Unno et al. (1989),
and Aerts et al. (2011). They review the major research completed
during that period of time. The remaining problems in stellar
pulsation theory are almost all related to convection or non-linear
theory. This paper is limited to the subjects of turbulent
convection and the pulsational stability of stars.

Convection theory is still the most uncertain factor which
prevents a clear understanding of oscillations in low-

temperature stars. For low-temperature stars, dynamic
coupling between convection and oscillations (through the
exchange of momentum, i.e., turbulent pressure and
turbulent viscosity) has at least as much, or possibly a
larger effect than thermodynamic coupling (through the
exchange of energy, i.e., convective enthalpy flux) on
pulsational stability. The local description of convection
has to be abandoned when turbulent pressure is taken
into account in the equations of stellar structure,
otherwise numerical calculations become unstable (Xiong,
1980). Our non-local and time-dependent theory of
convection (Xiong, 1980; Xiong, 1981; Xiong, 1989; Xiong
et al., 1997; Deng et al., 2006) is based on hydrodynamic
equations and turbulence theory (Hinze, 1975); therefore, it
has a more solid foundation in hydrodynamics, and provides
a more precise description for the dynamic behavior of
turbulent convection. Our formulation has the following
advantages in the calculations of stellar oscillations:

(1) Our theory can be used for the treatment of both the
thermodynamic (through the turbulent enthalpy flux) and
dynamic coupling (through turbulent Reynolds stress,
i.e., turbulent pressure and turbulent viscosity) between
convection and oscillations in a self-consistent way.

(2) Our theory applies not only to radial oscillations but also to
non-radial oscillations of stars in a self-consistent way,
because our radiation-hydrodynamic equations are written
in a general tensor format, which can deal not only with the
exchange of energy and momentum in the radial direction,
but also in the horizontal direction.

(3) In most calculations of non-adiabatic oscillations, the
problematic rapidly oscillatory solutions are due to the local
treatment method (Keeley, 1977; Baker and Gough, 1979;
Gonczi and Osaki, 1980). Our time-dependent convection
theory is non-local, so they have been effectively suppressed,
and even completely removed (Xiong et al., 1998b; see also
Figures 1–3 in the present paper).

(4) The pulsation stability is insensitive to convective parameters
used. It is almost independent of the choice of convective
parameters within a rather wide range (Xiong et al., 2015).

Linearizing our system of radiation-hydrodynamic equations
for the calculation of stellar structure and oscillations in Eqs. (2),
(3′), (4′), (5) and Eqs. 18-21 in Part I, we produce the non-
adiabatic radial and non-radial pulsation equations. They are
more complex than other theories, they are a system of
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differential equations of orders 10 and 16, respectively. For the
adiabatic oscillation, the equations of energy conservation in Eq.
(4′), and auto-correlation and cross-correlation for turbulent
velocity and temperature in Eqs. 18-21 can be removed, the
adiabatic radial and non-radial pulsation equations will be
simplified to orders 2 and 6. Therefore, the complexity and

all the advantages mentioned above are due to our more
accurate treatment of the convection problem. This should be
the price for a more accurate convection theory, and it is worth
it. The wave-scattering by inhomogeneous turbulent medium
was neglected in the pulsation equations. Further investigation
is needed.

FIGURE 1 | Cumulative work (W) and its gas pressure (Wpg), turbulent pressure (WPt), and turbulent viscosity (Wvis) components as functions of log T for a low-
luminosity red giant. W � Wpg +Wpt + Wvis (see Eqs. 5–8). (A) P0-mode; (B) P9-mode.

FIGURE 2 | The same as Figure 1, but for a high-luminosity red giant.
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In Theoretical Instability Strips, we present our theoretical
instability strips in the H-R diagram. Recent progress in research
of δ Scuti and c Doradus stars and luminous red variables is
illustrated, respectively, in δ Scuti and γ Doradus Stars and
Luminous Variable Red Giants. In Cumulative Work Analysis
for the Excitation and Damping Mechanism, an analysis of the
cumulative work for excitation and damping mechanisms is
described in detail. In Excitation Mechanism for Variable Red
Giants, the excitation mechanism of red variables is studied. A
summary and discussion are found in Summary and Discussion.

THEORETICAL INSTABILITY STRIPS

By using our non-local and time-dependent theory of convection
and a fixed set of convective parameters (C1, C2/C1 , C3) �
(0.70, 0.50, 3.0) calibrated against the Sun (Deng et al., 2006),
we calculated the radial and non-radial non-adiabatic oscillations
of evolutionary models with masses 1–20 M⊙ and the solar
abundance (Y � 0.26, Z � 0.017). In part Ⅱ, all the
evolutionary tracks (L and Te) are taken from Padova Tables
by Bertelli et al. (2008, 2009). First, we calculated non-local
convection envelope models along the Padova evolutionary
tracks (M, L, Te, Y, Z), and then calculated non-adiabatic
oscillations of the non-local convection envelope models. The
surface boundary was located at optical depth τ0 � 10− 3, and the
bottom boundary was set deep enough for pulsational
calculations, i.e., where the bottom temperature Tb > 6 × 106K
or the fractional radius rb/R0 < 0.01 is reached. A slightly
modified version (Deng and Xiong, 2001) of the MHD

equation of state (Däppen et al., 1988; Hummer and Mihalas,
1988; Mihalas et al., 1988) and OPAL opacity tables (Rogers and
Iglesias, 1992) complemented by the low temperature opacity
tables by Alexander and Ferguson (1994) were used.

Figure 4 shows the pulsationally unstable low-order non-radial
(l � 2) p- (panel A) and g-modes (panel B) in the H-R diagram.
Our research shows that the amplitude growth rate depends only
on the frequency of the modes, and does not depend on the
spherical harmonic degree (Xiong and Deng, 2010; Xiong et al.,
2016). Figure 5 shows the pulsationally unstable low-order radial
modes (colored, filled circles) in the H-R diagram. Each color is
shifted a line-width in the x-/y-direction, in order to be able to see
each color. It can be seen from Figures 4, 5 that, by using a fixed set
of convection parameters, almost all the classical instability strips,
including the δ Cephei, δ Scuti and c Doradus (Xiong et al., 2016),
β Cephei (Deng and Xiong, 2001), slowly pulsating B-stars (SPB,
Xiong and Deng, 2011), and LPV (Xiong et al., 1998a; Xiong et al.,
2007; Xiong et al., 2018), can be reproduced. Their locations are
marked in Figures 4, 5. β Cephei and SPB stars are excited by the
κ-mechanism from absorption by ions, peaking at T ∼ 2 × 105 K ,
so the width of these two instability strips depends sensitively on
the metal abundance. β Cephei and SPB stars in our Galaxy belong
to the extreme population Ⅰ, which have metal abundance higher
than that of the Sun. This may explain why the widths of the
theoretical instability strips of β Cephei and SPB stars of the solar
abundance in Figures 4, 5 are narrower than the observed ones in
our Galaxy (belonging to extreme population Ⅰ). Our theoretical
instability strips, in fact, would agree well with the observations if
the metal abundance is taken into account (Deng and Xiong,
2001; Tian et al., 2003). The blue dashed line and red solid line in

FIGURE 3 | Gas pressure (Wpg), radiative flux (WLr), convective flux (WLc), and buoyancy work and turbulent dissipation components (Wth) of cumulative work
as functions of log T for a low-luminosity red giant. Wpg �WLr +WLc +Wth (see Eqs. 10–13). (A) The same as in Figure 1A: P0-mode, (B) The same as in Figure 1B:
P9-mode.
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Figures 4, 5 are, respectively, the blue and red edges of the
Cepheid instability strip. The upper area of this instability strip is
occupied by the classical Cepheids, and the lower area is occupied
by the δ Scuti and c Doradus stars. The Cepheids and Cepheid-
like stars are excited by the κ-mechanism in the hydrogen and
helium ionization regions. The existence of the red edge (the red
solid lines) is due to the convective damping through the convective
enthalpy flux (see Cumulative Work Analysis for the Excitation and
Damping Mechanism). There are many unstable stars in the low-
temperature region on the right-hand side of the red edge of the
instability strip. They are pulsating red variables. They constitute the
most abundant known population of variable stars, and yet we know
little about them. Eggen (1973b) pointed out that all old disc
population red giants with (R-I) >0.9 are variables. The visual
amplitudes range from 0.01 (or less) to 10 magnitudes. The
typical time-scale (period) goes from several hours to a few
hundred days. Classification of these red variables based on the
period, luminosity, and population data were made by Eggen
(1972a); Eggen (1972b); Eggen 1973a; Eggen (1973b); Eggen
(1975); Eggen (1977). Only the LRVs (luminous red variables,
including Miras, irregular, semi-regular, and OGLE small
amplitude variable red giants), were marked which are the best
studied types among all the red variables. Comparing Figure 6 and
Figure 7Awith Figures 4A,B, 7B, it can be seen that the LRVs seem
to favor radial oscillations. According to our theoretical calculations,
the non-radial modes of low-mass (M< 2M⊙) LRV luminous giants
(logL/L⊙ > ∼ 2.7) are stable (see Figure 7). This is only a theoretical
prediction, the reality of which still needs to be confirmed. The
details about the instability strips can be found by referring to our

previousworks cited in the parentheses following each of the variable
types above and the related references cited in these papers. Studies
of the excitation and dampingmechanism of red variables are amain
part of the present paper.

δ SCUTI AND γ DORADUS STARS

Studies of δ Scuti and c Doradus stars have made significant
progress in the past 2 decades thanks to the Kepler mission which
has provided high-precision photometry in a continuous long-
time series baseline for over 100,000 stars, among which about
1,500 new δ Scuti and cDoradus stars were discovered. This high-
precision sample greatly enhanced our knowledge and offered
opportunities for leaps in understanding of these two types of
variables (Balona and Dziembowski, 2011; Balona et al., 2011).
We calculated non-adiabatic oscillations of radial and low-degree
non-radial modes for stellar evolutionary models withM � 1.4 −
3.0M⊙ and the solar abundance (Xiong et al., 2016). It can be seen
from Figures 4, 5 that there is an obvious red edge for the low-
order modes. The temperatures of the red edges in order from
high to low are for radial modes, non-radial p-modes, and
g-modes. Figure 6 shows the pulsationally stable (small, filled
circles) and unstable modes (open circles) on the n − logTe plane
for the evolutionary models of a 2.0M⊙ star, where n is the radial
order of the oscillation modes. n> 0 are the p-modes and n< 0 are
the g-modes (Unno et al., 1989). It can be seen from Figure 6 that
the instability strip changes with the radial order n. There are no
red edges for intermediate-order (20≥ n≥ 6) radial and non-

FIGURE 4 | Pulsationally unstable (colored, filled circles) low-degree (l � 2) non-radial low-order p-modes (panel a) and g-modes (panel b) in the H-R diagram for
evolutionary models of 1–20 M⊙ stars. Each color is shifted a line-width in the x-/y-direction, in order to be able to see each color. The blue dashed line and red solid line
are, respectively, our theoretical blue and red edges of the Cepheid instability strip. The locations of the main types of variable stars are indicated.
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radial p-modes. This theoretical expectation of the existence of
unstable intermediate-order modes in low-luminosity red giants
still needs to be confirmed. This is because, in our theoretical

calculations of the oscillations, the loss of coherence due to the
scattering and refraction of acoustic waves caused by the
inhomogeneous turbulent element, has been neglected;

FIGURE 6 | Stable (small filled circles) and unstable (open circles) low-degree (l � 2) non-radial modes in the (n − log Te ) plane for evolutionary models of a
M � 2.0M⊙ star, where n � np − ng is the radial order of modes, and np , ng are, respectively, the node number of p- and g-modes (Unno et al., 1989). The size of the open
circles is proportional to the logarithm of the amplitude growth rate of the modes.

FIGURE 5 | Pulsationally unstable radial low-order modes (colored, filled circles as labeled in the figure) in the H-R diagram for evolutionary models of 1–20M⊙ stars.
Each color is shifted a line-width in the x-/y-direction. The blue dashed line and red solid line are, respectively, our theoretical blue and red edges of the Cepheid instability
strip. The locations of the main types of variable stars are indicated.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org March 2021 | Volume 7 | Article 4388706

Xiong Convection Theory in Stellar Structure

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


therefore, the amplitude growth rate in our theory may be
overestimated for the high-frequency modes.

c Doradus stars have long been thought to be a new type of
variable, different from the classical Cepheid-like variables. They
are excited by the so-called convective blocking mechanism
(Guzik et al., 2000). This mechanism operates at the bottom
of the convection zone. Therefore, it depends sensitively on the
convection parameters used (Dupret et al., 2005; Pamyatnykh,
2000; Houdek, 2000; Grigahcene et al., 2010; Uytterhoeven et al.,
2011; Hareter, 2012; Sarro et al., 2013). Our research (Xiong et al.,
2016) shows that the excitation of c Doradus stars does not
usually occur at the bottom of the convection zone, but rather in
the outer layers of the star, in the ionization regions of hydrogen
and helium. There is no essential difference between the
excitation mechanisms of δ Scuti and c Doradus stars. Both
result from the combined effects of the radiative κ-mechanism
and coupling between convection and oscillations. The former
plays a major role for the excitation of warm δ Scuti and c

Doradus stars, while the latter is the main excitation and damping
mechanism of cooler δ Scuti and c Doradus stars. We suggested
that δ Scuti and c Doradus stars are two subgroups of a broader
type of δ Scuti and cDoradus stars, located in the lower part of the
Cepheid instability strip. δ Scuti stars form the p-mode subgroup,
while c Doradus stars form the g-mode subgroup. It can be seen
from Figures 4–6 that the δ Scuti and c Doradus instability strips
overlap partially in the H-R diagram, with the latter being slightly
redder. The stars located in the overlap region are mostly δ Scuti/c
Doradus hybrids. The connections among cDoradus, δ Scuti, and
δ Scuti/c Doradus hybrids are very similar to those among RRab,
RRc, and RRd stars (Xiong et al., 2016).

LUMINOUS VARIABLE RED GIANTS

Studies of luminous variable red giants have progressed
significantly in the past 2 decades thanks to OGLE (Soszynski
et al., 2004; Soszynski et al., 2005; Soszynski et al., 2007; Soszynski
et al., 2009), MACHO (Wood, 2000), and similar projects. The
existence of the red edge of the Cepheid instability strip is due to
damping from thermodynamic coupling between convection and
oscillations (through thermal energy exchange, namely convective
enthalpy flux). Therefore, fora long time, convection was
understood as a pure damping mechanism for the oscillations
of stars.Why are there various red variables in the low-temperature
area beyond the Cepheid instability strip? This is still an
outstanding and disputed subject. Xiong et al. (1998a); Xiong
and Deng, (2007) studied in detail the coupling between
convection and oscillations, and showed that there is a Mira
instability strip in the low-temperature and high-luminosity
area of the H-R diagram. Turbulent pressure plays an
important role in the excitation of luminous red variables.
OGLE and MACHO observations not only greatly enhanced
the database, but also offered the best opportunity for studies of
the luminous variable stars. By using our non-local and time-
dependent theory of convection and the same set of convection
parameters (C1 , C2/C1, C3) � (0.70, 0.50, 3.0) as in
Theoretical Instability Strips and δ Scuti and γ Doradus Stars,
we carried out calculations of radial and non-radial non-
adiabatic oscillations for evolutionary models of RGs and AGBs
with M � 0.8 − 2.0M⊙ (Xiong et al., 2018). The evolutionary
models, EOS, and OPAL opacities used are the same as in
Theoretical Instability Strips and δ Scuti and γ Doradus Stars.

FIGURE 7 | (A) Pulsationally stable (small filled circles) and unstable (open circles) radial modes on the log L/L⊙ − nr plane for evolutionary AGB models of
M � 1.0M⊙. The size of the open circles are proportional to the logarithm of amplitude growth rate. (B) The same as (A) but for low-degree (l � 1) non-radial modes. The
abscissa nr � np − ng is the radial order; np and ng are, respectively, the node number for p- and g-modes.
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We chose an initial chemical abundance for the LMC of
Y � 0.26, Z � 0.008. Figure 8A shows our theoretical period-
luminosity diagram for low-order radial modes. It can be seen
that the theoretical fundamental through fourth overtone modes
fall approximately on the observed sequences C-A’ of the OGLE
luminous variable red giants (Soszynski et al., 2004; Soszynski et al.,
2005). The abscissa of Figure 8A is the logarithmic period log P
and the ordinate is the reddening-free Wessenheit index WI

(Madore, 1982) defined as

WI � I − 1.55(V − I). (1)

The observed sequences A′, A, B, C′, and C of luminous red
variables in the LMC are shown by magenta, blue, green, cyan,
and red points in Figure 8A using data from the OGLE-Ⅲ catalog
of LPVs in the LMC (Soszynski et al., 2004; Soszynski et al., 2005;
Soszynski et al., 2009).

The sequences C-A′ are commonly interpreted as different
pulsation modes. But there is disagreement on the modal
assignment. Based on the period ratios, Takayama et al. (2013)
suggested that they can be explained by radial and low-degree non-
radial (l � 1 and 2) low-order p-modes (n � 0–4). Wood (2015),
Wood (2019) reached a similar conclusion in order to explain the
closely spaced periods within a sequence in the Petersen diagram.
Trabucchi et al. (2017) re-examined this problem. This is a
somewhat complex subject. Wood (2015) found obvious
evidence of mass variations within a sequence and from one
sequence to another, and a sequence may also contain more
than one type of mode. Figure 8B shows our theoretical
period-luminosity diagram for l � 2 non-radial modes (p0
through p4 modes). It can be seen that they locate the short-
period region far from the observations of the OGLE luminous
variable red giants, and all the non-radial modes of luminous red
giants (WI < ∼ 14.5) are stable. The theoretical period-luminosity
relations for l � 1 non-radial modes are similar. Therefore, we
believe that the sequences C- A′ represent the period-luminosity
(P-L) relations of the low-order radial modes of low-mass RGB and
AGB stars rather than the non-radial ones. Comparing theoretical
P-L relations (Figure 8A) and period ratios with the observed ones,
we suggest a possible mode identification that the sequences C, C′,
B, A, and A′ are, respectively, the radial fundamental to fourth
overtone. This identification is identical with that of Wood. It
seems to agree well with the observed P-L relation in Figure 8A,
but the period ratios do not entirely agree with the observations.
Another possible identification is as follows: sequences C and C′
are still the radial fundamental and first overtone; sequence B is not
the P-L relation of a single mode type, but represents the P-L
relations of the second and first overtones; sequences A and A′ are,
respectively, the second and third overtones. The theoretical period
ratios of the latter identification are more consistent with the
observations than those of the former identification. However, they
do not entirely agree with the observations. The insufficiency of
observations may be, in my opinion, an important reason. The
OGLE data used for frequency analysis spanned 10 years, but
typically there were only 700–900 points for each star
(Soszynski et al., 2004). This time coverage, obviously, cannot
ensure a perfect frequency analysis for LPVs, which are, in general,

semi-regular and multiperiodic. This problem needs further
investigation.

Studies for luminous red variables have greatly advanced our
understanding, but there are still many outstanding problems:

(1) What kinds of variables are the OGLE small amplitude
variable red giants (OSARGs)? Why are they so different
from Miras and semi-regular variables located in the
sequences of C and C’ (Soszynski et al., 2004)?

(2) Are there true oscillation modes with period ratios ∼1 and ∼0
in the observed Petersen diagram, or are these spuriousmodes
due to insufficient observations (Soszynski et al., 2004)?

(3) It can be seen from Figures 4A,B, 8A,B, 7A,B,, that all
the non-radial modes are stable for low-mass (M< 2M⊙)
luminous (logL/L⊙ > ∼ 2.7) giants. If this theoretical
prediction is correct, this means that the luminous
red giants prefer to oscillate radially. This needs to be
verified.

CUMULATIVE WORK ANALYSIS FOR THE
EXCITATION AND DAMPING MECHANISM

Cumulative work is a convenient and efficient way to investigate
the excitation and damping mechanism. Not only can the
magnitude be estimated quantitatively for each component of
excitation and damping, but also the location of these
components can be identified. We give a simple derivation of
cumulative work. Linearizing the average equation of momentum
conservation in Eq. 3 in part I and neglecting the molecular
viscous term (it is far smaller than any other terms in the
equation), we have,

ω2δri � 1
ρ
∇k[gik(P + ρx2)′ + (ρχik)′] + gik∇kΦ′, (2)

δri here and δri below are, respectively, the i th inverse-variant
(superscript) and covariant (subscript) components of the
displacement vector. Multiplying Eq. 2 by δr*i dMr (δr*i is the
conjugate value of δri), summing i from 1 to 3, and then
integrating with respect to dMr for the whole star, the
integration of the left-hand side of Eq. 2 becomes

∫M0

0
ω2δriδr*i dMr � 2(1 − ω2

i

ω2
r

+ 2i
ωi

ωr
)Ek, (3)

where ωi, ωr are, respectively, the imaginary and real part of the
complex angular frequency ω � iωi + ωr , and Ek is the total kinetic
energy of an oscillation mode,

Ek � ω2
r

2
∫M0

0
dδriδr*i Mr � ω2

r

2
∫M0

0
[δr2 + l(l + 1)δrhδr*h]dMr ,

(4)

where δr and δrh are, respectively, the radial and horizontal
components of the shift vector. η � −2πωi/ωr is the amplitude
growth rate per period. From the integration of the right-hand
side of Eq. 2, we find the normalized cumulative work W:
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W(Mr ) �
π

2Ek
∫Mr

0
Im{ − [δP

ρ
+ 2x2

δx
x
] δ ρp

ρ

+ δχ11
d

d ln r
(δrp

r
)}dMr

� Wpg(Mr ) +Wpt(Mr) +Wvis(Mr ) . (5)

The value ofW(Mr) at the surface of stars,W(M0), is equal to the
amplitude growth rate per period η � −2πωi/ωr , these agree with
each other to within several percent in general. HereW(Mr) is the
total cumulative work, and Wpg(Mr), Wpt(Mr), and Wvis(Mr) are,
respectively, the gas pressure, turbulent pressure, and turbulent
viscosity components of the cumulative work,

Wpg(Mr ) � − π

2Ek
∫Mr

0
Im{P

ρ

δP

P

δ ρp

ρ
}dMr , (6)

Wpt(Mr ) � − π

Ek
∫Mr

0
Im{x2δxx

δ ρp

ρ
}dMr , (7)

Wvis(Mr) �
π

2Ek
∫Mr

0
Im{δχ11 d

d ln r
(δrp

r
)}dMr , (8)

where δP, δρ, δx, and δχ11 are, respectively, the Lagrangian
perturbations of P, ρ, x, and χ11. ρx

2 and ρχij are, respectively, the
isotropic (namely turbulent pressure) and anisotropic components
of turbulent Reynolds stress. The variation of turbulent pressure
ρx2 in the process of stellar oscillations always lags slightly behind
the variation of density due to the inertia of turbulent kinetics. As a
result, a positive Carnot cycle is formed in the Pt − V � (1/ρ)
diagram during oscillations of a star, so the stochastic turbulent

kinetic energy is converted into the coherent kinetic energy of
stellar oscillations. Therefore, the turbulent pressure is, in general,
an excitation mechanism of oscillations. The anisotropic
component of Reynolds stress (see Eq. 15 below), ρχij, on the
other hand, converts the coherent pulsation kinetic energy into
stochastic turbulent kinetic energy due to the shear effects of fluid
motion, so the turbulent viscosity always has a damping effect on
stellar oscillations. The gas pressure component Wpg includes the
contribution of both radiative and convective fluxes. Linearizing
the thermal energy conservation equation in Eq. 4′ in Part Ⅰ, it is not
difficult to obtain

δP

P
− Γ1

δρ

ρ
� Γ3 − 1

iωP
{αV GMr

r2
[(2 + r3ω2

GMr
) δr

r
− δV

V
]

+ δ(4
�
3

√
ηeGMrρ

3C1r2P
x3) − 1

4πr2ρ
d
dr

(δLr + δLc

+ δLt) + l(l + 1)
rρ

(F ’
r,h + F ’

c,h + F ’
t,h)}, (9)

where Γ1 − Γ3 are the adiabatic indexes introduced byChandrasekhar
(1939). (δLr ,F ’

r,h), (δLc,F
’
c,h), and (δLt ,F

’
t,h), are, respectively, the radial

Lagrange and horizontal Euler components of the radiative flux,
convective enthalpy flux, and turbulent kinetic energy flux vector.
The terms on the right side of Eq. 9 are the contribution of non-
adiabatic effects. The first term in square brackets is the net loss of
thermal energy due to buoyancy work, the second term is the gain of
thermal energy due to turbulent dissipation, and the third and fourth
terms are the net gain of thermal energy from the radiative and

FIGURE 8 | Period-luminosity diagram of low-order radial (panel a) and non-radial (panel b) modes for evolutionary models of RGs (black) and AGBs (red) with mass
M � 1.0M⊙. The open and filled circles, triangles, pluses, squares, and inverse triangles are, respectively, the unstable and stable fundamental through fourth overtone
modes. The observed P-L sequences A, A′, B, C′, and C are shown by magenta, blue, green, cyan, and red small points.
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convective enthalpy fluxes, and turbulent kinetic energy flux.
Substituting Eq. 9 into Eq. 6, the contributions of radiative flux
(WLr(Mr)), convective flux (WLc(Mr)), and buoyancy work and
turbulent dissipation (Wth(Mr)) can be separated:

Wpg(Mr ) � WLr(r) +WLc(r) +Wth(r), (10)

where

WLr(Mr ) � − π

2Ekω
∫Mr

0
(Γ3 − 1)Re{[ 1

4πr2ρ
dδLr

dr

− l(l + 1)L’
r,h

4πr3ρ
] δ ρp

ρ
}dMr , (11)

WLc(Mr ) � − π

2Ekω
∫Mr

0
(Γ3 − 1)Re{[ 1

4πr2ρ
dδLc

dr

− l(l + 1)L’
c,h

4πr3ρ
] δ ρp

ρ
}dMr , (12)

Wth(Mr) �
π

2Ekω
∫Mr

0
(Γ3 − 1)Re{(GMr

r2
αV[(2 + r3ω2

GMr
) δr

r

− δV
V
] + δ(4

�
3

√
ηeGMrρ

C1r2P
x3)) δ ρp

ρ
}dMr .

(13)

The first term in the brackets of Eq. 13 is the buoyancy work,
that is, the conversion rate from thermal energy into turbulent
kinetic energy, so its contribution for Wth(Mr) is negative. This
process occurs in the region of the low wave-number of
turbulent spectrum. The second term represents the

dissipation rate of turbulent kinetic energy, that is, the
conversion rate from turbulent kinetic energy into thermal
energy, so its contribution for Wth(Mr) is positive. This
process occurs in the region of the high wave-number of
turbulent spectrum. For a static star, these contrary transfer
processes between thermal energy and turbulent energy will
bring the turbulence to an equilibrium state. It can be known
from Eq. 18 (in Part I) that the sum of these two terms is
approximately zero for a static star. For a pulsating star, it is not
zero, but it is still small in comparison withWLr(Mr) andWLc(Mr).
After analysis, it is easy to understand the behavior of Wpg(Mr)
and its components WLr(r),WLc(r), and Wth(r) as illustrated in
Figure 3.

Linearizing Eqs. (18) and (19) in Part Ⅰ and neglecting the
third-order correlation terms, we have

δx2 ≈
2
3

1
1 + iωτc1

{iωτc1[x2δρ
ρ
− χ11

d
d ln r

(δr
r
)]

+ GMrαVτc1
r2

[δV
V

− (2 + r3ω2

GMr
) δr

r
]},

(14)

δχ11 ≈
4
3

1
1 + iωτc2

{ − iωτc2[(x2 + χ11) d
d ln r

(δr
r
) + 3

2
χ11
δr
r
]

+ GMrαVτc2
r2

[δV
V

− (2 + r3ω2

GMr
) δr

r
]}, (15)

where τc � C1r2P�
3

√
ηeGMrρx

, τc1 � 3
4
τc,

τc2 � 3
4(1 + C3)τc.

(16)

Eqs. 4–16 are our expressions for cumulative work in the
general case of non-radial oscillations. They will reduce to the
radial expression for l � 0. It can be found from Eqs. 14–16 that
the turbulent pressure and turbulent viscous components Wpt

and Wvis reach their maxima, respectively, at ωτc1 � 1 and
ω τc2 � 1. It can be found from Eq. 11 that the convective flux
component WLc always dampens stellar oscillations and is
inversely proportional to the oscillation frequency of the
modes; it plays an important role in stabilizing the low-order
modes of low-temperature stars and defines the red edge of the
instability strip.

Figure 9 shows the frequency dependences of the excitation
and damping effects of turbulent pressure, viscosity, and
convective enthalpy flux.

EXCITATION MECHANISM FOR VARIABLE
RED GIANTS

There is a red edge for the Cepheid (and Cepheid-like) instability
strip in the H-R diagram due to convective damping, as
mentioned in the previous section. Therefore, convection for a
long time was thought of as a purely damping mechanism for
stellar oscillations. Convection is not, in fact, a pure damping
effect for stellar oscillations, as described in Cumulative Work
Analysis for the Excitation and Damping Mechanism. The relative

FIGURE 9 | Frequency dependence of the excitation and damping
effects of turbulent pressure (solid line), turbulent viscosity (dotted line), and
convective enthalpy flux (dashed line) on stellar oscillations. The ordinate is
used in any unit.
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contributions of turbulent pressure, turbulent viscosity, and
convective enthalpy flux for excitation and damping of modes
change with stellar parameters (mass, luminosity, and effective
temperature) and the pulsation frequency (or, alternatively, the
radial order and spherical harmonic degree) of the mode.
Therefore, the net effect of convection is sometimes to
dampen, and sometimes to excite an oscillation mode.
Figure 7 shows the pulsationally stable and unstable modes in
the logL/L⊙ − nr plane for the evolutionary models of red giants
with M � 1.0M⊙(logTe < 3.70), where nr is the radial order of
the modes (Xiong et al., 2018). It can be seen that for low-
luminosity red giants, the low-order modes are pulsationally
stable, while the intermediate- and high-order modes are
unstable. Toward high luminosity, the unstable modes move
gradually toward the lower order. All of the intermediate- and
high-order modes become stable, while a few low-order modes
become unstable for high-luminosity red giants. Their pulsational
characteristics are typical of Mira-like stars. The turbulent
pressure plays an important role for the excitation of variable
red giants. The excitation effect of turbulent pressure reaches its
maximum at ωτC1 ∼ 1. From Eq. 16, the frequency of the
maximally unstable mode is

]max ∼
Mρx
C1r2P

∼
MT3.5Cs

Lx
(17)

where Cs ∼ T1/2 is the adiabatic acoustic velocity, and Cs/x is the
Mach number of turbulence, which changes little from one star to
another. Eq. 17 is, in fact, similar to the scaling relation. Figure 10
shows a comparison of the frequency of the maximally unstable
mode predicted by our non-adiabatic oscillation calculations
]Xiong (coherent excitation, abscissa) with ]Bedding (ordinate)
predicted by the scaling relation of stochastic excitation theory
(Kjeldsen and Bedding, 1995; Stello et al., 2007). It can be seen
that they agree well with each other. This means that it is
impossible to distinguish these two excitation mechanisms
based only on the frequency of the highest mode amplitude.

In the cumulative work analysis (Cumulative Work Analysis
for the Excitation and Damping Mechanism) and in our
theoretical calculations of non-adiabatic oscillations
(Theoretical Instability Strips, δ Scuti and γ Doradus Stars,
Luminous Variable Red Giants), the radiative flux, convective
thermodynamic (via the convective enthalpy flux), and dynamic
coupling (via the turbulent Reynolds stress, i.e., turbulent
pressure and turbulent viscosity) are taken into account in a
self-consistent way. Our convection theory is a dynamic theory
based on the hydrodynamic equations and turbulence theory.
Compared with MLT, it has a more solid theoretical foundation
in hydrodynamics. Therefore, it is expected to more accurately
describe the dynamic behavior of turbulent convection, and it can
produce more reliable results than MLT for classic variables and
luminous red variables. However, for low-luminosity low-
temperature stars, such as the solar-like oscillators, the modes
are high-degree and high-order radial and non-radial p-modes
are trapped in the surface region of the stars. The effects of
scattering and the refraction of sound waves by inhomogeneous
turbulence elements (granules) cause serious energy loss and the
additional phase shift of resonant sound waves, thus destroying

the coherence of resonant sound waves, and limiting the
coherence time of high-frequency p-modes (Gough, 1979).
Until now we have had no reliable theory to treat and to
estimate these damping effects due to the scattering and
refraction of sound waves by turbulent elements, so they have
been neglected in our theoretical calculations of non-adiabatic
oscillations. The pulsation amplitude growth rate of high-
frequency p-modes is overestimated by us, so our results for
non-adiabatic oscillations are not as reliable for high-frequency
modes, and we should be very cautious about them. For example,
our theoretical calculation predicts that all solar p-modes with
periods from 3 to 16 min (or frequencies from 1,050 to 5,500 μHz)
are unstable. Our theory cannot explain the observed extreme
linewidths of the high-frequency modes. So, we think that the
high-frequency modes of the Sun should be stable. Toward high
luminosity, the unstable modes shift to low-order modes which
are trapped in the deeper interior region of stars. In comparison
with excitation and damping due to the radiative κ-mechanism
and convective coupling in the deep interior, the damping effects
due to the scattering and refraction of sound waves, which mainly
occur in the surface region, will weaken, and can even be
negligible. Our theoretical results for non-adiabatic oscillations
are in good agreement with observed mode instability from
classic variables to high-luminosity red-giants (Figures 4–6,
8). However, our non-adiabatic oscillation equations are not
applicable to the study of solar-like oscillators, because
damping due to the scattering and refraction of sound waves
by inhomogeneous turbulent elements has been neglected in our
non-adiabatic pulsation equations. Expanding the applicable
range of our non-adiabatic pulsation equations to cover solar-
like oscillators and low-luminosity red giants would require the
development of a theory for treating this damping effect of wave
scattering and refraction by inhomogeneous turbulent elements.

Figure 1 shows the cumulative workW and its components of
the gas pressure (Wpg), turbulent pressure (Wpt), and turbulent
viscosity (Wvis), as functions of depth (logT) for a low-luminosity
1.8M⊙ red giant located at the lower part of the red-giant branch
in the H-R diagram. Its low-order modes (panel a) are stable, while
its high-order modes are unstable (panel b). Figure 2 is the
cumulative work diagram, and is the same as Figure 1, but for
a high-luminosity 1.8M⊙ red giant. A few low-order modes are
unstable (panel a), while all of the high-order modes (n > 4) are
stable (panel b), as is typical for a Mira-like star. The component of
gas pressure Wpg includes the contributions of both the radiative
and the convective fluxes. Using Eqs. 9–13, these two contributions
can be separated. Figure 3 shows Wpg and its components (WLr ,
WLc, and Wth) as functions of logT . It can be seen that the
component of convective enthalpy flux WLc is indeed a damping
mechanism, which is the main factor for stabilizing low-order
modes and defining the red edge of the Cepheid and Cepheid-like
instability strips. Turbulent viscosity is the main mechanism
stabilizing high-order modes.

Therefore, it can be found from the above analysis that the
variable red giants of high luminosity are self-exciting. The
excitation and stabilization of the oscillations result from the
combined effects of the radiative κ-mechanism and the coupling
between convection and oscillations. Turbulent pressure plays a
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significant role in the excitation of variable red giants. This may
also be true for the intermediate-luminosity red giants.

SUMMARY AND DISCUSSION

Convection is an important and outstanding problem in
astrophysics. Collectively, we have studied this subject for over
fifty years. Our goal is to develop a stellar convection theory that
is exact enough and simple enough in order to improve the
treatment of overshooting in the calculations of stellar structure
and evolution as well as the treatment of coupling between
convection and oscillations in the theoretical calculations of
stellar oscillations. In the present papers (including Parts Ⅰ and
Ⅱ), a brief description of a time-dependent theory of convection
developed by us (in Part Ⅰ) was presented, and the progress of its
application in the theoretical calculations of stellar structure and
evolution (in Part Ⅰ) and of stellar oscillations (in Part Ⅱ) was
reviewed. Our theoretical results achieve obvious improvements
over the MLT formulation, which can be summarized as follows:

(1) Structure of the solar convection zone: Using our non-local
convection theory, we calculated a model of the entire
convective envelope of the Sun and studied the structure
of both the upper and lower overshooting zones in detail (in
Part Ⅰ; Unno et al., 1985; Xiong and Cheng, 1992; Xiong and
Deng, 2001; Deng et al., 2006). The results show that
turbulent velocity and temperature fluctuations penetrate
deeply into the convectively stable zone and decrease
exponentially with ln P (Figure 4 in Part Ⅰ). The e-folding
length is about 1.4

�����
C1C2

√
times the pressure scale height.

Compared to the auto-correlations of turbulent velocity and
temperature (x2 and Z), the penetration of convective flux Fc
is smaller, because the convective energy transport is
inefficient (the Peclet number Pe � x/xc<∼1) in the upper
convective and overshooting zones, and the correlation
coefficient of turbulent velocity and temperature decreases
quickly (Re � V/xZ1/2 ≪ 1) toward the bottom of the
convective zone. Passing through the boundary into the
convectively stable zone, the convective flux changes its
sign. These theoretical expectations agree well with the
observations of the turbulent velocity temperature fields in
the solar atmosphere (Leighton et al., 1962; Kell and Canfield,
1978; Nasis and Mattig, 1989; Komm et al., 1991). An
obvious difference of our non-local model from the
standard solar model (namely the local MLT) or non-local
MLT models (Spiegel, 1963; Ulrich, 1970; Travis and
Matsushima, 1973) is the presence of a larger temperature
gradient at the top of the convective envelope compared to
the other versions of MLT, because the convective flux
becomes smaller at the top of the convective zone and
becomes negative in the overshooting zone due to non-
local convective diffusion. This steeper temperature profile
agrees very well with the Harvard-Smithsonian reference
atmosphere (Gingerich et al., 1971). The structure of the
bottom convective-overshooting zone in our non-local
convection theory also differs greatly from those of the

other local or non-local MLT models. The temperature
gradient has already become sub-adiabatic (∇<∇ad) in
the convectively unstable zone before arriving at the
bottom boundary of the convection zone. In the
overshooting zone, the temperature gradient is sub-
adiabatic and super-radiative (∇rad <∇<∇ad), because the
convective flux is negative in the overshooting zone. Below
the overshooting zone, the temperature gradient gradually
approaches the radiative one (Figure 10B in Part Ⅰ).
Therefore, we concluded that the sudden increase of
sound speed at the bottom of the convective zone in the
helioseismic sound-speed inversion (Christensen-Dalsgaard
et al., 1996) is overestimated. This increase is not due to
gravitational diffusion (Richard et al., 1996; Brun et al., 1999;
Christensen-Dalsgaard and Di Mauro, 2007), but is an
indication of non-local convective overshooting. Our
theoretical predictions for the structure of the bottom
convection and overshooting zones of the Sun outlined
above (Xiong and Deng, 2001; Deng et al., 2006) agree
well with the helioseismic sound-speed inversion. The
relative differences in squared sound speed between our
non-local model and the Sun are reduced greatly in
comparison with the MLT model (Figure 5 in Part Ⅰ;
Zhang and Li, 2012; Zhang et al., 2012).

(2) Overshooting mixing and the evolution of massive stars: By
using our non-local convection theory in chemically
inhomogeneous stars (Xiong, 1981), we calculated the
evolution of massive stars through the hydrogen burning
stage (Xiong, 1986). The so-called semi-convection
contradiction (Schwarzchild and Harm, 1958) is removed
automatically, as predicted by us. The convectively neutral
stability follows neither the Schwarzschild criterion nor that
of Ledoux. FC � 0 is a more convenient and reasonable
definition for the boundary of the convectively unstable
zone. A molecular-weight gradient region adjacent to the
convective core is formed automatically. Uncertainty of the
semi-convection zone structure Stothers (1991), therefore of
the evolution of massive stars, is removed automatically. The
convective core increases due to non-local overshooting
mixing, so the evolutionary track runs at a higher
luminosity for a star with fixed mass, the main sequence
band becomes noticeably wider and the main sequence
lifetimes become longer in comparison with those
calculated using the local MLT (Maeder, 1981). These
influences of non-local convective mixing on the structure
and evolution of stars increase toward lower mass, because
the relative increase of convective core size increases with the
decreasing mass of the star. These theoretical predictions
have been confirmed by later theoretical studies (Stothers,
1991; Chiosi et al., 1992; Schootemeijer et al., 2019; Higgins
and Vink, 2020). This means that the evolution masses for
given luminosity is reduced in comparison with those
calculated using the local MLT, for which the convective
overshooting mixing has been neglected. This might be one
of the important causes for the Cepheid mass discrepancy
(Christy, 1968; Stobie, 1969; Cogan, 1970; Rodgers, 1970)
and the contradiction between the theoretical and observed
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distribution of luminous stars in the H-R diagram
(Humphreys, 1978; Humphreys and Davidson, 1979). The
Cepheid mass discrepancy between the new evolutionary
masses calculated by an improve treatment of overshooting
mixing, and the pulsation masses was resolved partially
through improvements in the Baade-Wesselink method, as
well as through better calibrations of the luminosities and of
the effective temperatures (Chiosi et al., 1992; Gieren, 1988;
Guzik et al., 2020). The theoretical calculations using the
new, improved equation of state (Däppen et al., 1988;
Hummer and Mihalas, 1988; Mihalas et al., 1988) and the
new opacities (Rogers and Iglesias, 1992) show that the
period ratios P1/P (and P2/P0) of beat Cepheids are, in
general, reduced compared to those with the old Los
Alamos Opacities (Cox and Tabor, 1976). This implies
that the bump and beat Cepheid masses are increased.
The inconsistency of the Cepheid bump-, and beat-mass
with the evolutionary masses are also alleviated (Moskalik
et al., 1992; Petersen, 1992; Simon, 1995; Keller and Wood,
2002; Buchler and Szabo, 2007). Therefore, the Cepheid mass
discrepancies are partially resolved.

(3) Lithium depletion in stellar atmospheres: By using our non-
local convection theory in chemically inhomogeneous stars
(Xiong, 1981), we calculated the lithium depletion in the
atmosphere of the Sun and late-type dwarfs (in Part Ⅰ). The
theoretical predictions agree well with observations of
lithium abundances in the atmosphere of the Sun (Figures
9, 11 in Part Ⅰ; Xiong and Deng, 2002) and of member stars of
Galactic open clusters of different ages (Figure 11 in Part Ⅰ;
Xiong and Deng, 2009).

(4) Pulsational stability of stars: Linearizing the radiation-
hydrodynamic equations for the calculation of stellar
structure and oscillations in Eqs. (2), (3′), (4′), (5), and
(18–21) in Part Ⅰ, we can obtain a set of linear equations
for radial and non-radial non-adiabatic oscillations. The
radiative κ-mechanism and the thermodynamic- (through
the convective enthalpy flux) and dynamic- (through the
turbulent Reynolds Stress, i.e., turbulent pressure and
turbulent viscosity) coupling between convection and
oscillations have been taken into account in a self-
consistent way. With a slight modification, the
ε-mechanism can be also included, if it is needed. Apart
from damping due to the scattering and refraction of sound
waves by inhomogeneous turbulent elements and stochastic
excitation, they cover almost all the excitation and damping
mechanisms for classical variables and variable red giants. By
using our non-adiabatic oscillation equations and a fixed
set of convective parameters (C1, C2/C1, C3) �
(0.70, 0.50, 3.0) calibrated against the Sun, we carried out
a linear stability analysis of radial and non-radial non-
adiabatic oscillations for evolutionary models from the MS
to RG phase for 1 − 20M⊙ stars with solar abundance (Y �
0.26, Z � 0.017). Almost all of the instability strips of the
classical pulsating variables and variable red giants (Figures
4, 5), including the Cepheid, δ Scuti, c Doradus (Xiong et al.,
2016), β Cephei (Deng and Xiong, 2001), SPB, (Xiong and
Deng, 2011), LPV, and OSARG (2018) were reproduced.

(5) Excitation and damping mechanisms of red giants were
studied in detail: They are excited by the combined effects
of the κ-mechanism and coupling between convection and
oscillations. Convective flux and turbulent viscosity are found
to always have a damping effect. The damping effect of the
convective flux is inversely proportional to the mode
frequency, so it plays an important role in stabilizing the
low-ordermodes and in defining the red edge of the instability
strip. The damping effect of turbulent viscosity reaches its
maximum at the point in the star where 3ωτc/16 ∼ 1; τc is the
time scale of turbulent convection and ω is the angular
frequency of the modes. Therefore, turbulent viscosity is
the main damping mechanism for stabilizing the high-
order modes of low-temperature stars. The turbulent
pressure is, in general, an excitation mechanism; it reaches
maximum at 3ωτc/4 ∼ 1. It plays an important role in the
excitation of variable red giants (Figures 4–6, 8). The relative
importance of the excitation and damping effects of turbulent
pressure, turbulent viscosity, and convective enthalpy flux
changes with the variation of stellar parameters, M, L, and Te,
and the frequency (or the order/degree) of the mode. Our
theory predicts that the low-order modes are stable, while the
high-order modes are unstable for low-luminosity RGs.
Toward high-luminosity, the unstable modes move
gradually toward low-order, and all the intermediate- and
high-order modes become stable, while a few low-order
modes become unstable for high-luminosity red giants.
These correspond to Mira-like stars (Figure 7). The
frequency of the maximally unstable mode predicted by
our theory is similar to that found using the scaling
relation for the frequency of maximum amplitude of
stochastically excited modes (Figure 10). So, it is
impossible to distinguish these two excitation mechanisms
using only the frequency of the maximum mode amplitude.

(6) The pulsation amplitude growth rates of high-frequency
p-modes, which are high-order radial/non-radial modes
trapped in the surface region of a star, are overestimated by
our theory for low-luminosity low-temperature stars, because
up to now we have had no reliable theory to treat and estimate
the damping effect due to the scattering and refraction of sound
waves by inhomogeneous turbulent elements and neglected it in
our theoretical calculations of non-adiabatic oscillations. Our
theoretical results for non-adiabatic oscillations are not as
reliable for high-frequency p-modes of low-luminosity low-
temperature stars, so we should be very cautious about
interpreting them. However, our theoretical results for non-
adiabatic oscillations are reliable for the classical variables and
high-luminosity red giants, because these have low-ordermodes
trapped in the deep interior of the stars that are only lightly
influenced by this damping. This inference has been supported
by the fact that our theoretical results of non-adiabatic
oscillations are in good agreement with observed mode
instability from classic variables to high-luminosity red giants
(Figures 4–6, 8). This may be also true for intermediate-
luminosity red giants. Our prediction that low-luminosity red
giants might exhibit unstable intermediate-order modes still
needs confirmation. It is also an uncertain prediction since we
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have not yet determined the range of stellar parameters for
which our approach (neglecting the damping effects due towave
scattering and refraction by inhomogeneous turbulent
elements) is valid. The ultimate solution to this problem
depends on developing a theory for treating the damping
effects due to the scattering and refraction of sound waves
by inhomogeneous turbulent elements. This problem can be
resolved in the not-too-distant future.

It is necessary to emphasize the following two points:

(1) The successes mentioned above do not only apply to an
individual problem, but our theory is successful for many
important problems in a wide field of stellar structure,
evolution, and oscillations.

(2) Our non-local and time-dependent theory of convection
includes three adjustable parameters of convection
(C1, C2/C1, C3), which are introduced in the modeling of
the turbulent dissipation, turbulent diffusion, and turbulent
anisotropy. They were calibrated by using the comparison
between observations and the theoretical prediction for the
depth and T-P structure of the solar convection zone, for the
turbulence velocity-temperature fields in the atmosphere of the
Sun, stellar evolution, lithiumdepletion in the atmosphere of the
Sun and late-type dwarfs, and 3D simulations (Deng et al.,
2006). The successes in the theoretical calculations of stellar
structure, evolution, and oscillations mentioned above do not
rely on the method of parameter adjustment. Our theoretical
results, in general, are not sensitive to the convective parameters
used. Except for the lithium depletion in the atmosphere of late-

type dwarfs, all of the theoretical results for stellar structure,
evolution, and oscillations are obtained using the same set of
convective parameters calibrated against the Sun. The
overshooting mixing is only slightly sensitive to the
convective parameters used. It is necessary to make a small
adjustment to the convective parameters with variation of the
fundamental parameters of stars in the theoretical calculations
of lithium depletion in atmospheres of late-type dwarfs.

All the successes mentioned above show that our dynamic
theory of convection is roughly correct. It describes the dynamic
behavior of turbulent convection more accurately than the MLT
calculations. However, there are some difficulties in the
calculations of the structure of the convective envelope for
yellow giants and supergiants with Te∼6000–7000 K and for
high-luminosity red giants. The evolutionary calculations with
our non-local convection theory have been successful only for the
hydrogen-burning stage of massive stars with initial mass M >
5M⊙. However, the evolutionary calculations cannot reach
convergence for intermediate-mass stars with initial mass M <
5M⊙ or for late stages of stellar evolution. The causes are not
completely clear. These problems may result from the following
two factors:

(1) An inadequate numerical method for converging the
calculations

(2) Inadequacies of the convection theory

In the derivation of our convection theory, it was assumed
that the turbulence is quasi-isotropic and the relative
fluctuations of temperature and density are much less than 1.
So, our convection theory is applicable only for extensive (the
scale of the convection zone is much larger than one pressure
scale height) and subsonic convection. The convection zone
becomes somewhat narrow in the surface convection zone of
yellow giants and in the convective cores of intermediate-mass
stars as well as at late evolutionary stages. In surface convection
zones, the convective velocity increases with increasing stellar
luminosity. Convection becomes nearly sonic or even locally
supersonic for luminous red giants and supergiants. So, it is not
difficult to understand why the convergence of numerical
calculations would become difficult in the cases mentioned
above, in which convection conditions deviate from quasi-
isotropic or become locally supersonic.

In comparison with MLT, our theory has obvious advantages for
the treatment of the dynamic problems of non-local and time-
dependent convection. Its weaknesses are a lack of
straightforwardness in the physical picture and the fact that the
application becomes more complex in comparison with MLT. So, it
is difficult to popularize. Up to now, it was only used by a small
number of members within our own group and collaborators. There
are many remaining problems to be addressed in the theory itself
and its practicality. It is impossible to have a perfect convection
theory until a better understanding of turbulence has been achieved.
Our non-local and time-dependent theory is only one among
numerous theoretical approaches for turbulent convection. The
existence of different viewpoints and contention are very normal

FIGURE 10 | Comparison of our theoretical prediction of the maximally
unstable mode based on pulsation calculations (abscissa) with the semi-
empirical scaling relation (ordinate) for the p-mode peak of stochastically
excited modes (Kjeldsen and Bedding, 1995).
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and helpful for the development of science. The applications of our
theory in calculations of stellar convective envelope structure and
oscillations have achieved some progress. However, more advances
are necessary for the treatment of overshooting mixing in the late
stages of stellar evolution using a completely non-local convection
theory. We expect that more astronomers, hydrodynamicists, and
applied mathematicians will join the collaborations for the research
of convection theory and relevant problems.
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