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A non-local and time-dependent theory of convection was briefly described. This theory
was used to calculate the structure of solar convection zones, the evolution of massive
stars, lithium depletion in the atmosphere of the Sun and late-type dwarfs, and stellar
oscillations (in Part Ⅱ). The results show that: 1) the theoretical turbulent velocity and
temperature fields in the atmosphere and the thermal structure of the convective envelope
of the Sun agree with the observations and inferences from helioseismic inversion very well.
2) The so-called semi-convection contradiction in the evolutionary calculations of massive
stars was removed automatically, as predicted by us. The theoretical evolution tracks of
massive stars run at higher luminosity and the main sequence band becomes noticeably
wider in comparison with those calculated using the local mixing-length theory (MLT). This
means that the evolutionary mass for a given luminosity was overestimated and the width
of themain sequence bandwas underestimated by the local MLT, whichmay be part of the
reason for the contradiction between the evolutionary and pulsational masses of Cepheid
variables and the contradiction between theoretical and observed distributions of luminous
stars in the H-R diagram. 3) The predicted lithium depletion, in general, agrees well with the
observation of the Sun and Galactic open clusters of different ages. 4) Our theoretical
results for non-adiabatic oscillations are in good agreement with the observed mode
instability from classic variables of high-luminosity red giants. Almost all the instability strips
of the classical pulsating variables (including the Cepheid, δ Scuti, cDoradus, βCephei, and
SPB strips) were reproduced (Part Ⅱ).
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INTRODUCTION

Convection occurs within most stars. Convection causes the transfer of energy and momentum, and the
mixing of matter in stellar interiors. Therefore, it strongly influences the internal structure, evolution, and
pulsational stability of stars. Stellar convection is always turbulent due to its large scale. It is impossible to
expect to have a perfect convection theory until a better understanding of turbulence has been achieved. Up
to now the most popularly applied convection theory is still the MLT developed by Bohm-Vitense (1958),
and its many versions. The most obvious advantages of the MLT are its straightforwardness in physical
picture and simplicity of use. However, the MLT is not a dynamic theory following the hydrodynamic
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equations and turbulence theory, but is a phenomenological theory
based on a simple analogy of turbulence with the kinetic theory of gas
molecules. In fact, turbulence is more complex than the kinetic theory
of gas molecules. The fundamental shortcoming of the MLT is that it
cannot give a correct description for the dynamic behaviors of
turbulent convection. When dealing with the dynamic problems of
turbulent convection, such as time-dependent and non-local
convection, this shortcoming becomes prominent. A possible
approach to turbulent convection is direct hydrodynamic
numerical simulation. Taking into account the fact that both the
time and space scales of turbulence are more than ten orders of
magnitude less than the stellar ones, a direct hydrodynamic numerical
simulation of stellar convection would be impossible for the
calculation of stellar structure and evolution in the foreseeable
future. Therefore, it is a reasonable choice to develop a theoretical
approach exact enough and simple enough for treating turbulent
convection in the calculation of stellar evolution and oscillations.
Helio- and astero-seismology have made significant progress in the
past two decades thanks to the GONG, SOHO, OGLE, MACHO,
2MASS, CoRoT, and Kepler ground-based and space projects. They
offer the best opportunity to test stellar evolution and convection
theories. In the present paper we pay close attention to convection
theory and the relevant problems in stellar structure, evolution, and
pulsational stability. Based on the reflections above, we decided to
abandon the phenomenological MLT, and to develop a non-local and
time-dependent theory of convection based on hydrodynamic
equations and turbulence theory (Xiong, 1978; Xiong, 1980; Xiong,
1981; Xiong, 1989; Xiong et al., 1997; Deng et al., 2006). In contrast to
the MLT, it is a dynamic theory of correlation functions of turbulent
velocity and temperature (and, in addition, of the element abundance
for chemically inhomogeneous stars) following the hydrodynamic
equations and turbulence theory. So, it can be expected that our theory
has a more solid hydrodynamic foundation and can give a more exact
description of the hydrodynamic behavior of turbulent convection
than the MLT does. Our purpose is to improve the treatment of
overshooting mixing in calculations of stellar evolution and the
treatment of dynamic and thermodynamic coupling between
convection and oscillations in calculations of stellar oscillations.
Canuto (1993, 1997, 1999) and Li of the Yunnan group of China
(Zhang, 2012a; Zhang and Li, 2012a; Zhang, 2012b; Zhang and Li,
2012b; Zhang, 2013) proposed a similar theory. In the present paper,
we do not attempt to make a comprehensive review and comparison
for convection theories and relevant problems, which would be a large
and difficult amount of work. In A Non-Local and Time-Dependent
Theory of Convection section, a brief description of our non-local and
time-dependent convection theory is given. The following sections
review the progress of its applications in theoretical calculations of the
structure of the solar convection zone (Structure of the Solar
Convection Zone section), of stellar evolution and lithium depletion
in the atmosphere of the Sun and late-type dwarfs (Overshooting
Mixing and Stellar Evolution section), and of stellar oscillations (in
PartⅡ). These applications are not only the primarymotivations of our
research on the theory of stellar convection, but also an important
means for testing convection theory. A summary and discussion
follow in section 7 of PartⅡ, where we try to evaluate the successes and
failures of our theory, analyze their reasons and identify direction for
improvement. It is known that this paper will contain strong personal

bias. Our viewpoint on the excitation mechanism for red giants may
not gain widespread approval. Nowadays, our understanding of many
problems is still inconclusive, and will need more time to verify.
Disputes over different academic viewpoints will contribute to the
development of science. Our theory is far from perfect, however it has
shown obvious improvements in comparison with MLT.

This article is divided into two parts. Convection theory and its
applications in theoretical calculations of the structure of the solar
convection zone and for stellar evolution are contained in PartⅠ;
the applications of the theory in calculations of stellar oscillations,
and summary and discussions are contained in PartⅡ.

A NON-LOCAL AND TIME-DEPENDENT
THEORY OF CONVECTION

In order to overcome the defects of theMLT, we developed a non-
local and time-dependent theory of convection based on the
hydrodynamic equations and turbulence theory (Xiong, 1978;
Xiong, 1980; Xiong, 1981; Xiong, 1989; Xiong et al., 1997; Deng
et al., 2006). In our theory, the classical Reynolds decomposition
is used. Each of the physical variables X is expressed as the sum of
its average value X and (Eulerian) turbulent fluctuation X′,

X � X + X′, (1)

substituting Eq. 1 into the hydrodynamic equations and the
radiation transfer equation, and making a Taylor expansion
for X′, retaining only its first-order terms, ignoring all the
second and higher-order terms, then averaging for each of the
equations, we can obtain the following average hydrodynamic
equations and the radiation transfer equation,

Dρ
Dt

+ ρ∇ku
k � 0, (2)

Dui

Dt
+ 1
ρ
∇k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝gikP + ρu′iu′k
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + gik∇kΦ � 1

ρ
∇kσ

ik
(u), (3)

ρCp
DT
Dt

− α
DP
Dt

+ ∇k
⎛⎜⎜⎜⎜⎜⎝Cpρu′kT′⎞⎟⎟⎟⎟⎟⎠ + ∇kFk

r � ρεN + σ ik
(u′)∇ku′i ,

(4)

Fi
r � −4acT

3

3ρκ
gik∇kT , (5)

where
D
Dt

� z

zt
+ uk∇k . (6)

is the comoving differential, and T, P, ρ are, respectively, the
temperature, pressure, and density of gas, CP is the specific heat at
constant pressure, α � −(zln ρ/zlnT)P the expansion coefficient, εN
the effective nuclear energy-generation rate per gram, σ ik the viscosity
tensor,Φ the gravitational potential, κ the radiative opacity, and Fi

r the
radiation flux vector. It can be seen that, when convection sets in, an
extra term ρu′iu′k in the average equation of momentum
conservation and another extra term Cp ρu′iT ′ in the average
equation of energy conservation will emerge. They are, respectively,
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the well-known Reynolds stress and convective enthalpy flux. In the
present paper, all the equations are expressed in the tensor format. gik

is the metric tensor for the current framework. The implicit
summation rule of tensors is used, i.e., a summation should be
performed for an index k running from 1 to 3 if both the
subscript and superscript k appear in a term. Subtracting the
average equations, Eqs. 3, 4, from the corresponding original
equations of momentum and energy conservation, after a long
derivation, it is not difficult to obtain the following dynamic
equations of turbulent velocity and temperature:

Dw′i
Dt

+ w′k∇kui − 1
ρ
∇k(gikP′ + ρu′iu′k − ρu′iu′k )

−αT′
T

⎛⎜⎜⎜⎝gik∇kΦ + Dui

Dt
⎞⎟⎟⎟⎠ � 1

ρ
∇kσ

ik
(u′), (7)

D
Dt

⎛⎜⎜⎜⎜⎜⎜⎜⎝T′
T

⎞⎟⎟⎟⎟⎟⎟⎟⎠ + T′
T

{[1 − α + CP,T]D lnT
Dt

+ [CP,P

+ (1 − α)∇ad]D lnP
Dt

} + w′k(∇k lnT − ∇ad∇k lnP)
+ 1

ρCPT
∇k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ρCPT
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝w′k

T′
T

− w′k
T′
T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� 1

ρCPT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣(ρεN)′ + σ ik
(u′)∇ku′i − σ ik

(u′)∇ku′i − ∇kF′
k
r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (8)

where w′i � ρu′i/ρ is the density-weighted turbulent velocity, ∇ad �
αP/ρCpT � (Γ2 − 1)/Γ2 is the adiabatic temperature gradient,
CP,T � (zlnCp/zlnT)p and CP,P � (zlnCp/zln P)T are,
respectively, the partial derivative of Cp with respect to T and P,
and Γ2 (along with Γ1 and Γ3 below) are the adiabatic exponents
introduced by Chandrasekhar (1939). Starting from Eqs. 7, 8, it is
not difficult to constitute the dynamic equations of auto- and cross-
correlations for turbulent velocity and temperature. For example, we
have the equation of velocity correlations as,

D
Dt

w′iw′j + w′iw′k∇kuj + w′jw′k∇kui

+1
ρ
∇k

⎛⎝ρu′ku′iu′j⎞⎠ − w′i
T ′

T
⎛⎜⎜⎜⎝Duj

Dt
+ gjk∇kΦ⎞⎟⎟⎟⎠

−w′jT ′

T
⎛⎜⎜⎜⎝Dui

Dt
+ gik∇kΦ⎞⎟⎟⎟⎠ + 1

ρ
∇k

⎡⎢⎢⎢⎢⎢⎣gikw′jP′ + gjk′iP′ + w′jσ ik
(u’)

+ w′iσ jk

(u′)
⎤⎥⎥⎥⎥⎥⎦ − 1

ρ
⎛⎝gikP′∇kw′j + gjkP′∇kw′i⎞⎠

� −1
ρ

[σ ik(u′)∇kw′j + σ jk(u′)∇kw′i]. (9)

The terms in square brackets on the left-hand side of Eq. 9 are
the energy fluxes of pressure and viscous stress. They are
negligible in comparison with the next two terms when it is
assumed that the size scale of turbulent elements is far smaller
than the characteristic length of themean fluid fields. This implies
that the turbulence is near quasi-isotropic. The terms on the
right-hand side of Eq. 9 are the turbulent dissipation due to
molecular viscosity. Based on isotropic turbulence theory, this
dissipation can be expressed as (Hinze, 1975)

1
ρ

⎡⎢⎢⎣σ ik(u′)∇kw′j + σ jk

(u′)∇kw′i⎤⎥⎥⎦ � 2
�
3

√
ηexw′iw′j
le

, (10)

where ηe is the Heisenberg eddy coupling constant, le is the
characteristic length of energy-containing eddies of turbulence,
and x is the rms turbulent velocity,

x �
�������
gijw′iw′j

3

√
. (11)

In the dynamic equations for second-order correlations, the
third-order correlations must appear due to nonlinearity of the
hydrodynamic equations. The fourth-order correlations will appear
if we constitute the dynamic equation for the third-order
correlations. The equations of the correlation functions are never
closed, as is well-known in turbulence theory (Hinze, 1975). In order
to close the equation of second-order correlations, we use the
gradient-type diffusion approximation for treatment of the third-
order correlations (Xiong, 1980; Xiong, 1981; Xiong, 1989)

u′kw′iw′j � −w′kw′dτc∇αw′iw′j , (12)

where

τc � ∧
x
. (13)

is the lifetime of turbulence and ∧ is the diffusion length of
turbulence. We then further assume that both le and ∧ are
proportional to the local pressure scale height Hp,

le � C1Hp � C1
r2P
GMrρ

, (14)

∧ �
�
3

√
4
C2Hp � C2

�
3

√
r2P

4GMrρ
. (15)

The third-order correlations represent the non-local
transport of turbulent convection. ρu′kw′iw′j is the energy
flux of turbulent stress. The gradient-type diffusion
approximation means that turbulence diffuses from one
location where it is strong to another location where it is
weak. This is a very simple but reasonable physical
assumption. Another closure scheme is to construct
dynamic equations of third-order correlations (Canuto,
1993; Xiong et al., 1997). The fourth-order correlations will
appear; they are expressed as three products of two second-
order correlations of turbulent fluctuations in terms of the
fourth-order correlation (Orszag, 1977; Lesieur, 1987). This
standard normal approximation seems to have a more solid
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basis in stochastic theory. However, the physically positive
quantities, such as the auto-correlations of turbulent velocity
and temperature (namely x2 and Z in the present paper),
sometimes become negative. The numerical calculations will
eventually fail to converge. Grossman (1996) compares in
detail these two closure schemes (namely, our gradient-type
diffusion approximation for third-order correlations and the
quasi-normal approximations for fourth-order correlations). He
concluded “. . . the Xiong solution predicts second moments
better, with third-moment agreement not as good. The Full
solution [namely with the quasi-normal approximation] predicts
thirdmoments better, but the secondmoments [namely x2, Z, andV
in present paper] show inferior agreement. . . . Since the second
moments are most important for constructing stellar models, we
conclude that the Xiong closures perform impressively well.”
Therefore, we abandoned the closure schemes of the quasi-
normal approximations, and adopted the gradient-type diffusion
approximation for the closure of the dynamic equations of turbulent
correlations, because it is a simpler and more practical scheme than
the quasi-normal approximation for calculations of stellar evolution
and oscillations (Xiong et al., 1997).

Convection results from the thermal instability of a fluid
medium. In a gravitationally stratified fluid medium, a
perturbed fluid element will be accelerated by buoyant
forces along the direction of gravity, when the local
temperature gradient exceeds the adiabatic one. The
original direction of convective motion is along with
gravity, i.e., along the radial direction of the star.
Therefore, convection is highly anisotropic in the low
wave number range of the turbulent spectrum. Due to the
continuity and nonlinearity of hydrodynamics, a part of the
kinetic energy of convective elements will be converted into
horizontal motion. Turbulence becomes more and more
isotropic in the high wave-number range. Rotta (1951)
pointed out that the correlation of the pressure and
velocity gradients tends to make turbulence isotropic.
Therefore, we assume (Deng et al., 2006)

1
ρ
P′(gik∇kw′i + gjk∇kw′i − 2

3
gij∇k′k) � −C3

4
�
3

√
ηeGMrρx

3C1r2P
χij, (16)

where x2 and χij are, respectively, the isotropic and anisotropic
component of the velocity correlation.

w′iw′j � gijx2 + χij. (17)

Substituting Eq. 17 into Eq. 9 and contracting with respect to
indices i and j and noting Eqs. 10–16, we have

3
2
Dx2

Dt
− x2

D lnρ
Dt

+ χij∇iuj − 3
2ρ
∇k(Qαk∇αx

2)
−αVk⎛⎝Duk

Dt
+ ∇kΦ⎞⎠ � −2

�
3

√
ηeGMr

C1r2P
x3. (18)

Subtracting the product of gik and Eq. 18 from Eq. 9 and
noting Eq. 16, we can obtain the dynamic equation of the
anisotropic component of the velocity correlation χij,

Dχij

Dt
+ x2(gik∇kuj + gjk∇kui − 2

3
gij∇kuk) + χik∇kuj + χjk∇kui

−2
3
gijxαβ∇αuβ − α(gikVj + gjkVi − 2

3
gijVk)⎛⎝Duk

Dt
+ ∇kΦ⎞⎠

−1
ρ
∇k(Qkα∇αχ

ij) � −4
�
3

√
ηe(1 + C3)GMr

3C1r2P
χij.

(19)

In the same way, we can derive the dynamic equations of
the temperature auto-correlation and cross-correlation of
velocity and temperature from Eqs. 7, 8:

DZ
Dt

+ Z{[1 − α + CP,T]D lnT
Dt

+ [CP,P + (1 − α)∇ad]D lnP
Dt

}
+ 2∨k(∇k lnT − ∇ad∇k lnP) − 1

ρ2C2
p

∇k(ρC2
pQ

αk∇αZ)
� −2

�
3

√
ηeGMrρ

C1r2P
(x + xc)Z ,

(20)

DVi

Dt
+ Vk + Vi{[1 − α + CP,T]D lnT

Dt
+ [CP,P

+ (1 − α)∇ad]D lnP
Dt

} − αZ⎛⎜⎜⎜⎝Dui

Dt
+ gik∇kΦ⎞⎟⎟⎟⎠ + (gikx2 + χik)

× (∇k lnT − ∇ad∇k lnP) − 1
ρCp

∇k(CpQ
αk∇αV

i)
� −

�
3

√
ηeGMrρ

C1r2P
(3x + xc)Vi,

(21)

where

Z � (T ′

T
)2

, (22)

Vi � u′i
T ′

T
, (23)

Qij �
�
3

√
C2r2P

4GMrρ
(gijx + χij

x
), (24)

xc � 3acGMrT
3

C1ρCPκr2P
. (25)

Pe � x/xc is the effective Peclet number of turbulent convection.
Eqs. 3, 4 can be rewritten as

Dui

Dt
+ 1
ρ
∇k[gik(P + ρx2) + ρχik] + gik∇kΦ � 0, (3′)

D lnT
Dt

+ ∇ad
D lnP
Dt

+ 1

ρCpT
[ρx2(3D ln x

Dt
− D lnρ

Dt
) + ρχik∇kui

+∇k(Fk
r + Fk

c + Fk
t )] � 0, (4′)
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where Fk
r , Fk

c , Fk
t are, respectively, the radiative, convective

enthalpy, and turbulent kinetic energy fluxes,

Fk
c � ρCPTV

k, (26)

Fk
t � −3ρxQkα∇αx. (27)

The contribution of pressure fluctuations to the enthalpy
flux Eq. 26 has been neglected, because it is much less than the
contribution of the temperature fluctuation. The combination
of the average hydrodynamic equations Eqs. 2, 39, 49, 5, and
the dynamic equations of auto- and cross-correlations for
turbulent velocity and temperature Eqs. 18–21 form a
complete and closed system of radiation-hydrodynamic
equations for the calculation of stellar structure and
oscillations.

The details of the derivation and main simplifications can
be found in our original works (Xiong, 1978; Xiong, 1980;
Xiong, 1981; Xiong, 1989; Xiong et al., 1997; Deng et al., 2006).
The main simplifications and assumptions can be summarized
as follows:

1) Turbulence is near quasi-isotropic; the characteristic
linear size of turbulent elements is far less than the
characteristic length of the average fields.

2) The relative fluctuations of temperature T′/T and density
ρ′/ρ are much less than 1, so our theory is applicable only
for subsonic convection.

3) The anelastic approximation (Gough, 1969; Xiong et al.,
1997) is adopted. We assume that the only effect of
pressure fluctuations is to make turbulence more
isotropic (Eq. 16), and all of the other dynamic effects
of pressure fluctuations were neglected. These
assumptions are slightly weaker than the Boussinesq
approximation. In our theory, the density-weighted
turbulent velocity is used, so the compressibility is
partially taken into account. However, noise sound waves
are filtered due to the assumption that D(ρ′/ρ)/Dt � 0

4) The turbulent fluctuations of the gravitational potentialΦ′
have been neglected because they cancel out between each
other, so gravity waves are also filtered.

5) The gradient-type diffusion approximation for the
treatment of the third-order correlations is adopted
(Xiong, 1980; Xiong, 1981; Xiong, 1989).

The turbulent dissipation, diffusion, and anisotropy are
carefully taken into account. Based on the turbulence theory,
they are expressed, respectively, by Eqs. 10, 12, 16, 19. There
are three convective parameters (C1, C2, C3) in our convection
theory. They are associated, respectively, with turbulent
dissipation, diffusion, and anisotropy. They can be
calibrated by using the comparison between the observed
and theoretical depth and T-P structure of the solar
convection zone, the turbulence velocity-temperature fields
in the solar atmosphere, the lithium depletion in the
atmosphere of the Sun and late-type dwarfs, and 3D
simulations (Deng et al., 2006). The calibration of the

convective parameters (C1, C2, C3) is somewhat complex.
First, the convective parameters (C1, C2, C3) are not a set
of constants, but they vary slowly as a function of stellar
parameters such as mass M, luminosity L, effective
temperature Te (Ludwig et al., 1999); even in the interior of
the same star they vary with radius r. Fortunately, in the deep
interior of stars, apart from the surface layer, convective
transport of energy is very effective (Pe � x/xc ≫ 1).
Therefore, the temperature gradient is very close to the
adiabatic one, independent of the choice of convective
parameters. The depth of the convection zone is almost
defined by the structure of the surface super-adiabatic
convection zone, where convective energy transport is
inefficient (Pe � x/xc ≤ 1). Our research shows that, if only
the pulsational stability is of concern, by using a fixed set of
(C1, C2, C3) calibrated to the Sun, all of the pulsational
instability strips in the H-R diagram, such as the RR Lyrae
(Xiong et al., 1998b), δ Scuti − cDoradus (Xiong et al., 2016),
Mira (Xiong et al., 1998a), and LPV (Xiong et al., 2018)
instability strips, can be defined. The effects of (C1, C2, C3)
on convection are not completely independent and the
available observations for calibration are too rare, so it is
difficult to calibrate (C1, C2, C3) independently. After
theoretical considerations, these entanglements for
calibration of (C1, C2, C3) can be removed, at least
partially. C3, unlike C1 and C2, is a rather independent
convective parameter. It is related to the anisotropy of
turbulent convection. In the deep interior of a convectively
unstable zone, the ratio of the squared radial component of
turbulent velocity to the horizontal one
w2
r / w2

h ≈ (3 + C3)/ 2 C3 . Anisotropy increases and
convective overshooting decreases with decreasing C3. C3 �
3 is a reasonable value, which agrees well with the
observations of turbulent velocity in the solar atmosphere,
the lithium depletion of the Sun and late-type main-sequence
stars, and hydrodynamic simulations (Deng et al., 2006; Deng
and Xiong, 2008). C1 and C2 are two convective parameters
related to turbulent dissipation and diffusion. It can be seen
from Eqs. 14, 15 that le and ∧ are, respectively, the dissipation
and diffusion length of turbulence. So, one can expect that C2/
C1 is approximately a constant independent of the stellar
parameters M, L, and Te. C2/C1 � 1/2 is a good choice. Once
C2/C1 and C3 are identified, C1 becomes the only adjustable
convective parameter. Our research shows that a non-local
and anisotropic convective model of the Sun with (C1, C2, C3)
� (0.64, 0.50, 3.0) can reproduce almost all of the observed
characteristics of the solar convection zone very well (Deng
et al., 2006; Xiong and Deng, 2001).

STRUCTUREOF THE SOLARCONVECTION
ZONE

Astronomy is a science based on the observations of
astronomical objects. Stellar convection theory originated
from the requirement for a treatment of convective
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transport of energy and momentum, and of convective
mixing of materials in the stellar interior. In the previous
section, we described a non-local and time-dependent theory
of convection. In this section we will present its application in
studies of the solar convection zone.

The Sun is the closest star to us, and is the only star that
can provide high spatial resolution observations. Therefore,
the Sun is an ideal natural laboratory for testing convection
theory. By using our non-local and anisotropic convection
theory described in the previous section, we calculated a
model of the solar convective envelope (Unno, et al., 1985;
Xiong and Cheng, 1992; Xiong and Deng, 2001). The MHD
equation of state (Däppen et al., 1988; Hummer and Mihalas,
1988; Mihalas et al., 1988) and OPAL opacity (Rogers and
lglesias, 1992) supplemented by low-temperature opacities
(Alexander and Ferguson, 1994) were used. The chemical
abundance is X � 0.70 and Z � 0.02. The surface boundary was
located at optical depth τ � 10−3. By choosing a first trial set of
T and r at the surface boundary T �T0, r �R0, and P � aT4

0 , by
using a relaxation procedure, it is not difficult to obtain that
T � Te, r � R⊙, and L � 4πR2

⊙T
4
e , at τ � 2/3. The original

fundamental equations are our radiation-hydrodynamic
equations for the calculation of stellar structure and
oscillations, Eqs. 2, 39, 49, 5, 18–21. The Henyey method
(Henyey et al., 1964) for the integration of differential
equations was used. The details of the working equations

and boundary conditions can be found by referring to the
original works of the author cited above.

Structure of Turbulent Velocity and
Temperature Fields
Convection stops suddenly at the boundary of the convection zone
in the local convection theory; however, convection penetrates
deeply into the convectively stable zone in the non-local
convection model. Figure 1 shows the variation of x, Z,
|V |, and ∣∣∣∣χ11∣∣∣∣ vs. logP in our non-local convection model.
V and χ11 change their sign passing through the boundary of the
convection zone. In the convectively unstable zone, V and χ11 are
greater than zero. Convective flux FC > 0 and the ratio of the
squared radial component of turbulent velocity to the horizontal
one w2

r / w
2
h � (x2 + χ11)/(x2 − χ11) ≈ (3 + C3)/2C3 > 1/2, when

C3 < 3. Turbulent motions dominate in the radial direction. In the
overshooting zones, V and χ11 become negative, (V < 0, χ11 < 0),
convective flux Fc < 0 and w2

r / w
2
h � (x2 + χ11)/(x2 − χ11) < 1/2,

and turbulentmotions become dominant in the horizontal direction.
In the surface overshooting zone, the correlation coefficient of
turbulent velocity with temperature RVT � V/xZ

1
2 ≈ − 1. Passing

through the boundary of the convection zone, RVT changes abruptly
from -1 to +1. In most of the convection zone, far from the
boundary, RVT is very near to 1, and decreases rapidly to zero
toward the bottom boundary of the convection zone. This

FIGURE 1 | Auto- and cross-correlations of turbulent velocity and
temperature, x, χ ij (Eq. 17), Z (Eq. 22), and V (Eq. 23) versus logP for the local
(dotted-lines) and non-local (dashed-lines) convective models of the Sun
having the same convection zone depth.

FIGURE 2 | Fractional convective flux Lc/L, turbulent kinetic energy flux
Lt/L, super-adiabatic temperature gradient ∇ − ∇ad , and the ratio of turbulent
pressure to gas pressure Pt/P vs. logP for the local (dotted-line) and non-local
(solid-line) convective models.
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asymmetry of RVT at the surface and bottom boundaries of the
convection zone results from the fact that, in the surface zone, the
effective Peclet number Pe � xe/xC ≪ 1, and convective energy
transport is very inefficient; however, in the deep interior of stars,
Pe ≫ 1, and convective energy transport is very efficient.

Convective overshooting is different for the different physical
variables. It can be seen that turbulent velocity and temperature
penetrate deeply into the convectively stable zone. x, Z, and V
decrease exponentially with lnP in the overshooting zone, and the
e-folding length of turbulent velocity is about 1.4

�����
C1C2

√
times the

pressure scale height. However, overshooting of the convective flux is
negligible because the convective energy transport is inefficient
(x/ xC ≪ 1) in the surface overshooting zone and the
correlation coefficient of turbulent velocity and temperature is far
less than 1 (RVT � V/xZ (1/2) in the bottom overshooting zone). The
overshooting distance decreases with decreasing C3 and x/ xC . It
can be seen that x, Z, and V decline more rapidly in the surface
overshooting zone, where x/xC ≤ 1, than that in the bottom
overshooting zone, where x/xC ≫ 1.

Remarks About MLT
The local MLT is still a good first approximation for the treatment of
convection in the calculation of the thermal structure of stars, when
the non-locality and time dependence of convection are not important
for the problem concerned. Figure 3 illustrates logT vs. log P for the
local and non-local models of the solar convective envelope, with the
same convection zone depth. It can be seen that they agree with each
other very well. Figure 4 illustrates the relative differences in the
squared sound speed and density between the non-local and local

convection models. Except for the regions closest to the surface, the
relative differences are within approximately one percent.

Figure 2 illustrates the fractional convective enthalpy and
turbulent kinetic fluxes LC/L, Lt/L (LC � 4πr2Fc ,
Lt � 4πr2Ft and L � Lr + LC + Lt), the ratio of turbulent
pressure to gas pressure Pt/ P, and the super-adiabatic temperature
gradient ∇ − ∇ad versus depth (logP). It can be seen that in the
convectively unstable zone, away from the convection zone
boundaries, these quantities are very nearly the same for the local
and the non-local models, and the turbulent pressure and turbulent
kinetic energy flux are negligible in comparison with the gas pressure
and convective enthalpy flux. It is not difficult to prove that, neglecting
turbulent pressure and the third-order correlation (i.e., turbulent
kinetic energy flux), the dynamic equations of correlation functions
Eqs. 18, 20, 21 will return to a form analogous to the local MLT
formulae (Xiong, 1978; Xiong, 1989). It is not difficult to prove that
∇ ≈ ∇ad + (∇rad − ∇ad)4xc/9x when x/xC ≫ 1, and ∇ ≈ ∇rad −
(∇rad − ∇ad)(x/xc)29/4 when x/xC ≪ 1. In the deep convection
zone, where Pe � x/xC ≫ 1, convective energy transport is
effective, and the temperature gradient is near the adiabatic one
independent of the convection theory used. So, it is not difficult to
understand why the T-P structures are so close to each other for the
local and non-local convective envelope models in Figures 3, 4.

Structure of the Convective Overshooting
Zone
Overshooting is a very natural phenomenon from the viewpoint
of hydrodynamics. However, it was an outstanding problem for a

FIGURE 3 | log T as a function of logP in the solar atmosphere for the
non-local (dashed-line) and local convection models of the Sun (dotted-line).
The inverse triangles are the Harvard-Smithsonian reference atmosphere
(Gingerich et al., 1971).

FIGURE 4 | Relative difference in the squared sound speed δC2/ C2

(solid-line) and density δρ/ρ (dotted-line) between the non-local and local
convection models of the Sun versus fractional radius r/R⊙.
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long time in the astronomical community. Up to now, the
community still cannot cast off the influence of the MLT. The
first non-local MLT is the generalized mixing-length theory by
Spiegel (Spiegel, 1963). Ulrich (1970) proposed an analogous
non-local MLT. Their theories were used to construct a model of
the Sun (Ulrich, 1970; Travis and Matsushima, 1973).
Observations show that the temperature gradient of their
theoretical models were too gentle in the atmosphere of the
Sun, because the efficiency of convective energy transport was
overestimated by their theory. Figure 3 shows logT as a function
of logP for our non-local and local convection models of the Sun.
The inverse triangles mark the Harvard-Smithsonian reference
atmosphere (Gingerich et al., 1971). The obvious feature of our
non-local model is a larger temperature gradient at the top of the
convection zone, which agrees with the Harvard-Smithsonian
reference atmosphere very well. Helioseismology provides a
direct method for probing solar interior structure. Figure 5
shows the results of the sound-speed inversion (Zhang et al.,
2012). The open circles are relative differences in squared sound
speed between the Sun and the standard solar model S
(Christensen-Dalsgaard et al., 1996), which is a local MLT
model. It can be seen that the relative difference of squared
sound speed between the Sun and the reference model has a
bump below the bottom boundary of the convection zone. This
bump was understood as an indication of gravitational diffusion
(Richard et al., 1996; Brun et al., 1999; Christensen-Dalsgaard,
et al., 2007) for a long time. However, we already indicated long
ago that this bump was not a result of gravitational diffusion, but
was an indication of non-local convective overshooting (Xiong
and Deng, 2001). We can see from Figure 2 that, in our non-local
convection theory, the convective flux LC / L becomes negative
and the fractional radiative flux Lr / L � ∇/∇rad becomes slightly
larger than 1, and the temperature gradient (∇) will be greater
than the radiative one (∇rad) in the bottom overshooting zone.
Therefore, the temperature in the overshooting zone will be

higher than that predicted by the local theory of convection as
shown in Figure 4. So, we predicted that this bump will be
removed, or at least reduced to a great extent, if the reference
model of inversion is replaced by our non-local model for the Sun
(Xiong and Deng, 2001). This theoretical prediction has been
confirmed by sound-speed inversion. In Figure 5 the filled circles
are for our non-local model for the Sun as the reference model for
inversion. The relative difference in squared sound speed is
indeed reduced greatly in comparison with the standard solar
model S (open circles).

Up to now theMLT is still a dominant idea in the astronomical
community. All of the non-local MLT (Spiegel, 1963; Ulrich,
1970; Shaviv and Salpeter, 1973; Maeder, 1975; Bressan et al.,
1981; Zahn, 1991) models still use a ballistic-type
phenomenological theory. Figure 6A illustrates a sketch of the
structure for the bottom overshooting zone of the Sun in the non-
local MLT (Monteiro et al., 2000). In the convection zone, the
temperature gradient is close to and slightly higher than the
adiabatic gradient (∇ − ∇ad ≥ 0). There is an overshooting zone
under the convection zone, where the temperature gradient is
near to and slightly lower than the adiabatic gradient. Passing
through a very thin transition layer, the temperature gradient
jumps from the adiabatic value to the radiative one. So, there is a
near discontinuity of the second derivative of sound speed at the
bottom boundary of the solar convection zone. This discontinuity
will reflect incident acoustic waves and induce an oscillation
component in the frequencies of p-modes as a function of radial
order n (Gough, 1990). However, helioseismology observations
show that the Sun has a mostly smooth stratification (Gough and
Sekii, 1993), or the discontinuity is very small (Basu and Antia,
1994; Monteiro et al., 1994; Roxburgh and Vorontsov, 1994).
Figure 6B shows the temperature gradient as a function of
fractional radius around the bottom boundary of the
convection zone predicted by our non-local convection theory
(Xiong and Deng, 2001). There is not any discontinuity in the
temperature gradient, and it transforms smoothly from the
adiabatic one in the convectively unstable zone into the
radiative one in the convectively stable zone. In our non-local
convection theory, the temperature gradient has already become
sub-adiabatic (∇<∇ad) in the convectively unstable zone before
reaching the bottom boundary of the convection zone. It becomes
sub-adiabatic and super-radiative (∇rad <∇<∇ad) in the
overshooting zone below, until it approaches the radiative
value (∇ � ∇rad) in the deep radiative zone. It can be seen
from Figures 6A,B that the structure of the transition zone
around the boundary of the convection zone is very different
between our non-local convection theory and MLT, which
reflects the profound difference between two convection
theories in the understanding and treatment of convection.
Recently, Christensen-Dalsgaard et al. (2011) revisited this
problem. They support our viewpoint of a smoothly stratified
bridge from the region of the lower convection zone to the
radiative interior, such as shown in Figure 6B, and believe
that it will be in better agreement with helioseismic data than
that of the standard solar model.

Eq. 18 is the dynamic equation for the isotropic component of
the auto-correlation of turbulent velocity; it can be also

FIGURE 5 | Relative differences in squared sound speed between the
Sun and the reference model from the sound-speed inversion (Zhang et al.,
2012). The open and filled circles are, respectively, for the standard model S
(Christensen-Dalsgaard et al., 1996) and our non-local model of the Sun
(Xiong and Deng, 2001) as the reference model.
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understood as the conservation equation of turbulent kinetic
energy. The first term is the growth rate of turbulent kinetic
energy, which could be set equal to (taking into account minus
signs) the sum of the rest of the terms in the equation. The second
and third terms are the transformation rate between the average
motion and the turbulent kinetic energy. The fourth term is the
net gain from the non-local transport of turbulent kinetic energy,
which is the key term distinguishing our non-local convection
theory from the local theory. The fifth term is the boundary work
Wb, which is directly proportional to the convective flux FC (�
ρCPTV) and represents the transformation rate between
turbulent kinetic energy and thermal energy. The convectively
unstable zone, where FC and Wb > 0, is the driving region for
turbulent convection, where the thermal energy is transformed
into turbulent kinetic energy by buoyancy work. On the other
hand, the convectively stable (including overshooting) zone is the
damping zone for turbulent convection, where the turbulent
kinetic energy is transformed into thermal energy due to
buoyancy work. Therefore, it is reasonable to define FC � 0 as
the boundary of the convection zone (Xiong and Deng, 2001;
Deng and Xiong, 2008).

During the past 20 years, rapid progress has been made in
numerical simulations, and these have become an important
means to study stellar convection. We have tried to use 2D or
3D simulations to test some basic assumptions of our non-local
and time-dependent theory of convection and to calibrate the
convection parameters (Kupka, 2002; Deng et al., 2006; Kupka
and Muthsam, 2007; Kupka, 2007a; Kupka, 2007b; Kupka, 2007c;
Cai, 2008; Tian et al., 2009; Chan et al., 2008; Chan et al., 2011; Cai
and Chan, 2012; Cai, 2014; Kupka, 2017; Cai, 2018; Cai, 2020a;
Cai, 2020b; Cai, 2020c). Some meaningful results were obtained.
Because of limitations on the number of figures, these results
cannot be described in detail. Interested readers can refer to the
original texts, as well as to extensive reviews by Asplund et al.
(2009) and Nordlund et al. (2009).

OVERSHOOTING MIXING AND STELLAR
EVOLUTION

We know from the theory of stellar structure and evolution that
the stellar structure should be defined once the mass and element
abundances of a star are assigned. Therefore, stellar evolution in
the H-R diagram is, in fact, a reflection of nuclear evolution in the
stellar interior. Convection (including overshooting) is the most
important means of element mixing in the stellar interior. Our
non-local convection theory has been successfully used to treat
non-local convective mixing of elements in the evolution of
massive stars (Xiong, 1986) and to calculate lithium depletion
in the atmosphere of the Sun (Xiong and Deng, 2002) and late-
type main sequence stars (Xiong and Deng, 2009).

Evolution of Massive Stars
Schwarzschild and Härm (1958) have shown that the hydrogen-
rich radiative envelope adjacent to the helium-rich convective
core cannot be stable against convection for massive stars
(M ≥ 9 M⊙). This is the familiar so-called semi-convection
contradiction. Schwarzchild and Härm continued the local
treatment of convection and introduced a so-called semi-
convective zone in order to overcome this contradiction.
However, there is not a self-consistent method for the
construction of this semi-convection zone. Various researchers
constructed their respective models of the semi-convection zone
using their own methods. A review of these methods was given by
Stothers (1970). He shows that at least ten schemes are available
in the literature to treat this unstable intermediate zone. The
different treatments of semi-convection resulted in some
discrepancies in the evolution of massive stars. The semi-
convection contradiction, in our opinion, results from the
local treatment of convection; it will be removed automatically
if a non-local treatment of convection is applied. In order to treat
non-local mixing of nuclear fuels in stellar evolution, we need to

FIGURE 6 | The temperature gradient (∇), the radiative gradient (∇rad), and the adiabatic gradient (∇ad) versus the fractional radius r/R⊙ near the bottom boundary
of the solar convection zone. Panel (A): a sketch for the non-local MLTmodel; Panel (B): the same as for panel (A), but for our non-local convection model. The horizontal
black line shows the range of the convectively unstable zone.
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develop a non-local theory of convection for chemically
inhomogeneous stars (Xiong, 1981). An advantage of our
dynamic theory of correlation functions is its convenience for
generalization. For a chemically inhomogeneous star, apart from
the conservation of total mass, Eq. 2, the conservation equation
for each type of nuclear fuel should be added,

z(ρCn)
zt

+ ∇k(ρCnu
k + Jk) � −ρqn, (28)

where Cn is the content per gram of the nth nuclear fuel, qn and Jkn
are, respectively, its destruction rate and the molecular diffusion
flux for the nth nuclear fuel. By using the same method of
Reynolds decomposition and after an averaging procedure,
mentioned in A Non-Local and Time-Dependent Theory of
Convection section, it is not difficult to obtain the average
conservation equation of fractional mass,

DCn

Dt
+ 1
ρ
∇k(ρu′kC′n + Jkn) � −qn, (29)

and the corresponding dynamic equations of auto- and cross-
correlations C′2

n ,u′kC′n and C′nT′/T . Eqs. 2, 39, 49, 18, 19, 20,
21, 29, and the dynamic equations for C′2

n ,u′kC′n and C′nT′/T
form a set of equations for the calculation of stellar evolution
(Xiong, 1981; Xiong, 1986).

By using our non-local theory of convection for chemically
inhomogeneous stars mentioned above (Xiong, 1981), we
calculated the evolution of massive stars in the hydrogen-
burning stages (Xiong, 1986). The semi-convection
contradiction was indeed removed automatically, as predicted
by us. Figure 7 shows the outline of the hydrogen content at
various evolution ages for a 60M⊙ star. It can be seen that

non-local mixing of helium penetrates deeply into the
convectively stable zone beyond the boundary of the
convectively unstable core marked by the dashed line. A
molecular-weight gradient region adjacent to the convective
core formed automatically. The convective core size increases
due to non-local overshooting mixing, so the evolutionary track
runs at a higher luminosity for a star with fixed mass, and the
main sequence band becomes noticeably wider and main
sequence lifetimes become longer in comparison with those
calculated using the local MLT (the dotted lines, Maeder,
1981). It can be seen from Figure 8 that these influences of
non-local convective mixing on the structure and evolution of
stars increase toward lower mass, because the relative increase of
convective core size increases with the decreasing mass of the star.
These theoretical predictions have been confirmed by subsequent
research (Stothers, 1991; Chiosi, et al., 1992; Schootemeijer, et al.,
2019; Higgins and Vink, 2020). This means that the evolution
masses for a given luminosity were overestimated and the width
of the main sequence band was underestimated when convective
overshooting mixing was neglected. This might be one of the
important causes for the Cepheid mass discrepancy (Christy,
1968; Stobie, 1969; Cogan, 1970; Rodgers, 1970) and the
contradiction between the theoretical and observed
distribution of luminous stars in the H-R diagram
(Humphreys, 1979; Humphreys and Davidson, 1979). The
MLT models can be made to agree with observations by
adjusting core overshooting and semi-convection parameters,

FIGURE 7 | Outlines of hydrogen content at various evolution ages for a
60M⊙ star. The dashed line is the boundary of the convectively unstable core,
and the dotted line indicates the location of the nuclear energy generation rate
ε � 1000 erg/s (Xiong, 1986).

FIGURE 8 | Theoretical evolutionary tracks in the H-R diagram for
7–60M⊙ stars (Xiong, 1986). The solid and dashed lines are for our non-local
convection theory with two different convective parameters, and the dotted
lines are for the local MLT theory (Maeder, 1981).
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which makes such models less predictive, in contrast to our
models.

How one defines the boundary of convective zone is another
contributor to the uncertainty in the treatment of non-local
convection overshooting, and therefore to the uncertainty in
the evolution. For a long time, a disputed question has been
whether the criterion for convective instability should follow the
Schwarzschild criteria or the Ledoux criteria. Our research shows
that the Schwarzschild and Ledoux criteria are only applicable for
local convective instability. In our non-local convection theory,
the convective instability criterion follows neither Schwarzschild
nor Ledoux. FC � 0 is a more convenient and reasonable

definition for the boundary of the convection zone, as
described in Structure of the Convective Overshooting Zone
section, and the details can be found in our earlier works
(Xiong, 1986; Xiong and Deng, 2001; Deng and Xiong, 2008).
The difficulty in determining the boundary of the convective
core results from the local treatment of convection. This
difficulty is also removed automatically. There is no longer
any ambiguity in defining the convective core and
constructing the overshooting zone in our non-local
convection theory. Therefore, the uncertainties in massive
star evolution due to ambiguous semi-convection and
overshooting do not arise.

FIGURE 9 | (A) Evolution of the surface lithium abundance with age for stars of different masses. The dotted and solid lines, respectively, are for models with only
convective overshooting mixing, and for which both gravitational settling and convective overshooting mixing are taken into account. (B) The e-folding time of lithium
depletion as a function of stellar mass. The dotted lines are the models for which only the overshooting mixing are taken into account; the solid lines are models in which
both overshooting mixing and gravitational setting are taken into account.

FIGURE 10 | Lithium abundances as a function of depth log(ΔMr /M) at the ages indicated on the curves for 1.5M⊙ (A), and 1.0M⊙(B) stars, where ΔMr � M −Mr ,
andM andMr are, respectively, the total mass and mass within radius r.M⊙ is the solar mass. The shaded areas mark the overshooting zone in each panel, bounded by
the dashed line (left) and long dashed line (right). The dotted lines are for the theoretical model with only overshooting mixing, and the solid lines are for the theoretical
model with both overshooting mixing and gravitational settling.
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Chiosi et al. studied the mass discrepancy of the Cepheids. They
found that “the mass discrepancy problem likely originates from the
adoption of semi-convective models and insufficient accuracy in the
determination of the mass by one of the two methods. When this is
feasible, as in the ideal laboratory given by the young LMC clusters
with Cepheids, the discrepancy no longer exists” (Chiosi, et al., 1992).
By using the new and improved equation of state (Däppen, et al., 1988;
Hummer and Mihalas, 1988; Mihalas et al., 1988) and opacity (Roger
and Iglesias, 1992), not only were the excitation mechanism of β
Cephei and SPB stars explained (Cox et al., 1992; Moskalik and
Dziembowski, 1992; Dziembowski and Pamyatnykh, 1993), but also
the mass discrepancy between the evolutionary mass and the “bump”
and “beat” masses of the Cepheids was reduced further (Carson and
Stothers, 1988; Moskalik and Dziembowski, 1992; Petersen, 1992;
Simon, 1995; Guzik et al., 2020).

Lithium Depletion in Late-Type Main
Sequence Stars
Lithium abundance was a very important problem for
nucleosynthesis during the Big Bang. In addition, lithium and
beryllium are both very fragile elements, which are destroyed

quickly due to nuclear reaction at T∼2.5 and 4.0 million K in the
stellar interior, whichmakes them ideal trace elements formeasuring
the depth of the surface convection zone during stellar evolution.
Since the original observational detection of the lithium abundance
in solar-type stars by Herbig (1965), rich observational data have
been accumulated. Observations of the lithium abundance of
Galactic open clusters of various ages and metallicities provide
very conclusive constraints on the depletion mechanism of
lithium. Up to now, the depletion mechanism of lithium in the
Sun and stars is still not fully understood. Various depletion
mechanisms have been proposed, including mass loss (Weymann
and Sears, 1965; Hobbs, et al., 1989; Schramm et al., 1990) and wave-
driven mixing (Garcia Lopez and Spruit, 1991; Montalban and
Schatzman, 1996), among which rotationally induced mixing
(Pinsonneault et al., 1989; Charbonnel et al., 1992; Chaboyer
et al., 1995) has been a dominant viewpoint. In our view,
convective overshooting mixing and gravitational settling seems
to be the most reasonable mechanism for lithium depletion.

By using our non-local theory of convection in chemically
inhomogeneous stars described in A Non-Local and Time-
Dependent Theory of Convection section and the previous
subsection, we calculated the lithium depletion in the atmosphere

FIGURE 11 | Lithium abundance as a function of log Te for the member stars in Galactic open clusters: (A) Pleiades (filled circles and stars) and α Per (open circles),
(B) Hyades (filled circles and inverse triangles), Praesepe (open circles and inverse triangles) and Coma Berenices (open squares and triangles), (C) NGC752, and (D)
M67, where ⊙ is the position of the Sun. The solid and dotted lines are, respectively, the theoretical isochrones with and without gravitational settling for the ages marked.
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of the Sun (Xiong and Deng, 2002) and late-type dwarfs (Xiong and
Deng, 2009). Apart from convective overshooting, the gravitational
settling has been taken into account, because the timescale for
gravitational settling in the atmosphere of warm stars becomes
comparable to and even shorter than the evolutionary timescale.
Referring to Chapman and Cowling (1970), the micro-diffusion
flux J of lithium can be expressed as (Xiong and Deng, 2009)

J � −CD[zlnC
zr

+ (7 − 4μo
1 + φ

) GMr

RTr2
+ KT

zlnT
zr

], (30)

where D and KT are, respectively, the diffusion and thermal diffusion
coefficients, μo the meanmolecular weight and φ the mean ionization
degree per ion. The first, second, and third terms in Eq. 30 are,
respectively, pressure, gravitational, and thermal diffusion.

Figure 9A shows the evolution of surface lithium abundance
with age for stars of different masses. We can see that lithium
abundance tends to decrease exponentially with time. Figure 9B
shows the e-folding time of lithium depletion as a function of stellar
mass. The dotted lines are for the models in which only convective
overshooting mixing is taken into account and the gravitational
settling is neglected; the solid lines are for models with both
convective overshooting mixing and gravitational settling. It can
be seen that, for larger stars (M ≥ 1.1M⊙), lithium depletion mainly
results from gravitational settling, because their surface convection
zones are too shallow for the overshootingmixing to be efficient. The
mass of surface convection zone and the timescale of gravitational
settling increases with decreasing stellar mass. The effect of
convective overshooting mixing on lithium depletion increases
rapidly with decreasing stellar mass (Figure 9B), and convective
overshooting mixing becomes the main mechanism of lithium
depletion for low-mass stars (M < 1.1M⊙)

Figure 10 shows the lithium abundance versus depth
(logΔMr/M⊙) at different ages (indicated on the curves) for
1.5 M⊙ and 1.0M⊙ stars, clearly showing the physical picture for
lithium depletion induced by overshooting mixing and gravitational
settling. For moderately high-mass warm (Te ≥ 6200K) stars, which
have a shallow surface convection zone, surface lithium is drawn into
the deeper radiative interior by gravitational settling and stays there,
and the surface lithium abundance decreases with time
(Figure 10A). For low-mass stars (M ≤ 1.0M⊙ ), which have an
extensive convective envelope, the surface lithium is brought into
high-temperature interior regions by convective overshooting and
destroyed by nuclear reactions there, and the surface lithium

abundance decreases with time (Figure 10B). Therefore, the
mechanism of lithium depletion is very different for warm
(M ≥ 1.1M⊙) and cool (M ≤ 1.0M⊙ ) main sequence stars.
Lithium depletion is very sensitive to the treatment of convection,
because lithium depletion increases exponentially with time. A small
error will be enlarged exponentially with time. Therefore, observations
of lithium depletion provide the most rigorous constraint for stellar
convection theory. Figures 11A–D show the distribution of lithium
abundance with effective temperatures for the member stars of several
Galactic open clusters with different ages; the theoretical isochrones
are also drawn on the figures. It can be seen that the theoretical
predictions, in general, agree well with the observations for Galactic
open clusters over a very wide range of ages. This means that our
convection theory and the assumption of the convective overshooting
mechanism for lithium depletion seem to be true.
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