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We explore novel methods of recovering the original spectral line profiles from data
obtained by instruments that sample those profiles with an extended or multipeaked
spectral transmission profile. The techniques are tested on data obtained at high spatial
resolution from the Fast Imaging Solar Spectrograph (FISS) grating spectrograph at the
Big Bear Solar Observatory and from the Interferometric Bidimensional Spectrometer
(IBIS) instrument at the Dunn Solar Telescope. The method robustly deconvolves wide
spectral transmission profiles for fields of view sampling a variety of solar structures
(granulation, plage, and pores) with a photometrical precision of <1%. The results and
fidelity of the method are tested on data from IBIS obtained using several different
spectral resolution modes. The method, based on convolutional neural networks (CNN),
is extremely fast, performing about 105 deconvolutions per second on a CPU and
106 deconvolutions per second on NVIDIA TITAN RTX GPU for a spectrum with 40
wavelength samples. This approach is applicable for deconvolving large amounts of data
from instruments with wide spectral transmission profiles, such as the Visible Tunable
Filter (VTF) on the DKI Solar Telescope (DKIST). We also investigate its application
to future instruments by recovering spectral line profiles obtained with a theoretical
multi-peaked spectral transmission profile. We further discuss the limitations of this
deconvolutional approach through the analysis of the dimensionality of the original and
multiplexed data.

Keywords: convolutional neural networks, astronomical instrumentation, spectroscopy, deep learning,

deconvolution algorithm

1. INTRODUCTION

The finite spectral resolution of real instruments affects the inferred signal by blending the
intensities at different wavelengths. This phenomenon is problematic for (solar) spectral lines, since
the shape of a line encodes essential information about a range of heights in the solar atmosphere.
However, some instruments use a lower spectral resolution (broader spectral transmission profile)
to increase instrument throughput and reduce integration times. Such a broad spectral point-
spread function (sPSF) results fundamentally in a multiplexed sampling of the line profile, with the
information from a given portion of the original spectral profile sampled multiple times at various
positions in the sPSF (i.e., with varying relative attenuation) as the transmission function is tuned
through the line. This means that it should be possible to recover much of the underlying spectral
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information from this linear combination of samplings. The
concept of exploiting this multiplexing to recover spectral
information was originally developed by Caccin and Roberti
(1979) and later Baranyi and Ludmány (1983) in order to
reconstruct spectral profiles sampled by the relatively broad
(0.15–0.5 Å FWHM) sPSF of the tunable Universal Birefringent
Filter (UBF) (Beckers et al., 1975). The method developed, which
relied on analytical descriptions of the sPSF, was employed by
Caccin et al. (1983) and Baranyi (1986) to reconstruct H-alpha
and Na D line profiles recorded through a UBF. However,
the data at the time were recorded on photographic film
and the method was sensitive to noise and computationally
demanding. The current observational demands for high-
resolution imaging have resulted in instruments based on Fabry-
Pérot-interferometers that have sPSF’s that are again suitable for
this method.

In this work, we seek to evaluate machine-learning techniques
that can retrieve higher-resolution spectra from instrumentally
broadened spectral profiles. The effect of spectral smearing on the
line shape is shown in the left panel of Figure 1 with an example
spectrum of Ca II 8,542 Å from the FISS/BBSO (Chae et al., 2013)
spectrograph. The orange line is the spectrum as observed with
the full spectral resolution of FISS of about R∼150,000 (where
spectral resolution R is defined as the wavelength of observation
divided by the FWHMof the profile). Instead, the blue line shows
the same spectrum convolved with a Lorentzian-shaped sPSF
with R∼45,000. Given the typical shape of an absorption line, the
convolution with a broad sPSF raises the intensity around the line
core and broadens the wings of the profile.

This smearing tends to increase the similarity among different
spectral profiles, also reducing the spatial contrast and the
ability to identify small scale structures in images of the solar
atmosphere. An example of this is presented in Figure 1 (central
and right panels), with observations in the core of the Ca II 8,542
Å line from the Interferometric Bidimensional Spectrometer
(IBIS) (Cavallini, 2006) instrument at the Dunn Solar Telescope
The same FOV was observed at the instrument’s normal high
spectral resolution (R∼200,000), but also at a much lower
spectral resolution (R∼50,000), which was achieved by removing
the “narrow passband” Fabry-Pérot interferometer (FPI) from
the optical path (Reardon and Cavallini, 2008). We can see
the reduced contrast in the FOV with lower spectral resolution
which deteriorates the identification of the chromospheric
features. Hence, mitigation of the degraded spectral purity of
our observations is essential for furthering our understanding of
the Sun.

Furthermore, the compressible nature of spectral lines as
suggested by Asensio Ramos et al. (2007) could allow the
sampling and subsequent recovery of the full spectral profiles
with a lesser number of measurements by using a suitably
adopted measurement basis. This approach could improve
instrumental performance by increasing the sampling cadence
through a reduction in the number of instrumental tuning steps
needed to sample the line.

In this paper we perform experiments to test the applicability
of Convolutional Neural Networks (CNNs) to perform the
de-multiplexing of spectral line profiles in different scenarios.
We examine the photometric accuracy than can be achieved

with these techniques. Finally, we discuss the limitations
on the precision of the recovered profiles based on the
dimensionality of the data derived from maximum-likelihood
intrinsic-dimensionality estimate (Levina and Bickel, 2004).

2. A DEEP LEARNING APPROACH

We utilize deep Convolutional Neural Networks (CNNs) for
the deconvolution process as they are powerful function
approximators which are widely used for pattern recognition
and image processing (Goodfellow et al., 2016). We used an
encoder-decoder architecture because it can extract the relevant
features from noisy data (encoder) and then recreate the signal of
interest from the latent space (decoder). The architecture of the
network consists of three convolutional layers, followed by three
symmetric upsampling (“deconvolutional”) layers, followed by
two dense layers with dimensions of the output data. The
three consecutive convolutional layers (and their corresponding
upscaling layers) have [5, 10, 20] filters and used a three-pixel
kernel. Rectified Linear unit (RELU) activation function was used
for all layers with the exception of the last one where we have
used a linear activation function (He et al., 2016). Furthermore,
in section 3 we add the input layer to the last dense layer of
the network to improve the performance of the network. This
is due to the fact that in this architecture, the network has to
estimate only the corrections to the convoluted signal instead
of recreating the whole spectral line profile. However, this will
cause the core of the spectral profile to be poorly fit since the
most significant corrections are needed there (as can be seen
in left panel of Figure 1). To alleviate this issue, we introduce
a custom loss function which is a weighted mean square error.
The weights are chosen inversely proportional to the intensity of
the line profile so as to emphasize the precision of the recovered
profiles in the line core. We trained our network with the Adam
optimizer (Kingma and Ba, 2014) for about one thousand epochs
before satisfactory convergence was achieved. The network was
implemented with Keras under Tensorflow (Abadi et al., 2015)
and can be found in the public repository of the project.

3. SPECTRAL DECONVOLUTION WITH
CNN

3.1. Deconvolution of Synthetic Data From
FISS
To test the CNN approach for sPSF deconvolution, we utilized
Ca II 8,542 Å data from the FISS/BBSO (Chae et al., 2013)
instrument (R∼150,000) obtained on June 22, 2016.We created a
training set by convolving each spectral profile with a Lorentzian
sPSF with an effective R ∼ 45,000 [corresponding roughly to
the FWHM of IBIS’s FPI #2 transmission profile (Reardon and
Cavallini, 2008)]. The bottom left panel of Figure 2 shows a
sample profile from the FISS instrument in blue and convolved
with the FPI #2 profile in green. The CNN was trained with
spectra from a single raster scan 100 × 250 spatial pixels
corresponding to 16 × 20 arcseconds on the Sun centered on a
pore near disk center which took 16.5 s. Satisfactory convergence
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FIGURE 1 | (Left) Comparison of a sample line profile of the Ca II 8,542 Å line from the FISS dataset described in section 3 before (orange) and after (blue)
convolution with the sPSF (magenta); The magenta curve is the transmission profile used for convolving the orange profile to get the blue one (corresponding to FP 2
of IBIS with R∼45,000); (Center and Right) Comparison of chromospheric quiet Sun region observed with IBIS with low spectral resolution (R∼50,000) on the central
panel and with high spectral resolution (R∼200,000) in the right panel.

was accomplished in about 1,000 epochs with the relative RMS
error at the last epoch of the training reaching about 1.5× 10−4.

The performance of the CNN was tested on a different raster
(data not seen by the network previously) from FISS of the
same region of the Sun acquired 5 minutes after the scan used
for training. The line core intensity value and position was
determined as the minimum of a parabola fitted to the 7 points
around the pixel position with the lowest intensity. The core
width of the line profile was measured (following Cauzzi et al.,
2009) as the bisector width at the intensity equal to half the
difference between intensity of the line core and the intensity at a
fixed offset of 0.4 Å from the wavelength position of the line core.

The algorithm achieved 0.76% precision photometry of the
line core intensity and 2.5% precision retrieving the line core
width. These results are illustrated in the right column of
Figure 3. This example shows the robustness of the ML approach
for retrieving spectral line profiles. The algorithm takes about
7× 10−6 s for a single inversion of 40 point spectrum on an Intel
i7-4780HQ CPU and only 0.3 × 10−6 s on a NVIDIA TITAN
RTX GPU. We take into account the I/O overhead for the GPU
inversions, as we used a dataset of 16 million spectra with 40
wavelengths points (similar to the VTF full CCD readout) which
amounts to about 20% of thememory of the GPU. This method is
slightly faster than the scipy.signal.deconvolve algorithm which
uses a digital filter, but the latter cannot reproduce the wings
of the line well due to boundary effects. Compared to more
computationally intensive algorithms such as the Richardson-
Lucy (Richardson, 1972) deconvolution algorithm, we found that
our algorithm is about 100 times faster. Furthermore, it does
not require fine tuning of parameters once a suitable training set
is provided.

3.2. Deconvolution of Real Spectral Data
From IBIS
To test the method on real Fabry-Pérot data we obtained a
dataset with the IBIS instrument at the DST with high (R ∼

200,000) and low (R ∼ 50,000, similar to the FISS tests above)
spectral resolution of the same region of the Sun. We achieved
the different spectral resolutions by utilizing the fact that the IBIS
instrument consists of two Fabry-Pérot (FP) interferometers in
series, one of which has a profile three times narrower than the
other (the components of the IBIS instrument are presented in
the left panel of Figure 3). Hence, if we take the narrower FP (FP
#1) out of the optical path, we obtain observations with a lower
spectral resolution. We imaged a region near disk center of the
Sun in the Ca II 8,542 Å line, where we scanned a spectral region
of 4.4 Å centered around the line core with a spacing of 50 mÅ.
We acquired five separate exposures at each wavelength [for post-
processing MOMFBD (van Noort et al., 2005) reconstruction to
minimize seeing effects] which resulted in two datasets of the
same solar structures with different spectral resolution taken 4
minutes apart. We applied the deconvolution algorithm to the
these datasets using as the input the lower spectral resolution
data obtained with a single FP and as the expected output the
higher spectral resolution dataset obtained with both FPs. Images
from the two datasets are presented in the central and right panels
of Figure 1.

We had limited success with deconvolving this dataset as the
spectral profiles had changed significantly even over the 4 minute
interval between the datasets. To illustrate this, the central panel
of Figure 3 shows the density plot of the quasi-continuum in
the wings of the two datasets. The lack of obvious correlation
(confirmed by visual inspection of the data) shows that the
structures on the solar surface have significantly changed between
the two datasets were obtained (consistent with granular lifetimes
of∼8 minutes).

To explore the validity of this deconvolution approach, we
chose a subset of spatial pixels from the IBIS scans based on
certain criteria to identify spectral profiles that did not change
significantly between the two samplings. This step allows the
CNN to train primarily on the effects from the spectral smearing,
not the evolution of the solar atmosphere. The imposed criteria
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FIGURE 2 | (Top left) Continuum image/Line core intensity of Ca II 8542 Å of the FISS dataset used for the experiment in sections 3.1 and 4; (Bottom left) A sample
profile (coordinates [4, 21] in our datacube, green cross in top left panel) shown before convolution with wide SPSF (blue line), after the convolution (green) and after
the deconvolution with the CNN (black); (Top right) Comparison of the line core intensity recovered with the algorithm—true line profile (black line is the one-to-one
line). The approach for measuring line intensity and width are described in section 3.1. (Bottom right) Same as the previous panel but for the line core width of the Ca
II 8,542 Å line.

are that the measured Doppler velocity change1 between the two
consecutive samplings is no greater than half a resolution element
(0.6 km/s) and that the location of the pixel in the cumulative
distribution of intensity and width (relative to the other pixels
sampled at the same spectral resolution) does not change by
more than 5 percentiles. The expected vs. deconvolved core
intensities are presented in the right panel of Figure 3 (compare
to Figure 2). The scatter is larger than the FISS synthetic data
due to the effects of solar surface evolution occurring between
the acquisition of the two components of the training set, whose
correction is beyond the scope of this project. Future tests of this
method could emphasize obtaining a more nearly cotemporal
training dataset by restricting the range of the spectral scan
around line core, reducing the time separation between the
different spectral resolution scans significantly. We note that
distinct training datasets, derived at different times or even

1For symmetric line profiles, Doppler velocity does not depend on R.

using a separate instrument (e.g., a slit spectrograph), could
be applied to multiple datasets obtained with a low-spectral-
resolution FP instrument [e.g., VTF (Kentischer et al., 2012)
at the DKIST (Tritschler et al., 2016)], under the assumption
that: (a) the sPSF and straylight of each instrument is well
characterized; and (b) the same general types of solar spectral
profiles are sampled in both cases.

4. RECOVERING UNDERSAMPLED
SPECTRAL PROFILES WITH
MULTI-PEAKED SPSF

It was suggested by Asensio Ramos et al. (2007) that not all
wavelength points in a spectral line are linearly independent
and that recovery of a full spectral profile with lesser number
of measurements (in a suitably chosen basis) is possible. This
presents us with the opportunity to extract useful information
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FIGURE 3 | (Left) Transmission profile of the components of the IBIS Instrument centered around 8,542 Å. The transmission profiles of the two Fabry-Pérot etalons
are in red and blue; the 8,542 Å prefilter profile is the black line; The effective transmission profile of the instrument is presented in green; (Center) Histogram of the
wing intensity in the data sets with single FP (low R) and both FPs (high R) in the optical system; (Right) The result of the deconvolution algorithm applied to real IBIS
data (same as top right panel in Figure 2) for the line core intensity.

FIGURE 4 | (Top left) The spectral transmission profile is (magenta scaled by 9 for best representation) applied to the spectral profiles overlaid over the average Ca II
8,542 Å line. (Top right) Sample spectral profile from the multiplexing (red), the retrieved spectral profile (green) and the original spectral profile (blue); (Bottom left)

Retrieved line core intensity from this approach vs the original line core intensity; (Bottom right): Maximum Likelihood Intrinsic Dimensionality Estimate for the original
FISS data, the multiplexed FISS data and the data convolved with the wide sPSF in section 3.1.

from undersampled spectral line profiles which can result
in more efficient spectral sampling or better compression
techniques for space-based missions.

To test the ability of CNNs to recover spectral profiles
multiplexed with multipeaked transmission profiles as suggested
in Asensio Ramos and López Ariste (2010) we created
a transmission profile of a hypothetical dual Fabry-Pérot
interferometer with spacings of the etalons of 2.6 and 0.058
cm with 0.99 reflectance coatings. The resulting transmission
profile of this hypothetical instrument is presented in the top

left panel of Figure 4 overplotted on the Ca II average line
profile. The transmission profile was designed such that the
higher-spectral-resolution FP generatesmultiple peaks within the
chromospheric core of the solar spectral line while the lower-
spectral-resolution FP selects a limited range such that 80% of
the transmitted light is coming from the three central peaks. The
properties of the FPs were chosen to optimize the precision of the
deconvolutions. If the peaks of the transmission profile are too
close or too far apart, the neural network’s performance drops.
Further optimization of the FP setup can be achieved through
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exploration of the dimensionality of the data as described in the
following paragraphs.

We applied the transmission profile to the FISS data used
in section 3.1 where we downsampled the number of spectral
samples by 3 for this particular example. A sample deconvolution
is presented in the top right panel of Figure 4, which shows a
good agreement between the original and deconvolved spectral
profiles. The bottom left of Figure 4 shows the scatter of the
derived line core intensity of the multiplexed line vs. the original
line core intensity. We achieve a RMS of the retrieved line core
intensity of about 2% for this numerical setup. This is about
three times worse than the previous experiment with FISS data
in section 3.1. Our result is close to the precision obtained by
Asensio Ramos (2010) where the author uses a single FP etalon
with a prefilter.

To explain the lower precision of this multipeaked-
multiplexing deconvolution approach compared to the
deconvolution of the wide sPSF in section 3, we evaluate
the dimensionality of the data. The dimensionality quantifies
how much information is contained in the observations and can
be used to evaluate the losses due to the spectral multiplexing.
We computed the maximum likelihood intrinsic estimated
dimensionality [MLIED, introduced by Levina and Bickel (2004)
and suggested for spectroscopic use by Asensio Ramos et al.
(2007)], which is an estimate of the dimensionality of the data
based on phase density distribution. The bottom right panel of
Figure 4 shows the dimensionality estimate for the original data,
the multiplexed data, and the data convolved with a wide sPSF
vs. the number of neighboring spectra used for the computation
of the dimensionality. We find that the dimensionality of the
multipeaked-multiplexed data is lower than the data convolved
with a wide sPSF, while the original data has the highest
dimensionality. It is expected since the convolution process
introduces a loss of information. This greater loss of information
is why the multipeak approach (as modeled in this section)
results in a lower precision compared to the results those for a
single, broad sPSF.

This approach, evaluating spectral dimensionality, could be
used in future design studies of instruments as a way toward
building more efficient instruments, optimizing throughput and
preservation of spectral information. Further work is needed
to connect the dimensionality analysis (and resulting choice
of instrumental sPSF) with the accuracy and precision of the
retrieval of physical information from the spectral profiles via the
optimal choice of parameters for the FP system.

5. CONCLUSIONS AND FUTURE WORK

We have presented a novel way to perform deconvolution of
spectral data with deep learning. Our method is robust and
reliable if the sPSF of the instrument is well known a priori and
we have a reliable training set. Our method can deconvolve a
single, 40-wavelength spectrum in 0.3 microsecond on a NVIDIA
TITAN RTX GPU with a photometric precision of the line core
intensity of <1%. The speed of the proposed algorithm makes
it very effective for processing large numbers of spectra, with

further improvements possible if the deconvolution is performed
on batches of data on a GPU. With the next generation of solar
instruments (such as the VTF at the DKIST), which will produce
terabytes of spectral data per day, the speed of deconvolutional
techniques will become increasingly important.

The technique was demonstrated here only for non-polarized
spectroscopic measurements, but full spectropolarimetric
measurements (including also the spectral dependence of the
circularly and linearly polarized components of the signal)
are a key aspect of observational solar science. There is no
conceptual reason why this method could not be extended to the
measurement of the Stokes profiles, given suitable training sets.
However, since the polarized components of the signal tend to be
just a small fraction of the overall signal (a few percent or less),
any systematic errors introduced into the deconvolved profiles
might bias the recovery of the information about the magnetic
field. Future work will evaluate the application of this method to
this common usage scenario.

We successfully recovered spectral line profiles observed
with a multipeaked spectral transmission profile, as suggested
before in Asensio Ramos and López Ariste (2010), using a
theoretical dual Fabry-Pérot etalon instrument with optically
realistic parameters. Our numerical experiments showed that a
careful choice in the separation of the peaks of the transmission
profile allows the retrieval of the spectral line profiles with a
photometric precision of about ∼ 2% while requiring 3 times
fewer spectral samples. This could be used in the design of
future Fabry-Pérot based instruments that would require fewer
measurements (higher cadence) and potentially have higher
transmission (shorter exposure times).

Future work will include obtaining a more suitable dataset
for improving the results from the experiment with IBIS data
in section 3.2. In order to apply this deconvolutional approach
to real observations in a routine manner we will need training
sets consisting of low and high resolution data of a variety of
regions on the Sun. One approach would be to obtain nearly
simultaneous observations of the same region of the Sun with
low and high spectral resolution instruments at comparable
spatial resolution. Another feasible way to create the training
dataset is by numerically convolving data from a high-spectral-
resolution instrument with the known sPSF of the low-spectral-
resolution instrument to generate simulated observations Both
approaches have advantages and disadvantages but provide
alternative approaches to real world applications of this method.
We therefore hope that future instruments will consider the
approaches described here and in Asensio Ramos and López
Ariste (2010) to leverage the advantages of machine learning
and compressive sensing to more efficiently retrieve information
from the solar spectrum and further our understanding of
the Sun.
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