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We review the main physical processes that lead to the formation of stellar binary black

holes (BBHs) and to their merger. BBHs can form from the isolated evolution of massive

binary stars. The physics of core-collapse supernovae and the process of common

envelope are two of the main sources of uncertainty about this formation channel.

Alternatively, two black holes can form a binary by dynamical encounters in a dense

star cluster. The dynamical formation channel leaves several imprints on the mass, spin

and orbital properties of BBHs.

Keywords: stars: black holes, black hole physics, Galaxy: open clusters and associations: general, stars:

kinematics and dynamics, gravitational waves

1. BLACK HOLE FORMATION FROM SINGLE STARS: WHERE WE
STAND NOW

About 4 years ago, the LIGO detectors obtained the first direct detection of gravitational waves,
GW150914 (Abbott et al., 2016; Abbott et al., 2016a,b), associated with themerger of two black holes
(BHs). This event marks the dawn of gravitational wave astronomy: we now know that binary black
holes (BBHs) exist, can reach coalescence by gravitational wave emission, and are composed of BHs
with mass ranging from few solar masses to∼ 50 M⊙. Here, we review the main physical processes
that lead to the formation of BBHs and to their merger. We restrict our attention to stellar-born
BHs. As to primordial BHs, which might form from gravitational instabilities in the early Universe,
we refer the reader to Carr et al. (2016) and Belotsky et al. (2019), and references therein. Before
we start discussing binaries, we must briefly summarize the state-of-the-art knowledge about
stellar-origin BHs: this is a necessary step to understand their pairing mechanisms.

Stellar-mass BHs are thought to be the final outcome of the evolution of a massive star (zero-age
main sequence mass mZAMS & 20 M⊙). Hence the mass of the BH should be affected by the two
main processes that influence the evolution of a single star: (i) mass loss by stellar winds and (ii)
the final collapse.

1.1. Stellar Winds
Hot (> 104 K) massive stars (mZAMS & 30 M⊙) lose a non-negligible fraction of their mass by
line-driven winds. This process depends on metallicity (Z): the mass-loss rate by stellar winds
can be described as ṁ ∝ Zβ , where Z is the absolute metallicity (see e.g., Vink et al., 2001 and
references therein). The most recent models suggest that β is not constant, but depends at least on
the luminosity of the star (Gräfener and Hamann, 2008; Vink et al., 2011; Chen et al., 2015): the
closer the luminosity L∗ is to the Eddington value LEdd, the higher the mass loss, basically canceling
the dependence on metallicity when L∗ & LEdd.

In single stars, stellar winds uniquely determine the final mass of the star at the onset of collapse.
If we consider a star with mZAMS = 90 M⊙ and metallicity Z = 0.02 (i.e., approximately solar), its
final mass will be only mfin ∼ 30 M⊙; while the same star with Z < 0.0002 has mfin & 0.8mZAMS.
The final mass of a starmfin is the strongest upper limit to the mass of the BH.
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1.2. Core-Collapse Supernovae
For example, Fryer (1999) and Fryer and Kalogera (2001) suggest
that if the final mass of the star is mfin & 40 M⊙, the fate of the
star is to collapse to a BH directly, without supernova, because the
binding energy of the outer stellar layers is too big to be overcome
by the explosion. Fryer et al. (2012) elaborate on these early
results proposing that themass of the compact object depends not
only onmfin but also on the final mass of the carbon-oxygen core.
Alternatively, O’Connor and Ott (2011) proposed the role of the

compactness parameter ξM =
M/M⊙

R(≤M)/1000 km
: if the compactness

is small (e.g., ξ 2.5 ≤ 0.2 − 0.4), the SN explosion is successful,
otherwise we expect the star to collapse directly. All of these
simplified models as well as more sophisticated ones (e.g., Ertl
et al., 2016) point toward a similar direction: if the star ends its
life with a large final mass, its carbon-oxygen core grows larger, its
compactness is generally higher, and so on. Hence, we expect that
metal-poor stars, which retain a larger fraction of their mass to
the very end and develop larger cores, are more likely to collapse
to BHs directly, producing larger BHs (e.g., Mapelli et al., 2009,
2010; Zampieri and Roberts, 2009; Belczynski et al., 2010). This
simplified picture seems to agree with observations, but must be
taken with several grains of salt: we need a vigorous step forward
in core-collapse SN simulations and theoretical models, before
we can draw robust conclusions (e.g., Burrows et al., 2018).

1.3. Pair Instability
Core-collapse SNe are not the only mechanism that can end the
life of a massive star. When the helium core of a star grows to
≥ 60 M⊙ and the central temperature reaches ∼ 109 K, electron
and positron pairs are produced at an efficient rate, leading to
a softening of the equation of state. The star undergoes pair
instability (PI, Ober et al., 1983; Bond et al., 1984; Heger et al.,
2003; Woosley et al., 2007): oxygen, neon, and silicon are burned
explosively and the entire star is disrupted leaving no remnant,
unless its helium core is ≥ 130 M⊙. In the latter case, the gravity
of the outer layers is so big that the star collapses to a massive BH
directly as an effect of PI (Heger et al., 2003). Smaller helium cores
(∼ 30−60M⊙) are associated with a less dramatic manifestation
of PI: the softened equation of state drives oscillations of the core
(pulsational PI, Barkat et al., 1967; Woosley et al., 2007; Chen
et al., 2014; Yoshida et al., 2016); during each oscillation the star
sheds some mass till it finds a new equilibrium to a lower core
mass, but leaves a BH smaller than expected without pulsational
PI (Belczynski et al., 2016a; Spera and Mapelli, 2017; Woosley,
2017, 2019; Marchant et al., 2019; Stevenson et al., 2019; Renzo
et al., 2020).

From the combination of PI, core-collapse SNe and stellar-
wind mass loss prescriptions, we expect the mass spectrum of
BHs to behave roughly as shown in Figure 1. In particular, PI is
expected to carve a gap in the mass spectrum of BHs between
∼ 50(−10,+20) M⊙ and ≈ 120 − 130 M⊙. The uncertainty
on this mass gap is mainly connected with uncertainties nuclear
reaction rates (Farmer et al., 2019), on the collapse of the residual
hydrogen envelope and on the role of stellar rotation (Mapelli
et al., 2020). Within this framework, we predict a reasonable
mass range for stellar-origin BHs to be ∼ 3 − 65 M⊙ (assuming

the most conservative value for the lower edge of pair-instability
mass gap). If exotic metal-poor stars exist with mass mZAMS >

250 M⊙, these might directly collapse to intermediate-mass BHs
(IMBHs) with mass > 100 M⊙.

2. BINARY BH FORMATION IN ISOLATION

The scenario highlighted in the previous section assumes that
the progenitor star is single. But gravitational waves have shown
the existence of BBHs with a very short orbital separation: the
initial separation of a BBH must be of the order of few ten
solar radii for the BBH to merge within a Hubble time by
gravitational-wave emission. This challenges our understanding
of binary star evolution. A close binary star undergoes several
physical processes during its life, which can completely change its
final fate (see e.g., Eggleton, 2006). The most important processes
include mass transfer and common envelope, tides and natal
kicks (Hurley et al., 2002).

Mass transfer and common envelope are crucial in this regard.
After main sequence, a massive star can develop a stellar radius
as large as several thousand solar radii. Hence, if this star is
member of a binary system and its orbital separation is of few
hundred to few thousand solar radii, the binary system undergoes
Roche lobe overflow and possibly common envelope (Ivanova
et al., 2013). If common envelope occurs between a BH and a
giant companion star, the BH and the core of the giant star orbit
about each other surrounded by the giant’s envelope: they feel
a strong gas drag from the envelope and lose kinetic energy,
inspiralling about each other. This transfers thermal energy to
the envelope, which might trigger the ejection of the envelope. If
the envelope is not ejected, the binary systemmerges prematurely
giving birth to a single BH. In contrast, if the envelope is ejected,
the final binary system is composed of the BH and the core of
the giant. Because of the spiral-in, the final semi-major axis of
the binary is just few solar radii, much smaller than the initial
one. If the naked core collapses to a BH without receiving a
strong natal kick, the system becomes a BBH with a short orbital
period, able to merge within a Hubble time. Unfortunately, our
understanding of common envelope is still poor (see Fragos
et al., 2019 for a recent simulation) and this uncertainty heavily
affects our knowledge of BBH demography. The left-hand panel
of Figure 2 is a schematic view of the isolated binary evolution
channel through common envelope.

Several alternative scenarios to common envelope have been
proposed (de Mink and Mandel, 2016; Mandel and de Mink,
2016; Marchant et al., 2016). For example, in the over-contact
binary evolution, Marchant et al. (2016) show that, when two
massive stars in a tight binary are fast rotators, they remain fully
mixed as a result of their tidally induced high spin; in this case, the
binary avoids premature merger even if it is overfilling its Roche
lobe and might evolve into a tight BBH.

The isolated binary evolution scenario has several
characteristic signatures. In the common envelope isolated
binary evolution scenario, the masses of the two BHs span from
∼ 3 M⊙ up to ∼ 45 M⊙ (see e.g., Giacobbo and Mapelli, 2018)
and the mass ratios are preferentially close to 1 (although all
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FIGURE 1 | Predicted compact object mass (Mrem) as a function of the zero-age main-sequence (ZAMS) mass of the progenitor star (MZAMS) for 11 different

metallicities, ranging from Z = 2× 10−4 to Z = 2× 10−2, as shown in the legend. The yellow area highlights the pair-instability mass gap. These models are obtained

with the SEVN population synthesis code (Spera et al., 2019), using PARSEC evolutionary tracks (Bressan et al., 2012) and the delayed model from Fryer et al. (2012).

See Spera and Mapelli (2017) for details.

mass ratios q = m2/m1 & 0.1 are possible, see e.g., Giacobbo
and Mapelli, 2018). Most processes in binary evolution tend to
produce aligned spins (e.g., Rodriguez et al., 2016), while the
magnitude of the spin is basically unconstrained (but see Qin
et al., 2018, 2019; Fuller and Ma, 2019 for some recent attempts
to quantify spins). Mass transfer episodes and gravitational-wave
decay are expected to efficiently damp eccentricity, so that
almost all isolated binaries have near zero eccentricity in the
LIGO-Virgo band. Finally, local merger rate densities span from
a few to few thousand events Gpc−3 yr−1, depending on the
details of common envelope and natal kicks (e.g., Dominik et al.,
2013; Belczynski et al., 2016b; Mapelli et al., 2017; Giacobbo and
Mapelli, 2018, 2020; Mapelli and Giacobbo, 2018; Neijssel et al.,
2019; Santoliquido et al., 2020; Tang et al., 2020). The scenarios
which include alternatives to common envelope predict an even
stronger prevalence of systems with q ∼ 1, a preferred mass
range ∼ 25 − 60 M⊙ (Marchant et al., 2016), high and aligned
spins, zero eccentricity in the LIGO-Virgo band, and long delay
times (& 3 Gyr, de Mink and Mandel, 2016). Local merger rate
densities are expected to be ∼ 10 Gpc−3 yr−1 (Mandel and de
Mink, 2016), with large uncertainties.

3. BINARY BH FORMATION IN STAR
CLUSTERS

Star clusters are among the densest places in the Universe. There
is a plethora of star clusters, with their distinguishing features:
(i) globular clusters (Gratton et al., 2019) are old (∼ 12 Gyr)
and massive systems (∼ 104−6 M⊙), (ii) nuclear star clusters
can be even more massive (∼ 107 M⊙) and lie at the center of

many galaxies, in some cases coexisting with the supersessive BH
(Neumayer et al., 2020), (iii) open clusters and young star clusters
(Portegies Zwart et al., 2010) are generally less massive (up to
∼ 105 M⊙) and short lived (less than a few Gyr), but are the main
birthplace of massive stars in the local Universe (Lada and Lada,
2003).

The central density of star clusters is sufficiently high (& 103

stars pc−3) and their typical velocity dispersion sufficiently low
(from a few to a few tens of km s−1, possibly with the exception
of nuclear star clusters) that their central two-body relaxation
time (Spitzer, 1987) is shorter than their lifetime. This has one
fascinating implication: the orbits of stars and binary stars in a
star cluster are constantly perturbed by dynamical encounters
with other cluster members. This process affects the formation
and the evolution of binary BHs in multiple ways (e.g., Portegies
Zwart and McMillan, 2000).

Dynamical Exchanges
Dynamical exchanges occur when a binary system interacts
with a single stellar object and the latter replaces one of the
members of the binary. We have known for a long time that
massive objects are more likely to acquire companions by
dynamical exchanges (Hills and Fullerton, 1980). Since BHs
are among the most massive objects in a star cluster, they are
very efficient in forming new binaries through exchanges (e.g.,
Ziosi et al., 2014).

During a three-body encounter, a binary star exchanges a
fraction of its internal energy with the third body. If the binary is
particularly tight (hard binary), such encounters tend to harden
the binary star, i.e., to increase its binding energy by reducing
its semi-major axis (dynamical hardening). In the case of a BBH,
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FIGURE 2 | Left: cartoon of isolated BBH formation through common envelope; Right: cartoon of dynamical BBH formation in star clusters.

this hardening might speed up the merger, because it drives the
semi-major axis of the BBH in the regime where orbital decay
by gravitational waves becomes efficient (see e.g., Figure 10 of
Mapelli, 2018). On the other hand, the least massive BBHs can
even be ionized, i.e., split by strong dynamical encounters with
massive intruders.

Mergers of Massive Stars
Mergers of massive stars are common in dense young star
clusters, because of the short dynamical friction timescale
(Portegies Zwart et al., 2010). Under some assumptions, these
mergers can lead to the formation of massive BHs (mBH > 60
M⊙), with mass in the pair-instability gap (Di Carlo et al., 2019a).
In star clusters, such massive BHs can acquire a companion by
dynamical exchanges, leading to the formation of BBHs in the
mass gap. A fast sequence of stellar mergers in the dense core of
a young star cluster (also known as runaway collision, Portegies
Zwart et al., 2004; Giersz et al., 2015) might even lead to the
formation of intermediate-mass BHs (IMBHs), i.e., BHs with
mass mBH > 100 M⊙, especially at low metallicity (Mapelli,
2016).

The dynamical processes we briefly summarized above (and
in the right-hand panel of Figure 2) leave a clear imprint
on BBHs. First, dynamically formed BBHs extend to higher

masses than isolated BBHs: they might even be in the pair-
instability mass gap or in the IMBH regime (Di Carlo et al.,
2019b; Rodriguez et al., 2019). Secondly, dynamical exchanges
randomize the spin direction, leading to an isotropic distribution
of BH spins. In contrast, isolated BBHs have a preference
for aligned spins (Rodriguez et al., 2016; Gerosa et al., 2018).
Third, dynamics can trigger the merger of BBHs with non-
zero eccentricity even in the LIGO-Virgo band (Samsing et al.,
2014; Rodriguez et al., 2018; Samsing, 2018; Zevin et al., 2019).
These signatures provide an unique opportunity to differentiate
among the isolated and the dynamical formation channel when
the number of gravitational-wave detections will be of the order
of a few hundreds (e.g., Zevin et al., 2017; Bouffanais et al.,
2019).
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