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The wealth of observational data available has been instrumental in investigating physical

features relevant to solar granulation, supergranulation and Active Regions. Meanwhile,

numerical models have attempted to bridge the gap between the physics of the solar

interior and such observations. However, there are relevant physical quantities that can

be modeled but that cannot be directly measured and must be inferred. For example,

direct measurements of plasmamotions at the photosphere are limited to the line-of-sight

component. Methods have consequently been developed to infer the transverse plasma

motions from continuum images in the case of the Quiet Sun and magnetograms in

the case of Active Regions. Correlation-based tracking methods calculate the optical

flows by correlating series of images locally while other methods like “Coherent Structure

Tracking” or “Balltracking” exploit the coherency of photospheric granules to track them

and use the group motions of the granules as a proxy of the average plasma flows

advecting them. Recently, neural network computing has been used in conjunction with

numerical models of the Sun to be able to recover the full velocity vector in photospheric

plasma from continuum images. We experiment with a new architecture for the DeepVel

neural network which takes inspiration from the U-Net architecture. Simulation data of

the Quiet Sun and Active Regions are then used to evaluate the response at granular

and supergranular scales of the aforementioned method.

Keywords: active region, granulation, photosphere, neural networks, simulations, sunspots, supergranulation,

velocity fields

1. INTRODUCTION

The Quiet Sun (i.e., in the absence of significant magnetic activity), hereafter QS, is filled with
patterns of flows at multiple spatial and temporal scales. Granules, which typically have a diameter
of 1 Mm and a lifespan of the order of 6 min, are associated with hot plasma upwellings
whereas the intergranular lanes surrounding them, smaller in comparison, are associated with
cold plasma sinking back in the interior. Supergranular flows are found at greater scale, i.e.,
above 20 Mm in diameter and with lifespans that range from hours to nearly 2 full days. This
supercell-like pattern in the Quiet Sun is only revealed indirectly, for example by analyzing
Dopplergrams and magnetograms or by tracking the average motion of granulation. It is believed
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that supergranulation originates from the deeper layers in
the convection zone (see Rieutord and Rincon, 2010, and
references therein). More advanced techniques can provide
actual images of supergranular cells (Potts and Diver, 2008; Attie
et al., 2009, 2016). Sunspots, which appear as dark spots in
intensitygrams with diameters ranging from 1 to 50 Mm and
lifespans of the order of days, are signatures of the magnetic
activity of the Sun (i.e., Active Regions, hereafter ARs), as
revealed bymagnetograms. The strongmagnetic field in sunspots
inhibits the convective motions of the plasma. Centered around
sunspots are moat flows which start from the penumbra and
expand horizontally and radially outward (i.e., away from
the sunspot). This flow was originally revealed through the
analysis of spectroheliograms and moving magnetic features in
magnetograms (Sheeley, 1969; Hagenaar, 2005). When the moat
flow encounters the neighboring supergranular cells of the quiet
sun, it forms a ring-shaped boundary around the sunspot that
looks like a rather dynamic, yet coherent supergranule-like cell
structure (Attie et al., 2018).

Dopplergrams measure only the line-of-sight component of
the aforementioned flows (Welsch et al., 2013). Methods were
thus developed to recover the missing transverse component of
the velocity vector by either inversion of the velocity vector as
is done here or by finding the electric fields instead and then
applying the ideal MHD Ohm’s law to find velocity (Kazachenko
et al., 2014). Subsequent applications include the estimation of
energy fluxes (Kazachenko et al., 2015), the inferral of boundary
conditions from which to drive simulations of the Sun (Fisher
et al., 2015) or the inferral of synthetic observations such as
velocity field reconstructions for data assimilation in a model
of the solar photosphere, as suggested in Abbett and Fisher
(2010). Reconstruction algorithms for ARs solve the magnetic
induction equation with the vertical velocity and magnetic field
vector being assigned Dopplergrams and vector magnetograms
(e.g., Longcope, 2004; Schuck, 2005, 2006, 2008). Intensitygrams
are used to track optical flows in the Quiet Sun, i.e., the
displacement that needs to be applied to one image subfield to
recover the image subfield at the following timestep. Optical flows
were shown to be highly correlated with actual plasma motions
averaged over spatial scales of the order of a megameter or larger
and timescales of the order of 30 min (Rieutord et al., 2001).
Correlation-based tracking methods such as “Local Correlation
Tracking” (LCT: November and Simon, 1988) and “Fourier-
based Local Correlation Tracking” (FLCT: Fisher and Welsch,
2008) calculate optical flows by correlating series of images
locally while other methods like “Coherent Structure Tracking”
(CST: Rieutord et al., 2007) or “Balltracking” (Potts et al.,
2004) exploit the coherency of photospheric granules to track
them and use the group motions of the granules as a proxy
of the average plasma flows advecting them. Recently, a deep-
learning algorithm was trained with computations performed
by a radiative magnetohydrodynamics (MHD) simulation of
the solar photosphere to emulate the physics that relate the
continuum intensity to the velocity vector that appears in the
model equations (i.e., not an optical flow). DeepVel1 (Asensio

1DeepVel is an open-source neural network: https://github.com/aasensio/deepvel.

Ramos et al., 2017) is a fully-convolutional neural network that
infers instantaneous depth-dependent transverse plasmamotions
from pairs of intensitygrams (i.e., the same inputs as tracking
methods). Outputs are dependent on the spatial resolution,
cadence and physics of the model presented during training.
Versions of the neural network have been trained for the QS
(e.g., Asensio Ramos et al., 2017; Tremblay et al., 2018) and ARs
(e.g., Tremblay et al., submitted) and have been used to generate
synthetic SDO/HMI observations, i.e., estimates of the plasma
motions that reflect a numerical simulation but appear as though
they were derived from the Helioseismic Magnetic Imager (HMI:
Schou et al., 2012) onboard the Solar Dynamics Observatory
(SDO: Hoeksema et al., 2014).

A comparison between a sample of intensity-based methods
as a function of spatial scales identified DeepVel as best
capturing the physics of the Quiet Sun at granular scales whereas
it appeared less effective at supergranular scales (Tremblay
et al., 2018). In this paper, we use simulation data at the
HMI instrument spatial resolution to test whether adapting
the architecture of the DeepVel neural network to that of
a U-Net (Ronneberger et al., 2015) could further improve
reconstructions at supergranular scales in the QS and ARs.
Additionally, the architecture ismodified to accept a combination
of intensitygrams, magnetograms, and Dopplergrams as input to
account for the physics and spatial features they encompass and
their impact on the inferred flows.

2. METHODOLOGY

U-nets are widely used for image segmentation, e.g., the
segmentation of coronal holes in solar data (Illarionov and
Tlatov, 2018). This neural network inherits its name from
the shape of its architecture which features a contracting
branch, a bottleneck and an expansive branch (Ronneberger
et al., 2015). The contracting branch identifies the dominant
features at a given spatial scale through convolutional layers and
downsampling operations to halve the resolution. The number
of channels is doubled at each level. The expansive branch
mirrors the contracting branch, upsampling from the low spatial
resolution output of the bottleneck to higher resolution to
provide context. Skip-connections concatenate the outputs of the
contracting branch with inputs of each level of the expansive
branch to localize features (Ronneberger et al., 2015). Moreover,
U-nets have the ability to train for specific spatial scales by
freezing (i.e., stop training) the weights and biases of other layers.

Photospheric flows range from subgranular scales (< 1 Mm)
to supergranular scales (> 10 Mm). We adapt the architecture
of DeepVel to that of a U-net to probe spatial scales that range
from the pixel-size to the size of the sub-images presented to
the neural network during training. We refer to Asensio Ramos
et al. (2017) for a detailed description of the original DeepVel
architecture. Each level of the contracting branch features in
succession a 2D convolutional layer with a kernel of 3 by 3 pixels2,
batch normalization (Ioffe and Szegedy, 2015), a ReLU activation
function and a Dropout layer of 50 % to avoid overtraining.
Downsampling is then performed using 2D convolutional layers
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with strides of two pixels in all directions. The expanding branch
mirrors the contracting branch, with the output of each level
being concatenated with the output from the contracting branch
at the same spatial scale. Upsampling in the expansion branch
is performed by repeating each row and each column twice.
Unlike the classic U-net architecture, the number of channels
is maintained throughout all layers (i.e., 128 channels), with the
exception of the bottleneck (i.e., 256 channels), to diminish the
number of free parameters to adjust.

Versions of the U-net architecture (hereafter DeepVelU) are
trained, validated and tested using the Tremblay et al. (2018)
dataset for the Quiet Sun (hereafter the QS dataset) and the
Tremblay et al. (submitted) dataset which features a mixture of
ARs and QS (hereafter the ARs dataset). Training of the DeepVel
and DeepVelU neural networks relies on a similar approach
to that of measuring optical flows: two consecutive images
(i.e., intensitygrams, Dopplergrams, and/or magnetograms) are
presented to the network and their differences and dominant
features are used to reconstruct a velocity vector. The ARs dataset
is required in addition to the QS dataset as a neural network
trained exclusively with examples of the QS will fail to extrapolate
the flows in Sunspots whose physical mechanisms governing
plasma motions in relation to the observed light intensity is very
different from those in the QS Tremblay et al. (submitted). On
the other hand, although it is presented a dataset that differs
from the one used for training, the neural network is capable of
generalizing the behavior for granulation (Tremblay et al., 2018,
Tremblay et al., submited).

The QS dataset was derived from the STAGGER magneto-
convection simulation2 of solar granulation (Stein, 2012; Stein
andNordlund, 2012). It features maps of the continuum intensity
Ic at 500 nm and the velocity vector Ev at optical depths τ =
{1, 0.1, 0.01} with a field of view of dimensions 96.768 by 96.768
Mm2, spatial resolution 1x = 1y = 96 km pixel−1 and time
step 1t = 60 s for a total duration of 6 h (i.e., many turnover
times). The ARs dataset for Ic, Ev and EB was generated by the
MURaM simulation of a Sunspot (Rempel and Cheung, 2014).
The Sunspot has a diameter of ≈ 25 Mm and is featured at the
center of a field of view of 98.304 by 98.304 Mm2. The spatial
resolution of the dataset is the same as the QS dataset (i.e., 1x =
1y = 96 km pixel−1), but the cadence 1t is higher at 45 s
which coincides with the cadence of SDO/HMI level-2 products
(Hoeksema et al., 2014).

The simulation data was convolved with the SDO/HMI
point spread function (PSF; Wachter et al., 2012) before being
resampled to the SDO/HMI spatial resolution near disk center
(1x = 1y ≈ 368 km pixel−1) using nearest-neighbor sampling.
Patches of 48 by 48 pixels2 were then extracted at random
positions in planes of constant τ and at consecutive times
t = {ti, ti + 1t} where i is a randomly-selected timestep.
The QS dataset includes 2,000 training examples and 200
validation examples for Ic(x, y, τ = 1, t = {ti, ti + 1t}) and
Evt(x, y, τ = {1, 0.1, 0.01}, t = ti). The ARs dataset is comprised
of 3200 training examples and 900 validation examples for

2Computations performed by the STAGGER code are available for download:
http://steinr.pa.msu.edu/~bob/96averages/.

Ic(x, y, τ = 1, t = {ti, ti + 1t}), Evt(x, y, τ = 1, t = ti), the
vertical velocity vz(x, y, τ = 1, t = {ti, ti + 1t}) and the vertical
magnetic field Bz(x, y, τ = 1, t = {ti, ti + 1t}). Computations
were performed on a NVIDIA-GTX-960 GPU using the Keras
library with the Tensorflow backend. Weights and biases were
only updated when the mean square error for the validation
set improved.

3. RESULTS

Full field-of-view maps in sequences of 30 to 80 time steps from
the QS and ARs datasets are used as test sets to evaluate the
performance of DeepVelU at scales equal to and greater than
those analyzed in Tremblay et al. (2018).

3.1. Metrics
Agreement between the simulation vector field [Evref] (i.e.,
the reference case) and the reconstructed vector field [EvD] is
quantified by the mean absolute errors

Eabs = 〈(vref,x − vD,x)
2 + (vref,y − vD,y)

2〉 , (1)

and mean relative errors

Erel =

〈

(vref,x − vD,x)2 + (vref,y − vD,y)2

(v2ref,x + v2ref,y)

〉

, (2)

where 〈·〉 is the spatial average operator. Additionally, the
Pearson linear correlation coefficient between Evref and EvD,
denoted [C], is introduced as a measure of similarity (or
discrepancy) that takes into account different spatial scales of the
vector amplitude. The averaged normalized dot product

A ≡

〈

Evref · EvD

||Evref|| ||EvD||

〉

, (3)

is used to assess the global orientation of the inferred
velocity vectors with respect to the simulation, with values
A = ±1 for parallel/anti-parallel vectors and A = 0 for
perpendicular vectors.

Response as function of the spatial scales is evaluated through
the power spectrum of the total kinetic energy of the transverse
plasma motions. Energy densities

[

E(k)
]

are computed following
the definition of Rieutord et al. (2010) for a square dataset (i.e.,
nx = ny and 1x = 1y):

E
(

k
)

=
nx1x

2π

∑

∀k′∈[k,k+dk]/2π

v̄2x(k
′)+ v̄2y(k

′)

2
, (4)

where v̄x and v̄y are the discrete Fourier transform of vx and vy,
and the wavenumber

[

k
]

is an inversemeasure of the spatial scale.
Finally, for each velocity field, we compute the unsigned

“shear” component of the vertical Poynting flux [Sz] and then
integrate it over the field-of-view (Liu and Schuck, 2012; Welsch,
2015):

Sz = −
1

4π

(

EvD · EBref,t
)

Bref,z , (5)
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where
[

EBref,t
]

and
[

Bref,z
]

are the transverse component and the
vertical component of the magnetic field, respectively, computed
from the reference simulation. Note that the total Poynting flux
also includes the “emergence” term, which contains Doppler
velocity. However the division into “shearing” and “emergence”
terms is done conceptually, since both terms involve emergence
of magnetized plasma across the photosphere (Welsch, 2015).

3.2. Quiet Sun Test Set
Plasma motions EvD,t(τ ≈ 1) inferred by DeepVelU are
consistent with Evref,t , producing divergent velocity vectors at the
center of granules and converging vectors in the intergranular
lanes (Figure 1A). Furthermore, the new architecture results in
reduced errors for EvD,t(τ ≈ 1), ( E∇ × EvD,t)z and E∇t · EvD,t in
comparison to DeepVel (Table 1). Both methods underestimate
flow amplitudes, as suggested by the scatterplot in Figure 1B,
but the similarity with the reference velocity amplitudes increases
from C = 0.841 to 0.947 when transitioning from DeepVel to the
DeepVelU architecture (Table 1). Furthermore, the RMSE, Eabs
and Erel at τ ≈ 1 decrease from 0.777 km s−1, 0.694 km s−1 and
70.6% to 0.501 km s−1, 0.442 km s−1 and 43.7 %, respectively.
Similar improvements are noted for the divergence and the curl
of the flow fields (Table 1). The global orientation of the velocity
vectors is also improved, with A increasing from 0.786 when
using DeepVel to 0.914 when using DeepVelU. Further analysis
identified regions of downflows as the largest sources of errors
(not shown). These are typically associated with intergranular
lanes which feature more complex flow structures confined in
small areas.

Similar conclusions are drawn for the inversion of flows at
optical depths τ ≈ {0.1, 0.01} (i.e., at higher geometrical heights
above the surface) from Ic(τ ≈ 1) (Figure 1 and Table 1). More
specifically, τ ≈ 0.1 is just beyond the height where the reversal
of the granulation pattern occurs (i.e., a few hundred kilometers
above the surface: Cheung et al., 2007), with the center of
granules becoming colder than the intergranular network. At τ ≈
0.01, this pattern is more diffused but remains well-correlated
with the surface granulation pattern (not shown). By extension,
the structures in Evt(τ ≈ {0.1, 0.01}) correlate with Ic(τ ≈ 1).

The power spectrum of the kinetic energy (Equation 4) as
a function of the spatial scales shows an improved response
for DeepVelU at supergranular scales (k−1 ≈ 100 Mm) with
respect to the test set (green and blue curves in Figure 2A).
The transition from a loss to a gain in signal with respect to
DeepVel (orange curve) occurs close to the spatial scale that is
achieved through downsampling at the bottleneck of the U-net
architecture (k−1 ≈ 2.944 Mm). This change is interpreted as
the new architecture favoring signal at supergranular scales over
the pixel-size and granular scales to further optimize the cost
function during the training process.

In addition, Figure 2C shows a significant improvement for
DeepVelU in the correlation between the inferred velocities
and the simulation at all time and spatial scales for the QS.
DeepVel’s flows have the surprising disadvantage of losing
correlation at increasing time averages by a few percents, whereas
the correlation increases for DeepVelU. Similarly, DeepVel’s
correlations significantly decreases at greater spatial averages,

e.g., from (resp.) C ≈ 0.85 to C ≈ 0.62 between 368 km
and 5 Mm (resp.), which is not the case for DeepVelU which
consistently correlates very well with the simulation at C > 0.9.
The latter, however, plateaus near 3 Mm which coincides with
the pixel-size in the bottleneck of the U-net architecture. Future
work will test if increasing the field-of-view of the training images
affects favorably the ability to improve the correlation further at
greater spatial scales.

3.3. Active Region Test Set
Figures 3A,C,E show a subset of velocity field inversions
generated by DeepVelU from single-quantity inputs that relate
to SDO/HMI level-2 data products i.e., intensitygrams, line-of-
sight magnetograms,andDopplergrams, respectively. Only a sub-
field of 50 by 50 pixels2 is shown for clarity. The position of
this patch in the field-of-view was selected to highlight distinct
flow structures in the presence of ARs: the center of the sunspot
(upper right corner), the flows in the penumbra, the moat-like
flows around the latter (close to the diagonal connecting the
upper left corner to the lower right corner), and finally, the
granulation like in the QS dataset (lower left corner). Scatterplots
in Figure 3were computed over the sub-field whereas themetrics
compiled in Table 1 were computed over the entire field-of-
view and include all tested combinations of inputs. An arbitrary
threshold of |Bref,z| ≥ 100 G is set to compute metrics that are
specific to the AR and the magnetic field network. Regions where
|Bref,z| < 100 G are interpreted as QS.

DeepVel and DeepVelU generate very similar velocity fields
from consecutive intensitygrams, with DeepVel performing
slightly better where |Bref,z| < 100 G and DeepVelU (Figure 3A)
improving absolute and relative errors slightly where |Bref,z| ≥
100 G (Table 1) but underestimating low amplitude velocities
(Figure 3B). In fact, the performances of the two neural networks
are comparable to that of DeepVel with the QS dataset (Table 1).
For both architectures, the signal for the continuum intensity
inside the Sunspot results in less effective flow inversions where
|Bref,z| ≥ 100 G. More specifically, the mean relative error
almost doubles when transitioning from the QS to strong field
regions and the metric A describing the global orientation
of the vectors decreases to a value of about 0.55 (Table 1).
For this reason, different combinations of physical inputs were
tested to measure their impact on photospheric flows. Although
these tests were performed using the DeepVelU architecture, we
expect that similar conclusions can be drawn for the DeepVel
neural network.

The use of line-of-sight magnetograms as inputs instead of
intensitygrams slightly improves the errors where |Bref,z| ≥
100 G (Table 1), i.e., where there is the most signal in the
input data. Despite weak magnetic fields in the QS, the neural
network is capable of distinguishing individual granules and their
flow patterns (Figure 3C), but the errors are significantly larger
with greatly underestimated flow amplitudes (Figure 3D) and
misaligned vectors (Table 1). The overall performance is thus
worse due to a larger fraction of the field-of-view being covered
by QS (Table 1).

Dopplergrams, such as the ones depicted in the background
of Figures 3A,C,E, are the inputs that best capture the behavior
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FIGURE 1 | (Left) Patches of 50 by 50 pixels2 extracted from the 30-timestep-averaged transverse velocity fields EvD,t inferred by DeepVelU at optical depths (A)

τ ≈ 1, (C) τ ≈ 0.1, and (E) τ ≈ 0.01. The 30-timestep-averaged vertical velocity vz,ref (τ ≈ {1, 0.1, 0.01}) computed by the STAGGER simulation and resampled to the

SDO/HMI resolution is displayed as background (colorscale). (Right) Scatterplots comparing amplitudes |EvD,t| to |Evref,t| at optical depths (B) τ ≈ 1, (D) τ ≈ 0.1, and (F)

τ ≈ 0.01. The black line represents the expected solution (i.e., a coefficient of determination R2 = 1).
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TABLE 1 | Comparison between the 30-timestep-averaged EvD,t and Evref,t for the QS dataset and ARs dataset.

QS dataset Quantity τ RMSE Eabs Erel C A S

algorithm (units) (%) ∈ [0, 1] ∈ [−1, 1] (no units)

1.00 0.777 0.694 70.6 0.841 0.786 0.811

Evt 0.10 0.697 0.620 65.4 0.867 0.810 0.793

(km s−1) 0.01 0.553 0.491 70.3 0.852 0.791 0.729

1.00 0.735 0.577 195.7 0.912 − −

DeepVel E∇t · Evt 0.10 0.783 0.618 261.3 0.892 − −

(10−3 s−1) 0.01 0.931 0.733 199.9 0.884 − −

1.00 0.767 0.607 281.6 0.887 − −

( E∇ × Ev)z 0.10 0.796 0.630 301.9 0.871 − −

(10−3 s−1) 0.01 0.930 0.726 225.6 0.851 − −

1.00 0.501 0.442 43.7 0.947 0.914 0.796

Ev 0.10 0.473 0.416 43.8 0.945 0.907 0.805

(km s−1) 0.01 0.417 0.367 52.3 0.925 0.876 0.752

1.00 0.618 0.490 172.4 0.941 − −

DeepVelU E∇t · Evt 0.10 0.672 0.532 208.7 0.924 − −

(10−3 s−1) 0.01 0.864 0.682 179.9 0.913 − −

1.00 0.662 0.525 244.5 0.920 − −

( E∇ × Ev)z 0.10 0.689 0.546 244.5 0.908 − −

(10−3 s−1) 0.01 0.852 0.674 195.6 0.913 − −

ARs dataset Quantity |Bref,z| RMSE Eabs Erel C A S

algorithm (units) (G) (%) ∈ [0, 1] ∈ [−1, 1] (no units)

≥ 0 0.719 0.603 70.98 0.905 0.830 1.061

DeepVel Evt < 100 0.701 0.592 56.02 0.912 0.855 −

(inputs: Ic) (km s−1) ≥ 100 0.878 0.717 226.2 0.845 0.563 −

≥ 0 0.789 0.674 62.17 0.898 0.818 0.870

DeepVelU Evt < 100 0.787 0.680 58.20 0.904 0.844 −

(inputs: Ic) (km s−1) ≥ 100 0.814 0.618 103.4 0.847 0.556 −

≥ 0 1.174 1.023 88.18 0.723 0.588 0.864

DeepVelU Evt < 100 1.201 1.062 87.76 0.716 0.590 −

(inputs: Bz ) (km s−1) ≥ 100 0.848 0.618 92.53 0.834 0.565 −

≥ 0 0.645 0.550 55.24 0.928 0.860 0.896

DeepVelU Evt < 100 0.635 0.548 50.41 0.934 0.882 −

(inputs: vz ) (km s−1) ≥ 100 0.574 0.574 105.4 0.884 0.633 −

≥ 0 0.639 0.553 54.67 0.929 0.857 0.970

DeepVelU Evt < 100 0.574 0.564 52.46 0.929 0.874 −

(inputs: Bz , vz ) (km s−1) ≥ 100 0.574 0.440 77.60 0.927 0.678 −

≥ 0 0.602 0.519 52.52 0.937 0.863 0.872

DeepVelU Evt < 100 0.604 0.526 50.28 0.938 0.882 −

(inputs: Bz , Ic, vz ) (km s−1) ≥ 100 0.582 0.449 75.72 0.925 0.661 −

RMSE is the root mean squared error, Eabs is the mean absolute error (Equation 1), Erel is the mean relative error (Equation 2), C is the Pearson correlation coefficient, A is the spatially-

averaged normalized dot product (Equation 3) and S ≡
∫

|SD,z |dM/
∫

|Sref ,z |dM is the ratio between the integrals of the unsigned shear components of the Poynting fluxes Sz (EvD,t ) and

Sz (Evref ,t ) (Equation 5) over the full field-of-view M.

of flows in both QS and ARs (Table 1 and Figure 3F). The
granulation pattern from intensitygrams is clearly outlined in
Dopplergrams by the cold sinking plasma in the intergranular
lanes and the hot rising plasma at the center of granules.
Meanwhile convective motions are inhibited inside Sunspots.
However, flows in the penumbra are predicted by DeepVelU

to be almost purely radial with respect to the center of the
Sunspot (Figure 3E), whereas the simulation penumbral flows
resemble more closely those seen in Figures 3A,C. Although the
metric A was slightly improved in strong field regions, vector
orientations remain much less accurately reproduced than in the
QS (Table 1).
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FIGURE 2 | Power spectra of the total kinetic energy E(k) of the 30-timestep averaged transverse velocities as a function of the wavenumber k. (A) QS dataset. (B)

ARs dataset. (C) Pearson correlation between the simulated transverse velocity field in the QS as a function of time and spatial averaging windows. The latter is shown

with the full width at half maximum of the Gaussian kernel used.

Combining Bref,z and vref,z , which yielded the best
reconstructions for ARs and QS, respectively, significantly
improves the performance for ARs and the integrated Poynting
flux (Table 1). Magnetograms provide to Dopplergrams
additional signal inside Sunspots. Both quantities are coupled
physically to Evt through the magnetic induction equation,
which could further explain the increase in performance. The
addition of intensitygrams provides more context for the QS and
improves the metrics where |Bref,z| < 100 G, with very little to
no decrease in performance where |Bref,z| ≥ 100 G (Table 1).

The use of Dopplergrams or combinations of inputs in
DeepVelU improves the response in the power spectrum
of the kinetic energy for spatial scales larger than k−1 ≈
3 Mm (Figure 2B), which could again be related to the
spatial scales probed in the U-net’s bottleneck. Although
the power is generally underestimated, its variations as a
function of k are matched more consistently by DeepVelU,
with DeepVel generating more signal than the simulation at
supergranular scales.

4. CONCLUSION

We trained DeepVelU, a U-net-inspired architecture for the
DeepVel neural network, using simulations of the QS and ARs
and evaluated the method’s response as a function of spatial
and temporal scales. DeepVelU shows significant improvement
over DeepVel for the QS test set. The correlations for the latter
falls close to 0.6 at spatial scales of 5 Mm whereas it stays
consistently above 0.9 for DeepVelU; increasing at greater time
averages and plateauing at spatial scales above 3 Mm. Thus
DeepVelU’s QS model appears more effective than the other
tracking methods tested in Tremblay et al. (2018) against the
same dataset, with increased correlations and lower errors being
achieved over DeepVel at granular scales and over FLCT at
supergranular scales. The results for the ARs dataset are not
as conclusive, but may be further improved by training for
granulation, penumbra and sunspots separately. This approach
could, however, introduce discontinuities at the edges of the
different structures.
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FIGURE 3 | (Left) Patches of 50 by 50 pixels2 extracted from the 30-timestep-averaged EvD,t (τ ≈ 1) inferred by DeepVelU from (A) Ic(t = ti , ti + 1t), (C)

Bz (t = ti , ti + 1t), and (E) vz (t = ti , ti + 1t). The 30-timestep-averaged vz,ref computed by the MURaM simulation and resampled to the SDO/HMI resolution is

displayed as background (colorscale). (Right) Scatterplots comparing |Evref,t| to |EvD,t| inferred from a combination of intensitygrams Ic(t = ti , ti + 1t), magnetograms

Bz (t = ti , ti + 1t) and Dopplergrams vz (t = ti , ti + 1t). The black line represents the expected solution (i.e., R2 = 1). (Right) Scatterplots comparing |Evref,t| to |Evref,t|

inferred from a combination of (B) consecutive intensitygrams Ic(t = {ti , ti+1t}), (D) magnetograms Bz (t = {ti , ti+1t}) and Dopplergrams vz (t = {ti , ti+1t}), and (F)

Dopplergrams, intensitygrams and magnetograms.
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Current efforts are meant to be a proof of concept. Limitation
of the method include the input image dimensions in each
direction which must be a factor of 2n where n is the number of
downsampling or upsampling layers in the network architecture
(here n = 3). For example, the dimensions of the sub-images
(48×48 px2) presented to the network during training limited the
number of downsampling/upsampling layers in the architecture
to n = 3, corresponding to a spatial of about 3 Mm. This
could explain the plateauing of the correlation above this spatial
scale. In this context, development is underway for a deeper
version of DeepVelU (i.e., with more downsampling/upsampling
layers) that will be trained on (almost) full field-of-view images
(256 × 256 px2 or 94.192 × 94.192 Mm2) of the QS dataset
and that will also double (resp. halve) the number of filters after
each downsampling (resp. upsampling) operation. In addition,
the simulations do not model actual supergranulation which is
known to advect granules over spatial scales greater than 3 Mm.
Therefore it will be worth exploring further inferences on actual
photospheric observations. For example we plan to compare the
inferred supergranular (QS) and moat flow patterns (ARs) with
those of Attie et al. (2018) which uses a new implementation of
the “Balltracking” method that is more accurate than the one
of Potts et al. (2004) and that had not been tested by Tremblay
et al. (2018). Similarly, the MURaM simulation includes a deep
seated flow system with velocities in the 200–500 m/s range
which extends about 10 Mm past the sunspot boundary, which
seems in line with many observations of moat flows (Rempel,
2015). Using the data of both experiments (observations and
simulation), we will compare the moat flow patterns revealed by
DeepVel, DeepVelU and Balltracking.

The inclusion of Dopplergrams and line-of-sight
magnetograms as inputs in the neural network architecture,
both of which provide more signal than intensitygrams inside
sunspots and are tied to the transverse plasma motions through
the magnetic induction equation, have improved reconstructions
in the context of ARs and response at supergranular scales.
Evaluating the impact of additional inputs such as the transverse
magnetic field vector EBt which also appears in the magnetic
induction equation or its strength |EBt| which is not subjected to
ambiguities is left as future work.

Despite the changes in architecture and the success of the
neural network at capturing the spatial distribution of flows,
velocity amplitudes are generally underestimated in the QS and
overestimated in ARs by both DeepVel and DeepVelU. Future
efforts will be dedicated to improving the inferral of amplitudes.

All versions of the neural networks were trained to generate
synthetic data that is consistent with a given simulation and
the SDO/HMI cadence (if the velocity is multiplied by a factor
of 45/60 for the QS dataset) and spatial resolution near disk
center. SDO/HMI level-2 products can thus be used as input,
however one should first assess if the physics and preprocessing

of the training set is consistent with the observations presented
as input. For instance, SDO/HMI Dopplergrams measure
the superposition of the line-of-sight components of the
satellite motion, meridional flows, differential rotation, p-mode
oscillations, and plasma motions. Simulation Dopplergrams
only feature the latter two. Additional preprocessing steps
are thus required to correct SDO/HMI Dopplergrams for
the aforementioned effects (e.g., Welsch et al., 2013) or to
project the simulation data in the observations space prior to
training. The resulting velocity fields may then serve as synthetic
observations or first estimates when performing data assimilation
in anMHDmodel of the photosphere, or as boundary conditions
driving a simulation. The method may also be used to estimate
and evolve a Poynting flux vector that is representative of a given
epoch of the Sun.

The velocity vector that the neural networks are trying to
recover is the same vector as physics-based velocity inversion
methods, i.e., Evt such that the magnetic induction equation is
satisfied. Furthermore, DeepVelU best performed when using
Dopplergrams and magnetograms as input, with both quantities
appearing in the magnetic induction equation alongside Ev. The
training process may be revisited in the future to incorporate
more effectively the physics when estimating the plasmamotions,
e.g., through the loss function or a physics-informed network
(Raissi et al., 2019).
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