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Axisymmetric magnetic activity on the Sun and sun-like stars increases the frequencies

of the modes of acoustic oscillation. However, it is unclear how a corotating patch of

activity affects the oscillations, since such a perturbation is unsteady in the frame of the

observer. In this paper we qualitatively describe the asteroseismic signature of a large

active region in the power spectrum of the dipole (ℓ = 1) and quadrupole (ℓ = 2) pmodes.

First we calculate the frequencies and the relative amplitudes of the azimuthal modes of

oscillation in a frame that corotates with the active region, using first-order perturbation

theory. For the sake of simplicity, the influence of the active region is approximated by

a near-surface increase in sound speed. In the corotating frame the perturbations due

to (differential) rotation and the active region completely lift the (2ℓ + 1)-fold azimuthal

degeneracy of the frequency spectrum of modes with harmonic degree ℓ. Then we

transform to an inertial frame to obtain the observed power spectrum. In the frame

of the observer, the unsteady nature of the perturbation leads to the appearance of

(2ℓ + 1)2 peaks in the power spectrum of a multiplet. These peaks blend into each

other to form asymmetric line profiles. In the limit of a small active region (angular

diameter less than 30◦), we approximate the power spectrum of a multiplet in terms

of 2× (2ℓ + 1) peaks, whose amplitudes and frequencies depend on the latitude of the

active region and the inclination angle of the star’s rotation axis. In order to check the

results and to explore the non-linear regime, we perform numerical simulations using the

3D time-domain pseudo-spectral linear pulsation code GLASS. For small sound-speed

perturbations, we find a good agreement between the simulations and linear theory.

Larger perturbation amplitudes will induce mode mixing and lead to additional complex

changes in the predicted power spectrum. However linear perturbation theory provides

useful guidance to search for the observational signature of large individual active regions

in stellar oscillation power spectra.

Keywords: asteroseismology, stars: oscillations, stars: activity, stars: rotation, starspots

1. INTRODUCTION

Surface magnetic activity shifts the frequencies of the global modes of acoustic oscillation during
solar and stellar activity cycles (e.g., Pallé et al., 1989; García et al., 2010; Santos et al., 2016; Kiefer
et al., 2017). Asteroseismology can in turn inform us about the strength and the latitude distribution
of a band of magnetic activity on the stellar surface (Gizon, 2002; Chaplin et al., 2007; Gizon et al.,
2016). However, the signature of a single large active region in stellar p-mode oscillation power
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spectra has not been discussed so far in detail. A complication
inherent to this problem comes from the fact that the
perturbation associated with a rotating active region is not steady
in the observer’s frame. Yet, this problem is relevant, since large
starspots are detected in photometric variability (e.g., Mosser
et al., 2009) and using Doppler or Zeeman-Doppler imaging (e.g.,
Strassmeier, 2009).

We build on preliminary work by Gizon (1995, 1998) who
considered the effect of a single sunspot in corotation on the
low-degree modes of solar oscillation. The problem of unsteady
perturbations has been considered in the past in different
contexts. The interaction with acoustic modes with an inclined
magnetic field with respect to the stellar rotation axis was first
studied by Kurtz (1982) to explain the oscillation power spectra
of roAp stars (see also Kurtz, 2008). In the oblique pulsator model
the effect of the magnetic field dominates over rotation, and the
pulsation axis is aligned with the magnetic axis of the star. Only
modes of oscillations symmetric with respect to the magnetic
field axis are excited. The oblique pulsatormodel was extended by
Dziembowski and Goode (1985) to include the first-order effects
of the Coriolis and Lorentz forces, and then by Shibahashi and
Takata (1993) to account for the distortion in the eigenfunctions.
In parallel Dziembowski and Goode (1984) and Gough and
Taylor (1984) discussed the combined influence of rotation
and of an inclined magnetic field in corotation on multiplets
of solar acoustic oscillations. They explicitly mentioned that
each multiplet consist of (2ℓ + 1)2 components in the power
spectrum (this was already hinted at by Dicke, 1982).

We focus on stars with a level of activity higher than the
Sun, which may have active regions with larger surface coverage,
and therefore better chances for detection. Following the same
approach of Goode and Thompson (1992), we investigate
the linear changes induced in a nℓ-multiplet by an unsteady
perturbation that mimics an active region (AR) rotating with
the star. In particular we study the power spectra of the dipole
and quadrupole multiplets. For the active region we consider a
simple two-parameter model, where near-surface sound-speed
perturbations have a given amplitude and surface coverage.

As a complement to the linear analysis we also explore the
non-linear regime of the active-region perturbation by means of
3D numerical simulations, by studying the combined effect of
rotation and mode mixing on the observed power spectra using
the wave propagation code GLASS (see Hanasoge and Duvall,
2007; Papini et al., 2015). We note that the non-linear regime was
studied in the context of strong magnetic fields in roAp stars by,
e.g., Cunha and Gough (2000), Bigot and Dziembowski (2002),
Saio and Gautschy (2004), and Cunha (2006).

2. METHODS

2.1. Signature of an Active Region in the
Oscillation Power Spectrum: Linear Theory
2.1.1. Linear Problem in the Corotating Frame
The normal modes of oscillation of a spherically symmetric non-
rotating star are identified by three integer numbers: the radial
order n, the angular degree ℓ, and the azimuthal order m, with

|m| ≤ ℓ. In the absence of attenuation the degenerate mode

frequencies, ω
(0)
nℓ , are real and the displacement eigenvectors

ξ
(0)
nℓm(r) exp(−iω(0)

nℓ t) solve the linearized equation of motion

L
(0)[ξ (0)nℓm] = ω

(0)2
nℓ ξ

(0)
nℓm, (1)

where L(0) is a linear spatial differential operator (see e.g.,
Unno et al., 1989). Hereafter superscripts “(0)” denote quantities
associated with the non-rotating stellar model. In spherical polar
coordinates r = (r, θ ,φ), the displacement eigenfunctions can be
written as

ξ
(0)
nℓm(r) =

[
ξr,nℓ(r)er + ξh,nℓ(r)

(
eθ∂θ +

1

sin θ
eφ∂φ

)]
Ym
l (θ ,φ),

(2)

where Ym
l
(θ ,φ) are spherical harmonics and ξr,nℓ and ξh,nℓ are

functions of radius only that can be calculated numerically for a
given stellar model (see e.g., Aerts et al., 2010).

We now consider two perturbations, the first perturbation due
to rotation (e.g., Hansen et al., 1977) and the second arising from
the presence of an active region that rotates with the star (see
e.g., Schunker et al., 2013, for the effect of a sunspot on high-
degree modes). The latter perturbation is unsteady in an inertial
frame of reference. Here we aim to study how these two effects
may affect the fine structure of the modes within a fixed multiplet
(n, ℓ). The two perturbations taken together completely remove
the (2ℓ + 1)-fold degeneracy inm.

Provided that there is only one active region, it is much
more convenient to first tackle the problem in a reference
frame that is corotating with the active region, where both
perturbations are steady (e.g., Dziembowski and Goode, 1984;
Goode and Thompson, 1992). In Figure 1 we define three frames
of reference,R,Rβ , and R̂β , all three with the same origin at the
center of the star. FrameR is an inertial frame of reference, with
polar axis z pointing toward the observer. We denote by β the
colatitude of the active region in frame R. The other two frames
are both corotating with the active region at the angular velocity
�β about the rotation axis of the star. The polar axis of Rβ is
directed along the stellar rotation axis and is inclined by an angle i
with respect to z. The polar axis of the frame R̂β is inclined by the
angle β with respect to the rotation axis. In R̂β the center of the
active region is at the north pole. Provided that the starspot has
no proper motion, the angular velocity �β is equal to the surface
rotational angular velocity of the star at colatitude β . We call r =
(r, θ ,φ), rβ = (r, θβ ,φβ ), and r̂β = (r, θ̂β , φ̂β ) the spherical-polar
coordinates associated withR,Rβ , and R̂β , respectively.

We consider the effects of rotation and the active region
on the acoustic oscillations as small perturbations. In the
frame Rβ each mode is identified by the index M, −ℓ ≤

M ≤ ℓ, and we expand the displacement eigenvectors and
eigenfunctions as

ξnℓM(rβ ) =
ℓ∑

m=−ℓ

AM
m ξ

(0)
nℓm(rβ )+ δξnℓM(rβ )+ · · · (3)
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FIGURE 1 | Reference frames and angles of the problem. Arrows show the polar axes of the coordinate systems R, Rβ , and R̂β . The frame R is the inertial frame of

the observer. The rotation axis of the star is inclined by an angle i with respect to the line of sight. Both frames Rβ and R̂β corotate with the active region (shaded area)

at a constant angular velocity �β . The polar axis of Rβ is aligned with the rotation axis of the star. In Rβ the active region has a colatitude β and in R̂β it is at the pole.

and

ωnℓM = ω
(0)
nℓ + δωnℓM + · · · , (4)

where δξnℓM is orthogonal to each unperturbed eigenvector ξ
(0)
nℓm

with the same ℓ and n (e.g., Gough and Thompson, 1990), and the
coefficientsAM

m are (real) amplitudes. We write the wave operator
as

L = L
(0) + δL+ · · · , (5)

with

δL = L� + LAR, (6)

where L� accounts for the effects of rotation and LAR for the
effects of the active region.

To first order, the linearized equation of motion reduces to

ℓ∑

m=−ℓ

AM
m (L� + LAR) [ξ (0)nℓm]+ L

(0)[δξnℓM]

= 2ω(0)
nℓ δωnℓM

ℓ∑

m=−ℓ

AM
m ξ

(0)
nℓm + ω

(0)2
nℓ δξnℓM . (7)

We define the inner product between two vectors ξ (rβ ) and η(rβ )
on the Hilbert space of displacement vectors as

〈ξ , η〉 =

∫

V
ξ∗ · η ρdV , (8)

where ∗ denotes the complex conjugate and V is the stellar
volume. The unpertubed eigenmodes are normalized such that

〈
ξ
(0)
nℓm′ , ξ

(0)
nℓm

〉
= δm′m.

We take the inner product of Equation (7) with ξ
(0)
nℓm′ to obtain

ℓ∑

m=−ℓ

AM
m

〈
ξ
(0)
nℓm′ , (L� + LAR)[ξ

(0)
nℓm]

〉
+

〈
ξ
(0)
nℓm′ ,L

(0)[δξnℓM]
〉

= 2ω(0)
nℓ δωnℓMAM

m′ . (9)

BecauseL(0) is Hermitian symmetric and 〈ξ (0)nℓm′ , δξnℓM〉 = 0, the
second term on the left-hand side of the above equation vanishes

〈
ξ
(0)
nℓm′ ,L

(0)[δξnℓM]
〉
=

〈
L
(0)[ξ (0)nℓm′ ], δξnℓM

〉
= 0.

Introducing the perturbation matrix elements

Om′m = O�
m′m + OAR

m′m, (10)

where

O�
m′m =

1

2ω(0)
nℓ

〈
ξ
(0)
nℓm′ ,L�[ξ

(0)
nℓm]

〉
(11)

OAR
m′m =

1

2ω(0)
nℓ

〈
ξ
(0)
nℓm′ ,LAR[ξ

(0)
nℓm]

〉
, (12)
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Equation (9) becomes

ℓ∑

m=−ℓ

Om′mA
M
m = δωMAM

m′ . (13)

To simplify the notation we dropped the indices nℓ on δωM . In
matrix form,

OA
M = δωM A

M , (14)

where AM = [AM
−ℓ AM

−ℓ+1 . . . AM
ℓ ]T is the vector of amplitudes.

To find A
M and δωM we have to solve the above eigenvalue

problem, Equation (14).
The rotation perturbation matrix O� is diagonal in the frame

Rβ . The active region perturbation matrixOAR is not diagonal in
Rβ , but it can be obtained in terms of the diagonal perturbation
matrix ÔAR expressed in the frame R̂β ,

OAR = R(ℓ)ÔAR(R(ℓ))−1. (15)

where the matrix R(ℓ) performs a clockwise rotation of β about
the y axis that transforms the frame R̂β into the frameRβ . More
explicitly, the elements of the rotation matrix are given by

R
(ℓ)
mm′ = r

(ℓ)
mm′ (−β) = r

(ℓ)
m′m(β), (16)

where r(ℓ)mm′ (β) is given by Messiah (1960).

2.1.2. Frequency Splittings Due to Rotation
In the corotating frame Rβ the rotation perturbation matrix
is diagonal:

O�
m′m = δm′mδω�

m (17)

with

δω�
m = m

∫

V
Knℓm(r, θ)

[
�(r, θ)− �β

]
dV −m�βCnℓ + ηQ2ℓm ω

(0)
nℓ ,

(18)
where �(r, θ) is the internal angular velocity in an inertial frame.
By construction, the angular velocity�β of the frameRβ is�β =

�(R,β), where R is the radius of the star. The first and second
terms on the right-hand side of Equation (18) describe the effect
of differential rotation, where the functions Knℓm(r, θ) are the
rotational sensitivity kernels (Hansen et al., 1977) and Cnℓ are the
Ledoux constants (Ledoux, 1951) that account for the effect of the
Coriolis force. The last term describes the quadrupole distortion
of the star due to the centrifugal forces (e.g., Saio, 1981; Aerts
et al., 2010) and is proportional to the ratio of the centrifugal to
the gravitational forces at the surface η = �2R3/(GM), whereM
is the mass of the star and G is the universal constant of gravity.
The term Q2ℓm accounts for the quadrupolar component of the
centrifugal distorsion

Q2ℓm ≃
2/3

∫ 1
−1 P2(x)

[
P
|m|
ℓ (x)

]2
dx

∫ 1
−1

[
P
|m|
ℓ (x)

]2
dx

=
2ℓ(ℓ + 1)− 6m2

3(2ℓ + 3)(2ℓ − 1)
,

(19)

where Pmℓ (x) are the associated Legendre functions and P2 is the
Legendre polynomial of second order. The centrifugal term is
very small in the case of slow rotators like the Sun (Dziembowski
and Goode, 1992), however it increases rapidly with rotation and
it is not negligible anymore for stars rotating a few times faster
than the Sun (e.g., Gizon and Solanki, 2004).

2.1.3. Frequency Splittings Due to the Active Region
In this section we parametrize the effects of the active region on
the oscillation frequencies in the corotating frame R̂β , where the
active region is at the north pole.

Modeling the complex influence of surface magnetic fields
on acoustic oscillations is challenging (e.g., Gizon et al., 2010;
Schunker et al., 2013). Here we choose to drastically simplify the
physics and to focus on the geometrical aspects of the problem.

Assuming that the area of the active region covers a polar cap
with 0 ≤ θ̂β ≤ α (see Figure 1) and that the structure of the
active region is separable in r and θ̂β , we can parametrize the
perturbation matrix as follows:

ÔAR
m′′m′ = δm′′m′δωAR

m′ = δm′′m′ω
(0)
nℓ εnℓ G

m′′

ℓ (α) , (20)

where

Gm′′

ℓ (α) =
(2ℓ + 1)(ℓ − |m′′|)!

2(ℓ + |m′′|)!

∫ 1

cosα

[
P
|m′′|
ℓ (x)

]2
dx (21)

is a geometrical weight factor that accounts for the surface
coverage of the active region. For small values of α, Gm′′

ℓ (α)
decreases fast as |m′′| increases (Figure 2). Since the value of
Gm′′

ℓ (α) does not depend on the sign of m′′, the eigenvalues of
OAR are degenerate in |m| (see also, e.g., Kurtz and Shibahashi,
1986).

The parameter εnℓ is a measure of the relative magnitude of
the active region perturbation and contains all the physics. From
studies of local helioseismology (e.g., Gizon et al., 2009; Moradi
et al., 2010; Schunker et al., 2013), it is known that the net effect of
an active region is to increase the frequencies of acoustic modes,
i.e., waves propagate faster in magnetic regions and thus εnℓ is
positive. Since the active region introduces a perturbation that
is strongly localized near the surface, the value of εnℓ increases
with radial order n. A proper calculation of the value of εnℓ goes
beyond the scope of the present study. Instead, we parametrize
the active region perturbation as an increase in sound speed near
the surface. Following Papini et al. (2015), we write

εnℓ =

∫

AR
1c2(r)

(
1

r
∂r

(
r2ξr,nℓ(r)

)
− ℓ(ℓ + 1)ξh,nℓ(r)

)2

ρ0(r)dr

×

(
2ω(0)2

nℓ

∫

V
||ξ

(0)
nℓm||

2ρ0dV

)−1

, (22)

where ρ0(r) is the density of the unperturbed stellar background
and 1c2(r) is the radial change in the squared sound speed.
Here the integral is over the radial extent of the active region.
In section 2.2 we will further specify the effective sound-
speed perturbation.
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FIGURE 2 | (A) Geometrical weight factor Gm′′

ℓ (α) defined by Equation (21) as a function of angular degree ℓ for m = 0, ±1, ±2, at fixed α = 8◦. (B) Gm′′

ℓ (α) as a

function of α for ℓ = 2. The red curves show the parabolic approximations for G0
ℓ (α) in the limit of small α (see section 3.2.3, Equation 59).

Using Equation (15), the perturbation matrix elements in
frameRβ are

OAR
m′m = ω

(0)
nℓ εnℓ

ℓ∑

m′′=−ℓ

Gm′′

ℓ (α)r(ℓ)m′′m′ (β)r
(ℓ)
m′′ m(β). (23)

We note that for ℓ ≤ 3 and α . 30◦, we have G0
ℓ(α)≫ Gm′′

ℓ (α),
where |m′′| 6= 0, and therefore the dominant eigenvalue is

OAR
00 = ω

(0)
nℓ εnℓG

0
ℓ(α), see Equation (20).

2.2. Numerical Setup for the Linear
Problem
We now introduce the internal rotation model and the active
region parameters, used to illustrate the theory. We consider a
star with a rotation period of 8 days, about one third the rotation
period of the Sun. This choice of rotation period ensures that the
azimuthal modes in a multiplet are well separated in frequency
space. For the internal rotation profile, we take

�(r, θ)/2π =

{
(1447− 183 cos2 θ − 253 cos4 θ) nHz r > 0.7R⊙,
1447 nHz r < 0.7R⊙,

(24)

which is a scaled model of solar differential rotation as in Gizon
and Solanki (2004). The centrifugal term has a significant effect.
It shifts the m = 0 mode and introduces an asymmetry in

the shifts for positive and negative azimuthal orders m, with a
maximum frequency shift of more than 100 nHz in the case of
a multiplet near 3 mHz. Therefore this term must be included
when performing the analysis.

From observations of p-mode frequency changes during the
solar cycle, Libbrecht and Woodard (1990) showed that the
(positive) frequency shifts are almost independent of ℓ and
increase with frequency, thus indicating that the effects of
magnetic activity on acoustic oscillations are confined to the
surface. Assuming that the perturbation covers two pressure scale
heights below the photosphere and setting 1c2/c2 ≃ 10% there,
Equation (22) gives εnℓ ≃ 0.003 at frequencies near 3 mHz.
The surface coverage of a stellar active region, as inferred from
Doppler imaging, ranges from a percent up to 10% (Strassmeier,
2009). Here we consider two different surface coverages of either
4% or 7%, corresponding to cosα = 0.92 or 0.86 (α ≃ 23◦ or
30◦). Finally, we consider an active region at a colatitude of either
β = 20◦ (near the pole) or 80◦ (near the equator).

In the following section we focus on two multiplets with
(ℓ, n) = (1, 18) and (2, 18). For each of these modes we solve
the eigenvalue problem (14) by means of Jacobi’s method (Press
et al., 1992). For the calculation of the unperturbed eigenmodes

(ω(0)
nℓ , ξ

(0)
nℓm) we use the ADIPLS software package (Christensen-

Dalsgaard, 2008) and solar Model S as the reference structure
model (Christensen-Dalsgaard et al., 1996). The unperturbed

frequencies ω
(0)
nℓ /2π of the dipole and quadrupole modes are
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2695.40 and 2756.95 µHz, respectively. We note that the choice
of reference solar model is unimportant for the present study.

2.3. Power Spectrum in the Observer’s
Frame: (2ℓ + 1)2 Peaks
Given particular values for α, β , and εnℓ the eigenvalue problem
(14) is fully specified and can be solved. In this section we use the
solutions (3) and (4) to build a synthetic power spectrum in the
observer’s frame, in order to relate the results to observations.

We need to find an expression that connects the eigenmodes
to the observed intensity fluctuations. For the sake of simplicity,
we assume that the variation I(θβ ,φβ , t) induced by the
acoustic oscillations in the emergent photospheric intensity is
proportional to the Eulerian pressure perturbation p of the
acoustic wavefield (e.g., Toutain and Gouttebroze, 1993), as
measured at the stellar surface r = R. The pressure perturbation
p is related to the wavefield displacement ξ through the linearized
adiabatic equation

p = −ρ0c
2
0∇ · ξ − ξ · ∇P0,

where c0 and P0 are, respectively, the sound speed and
the pressure of the unperturbed stellar model. The pressure
perturbation pnℓM(r, θβ ,φβ ) of the modeM is

pnℓM = −ρ0c
2
0∇ · ξnℓM − ξnℓM · ∇P0, (25)

where ξnℓM is given by Equation (3). To leading order, we have

pnℓM(rβ ) =
ℓ∑

m=−ℓ

AM
m p

(0)
nℓm(rβ ) (26)

with

p(0)m (R, θβ ,φβ ) = −ρ0c
2
0∇ · ξ (0)m − ξ (0)m · ∇P0,

where we dropped the subscripts nℓ. Acoustic oscillations in stars
are stochastically excited and damped by turbulent convection,
therefore I(θβ ,φβ , t) is a realization of a random process. Since
the perturbation is steady in the frame Rβ , this random process
is stationary in that frame. An expression for the intensity
fluctuations I(θβ ,φβ ,ω) in Fourier space with the required
statistical properties is

I(θβ ,φβ ,ω) ∝
ℓ∑

M=−ℓ

pM(R, θβ ,φβ )L
1/2
M (ω)NM(ω)

∝

ℓ∑

M=−ℓ

ℓ∑

m=−ℓ

AM
mYm

ℓ (θβ ,φβ )L
1/2
M (ω)NM(ω), (27)

where the NM(ω) are independent complex Gaussian random
variables, with zero mean and unit variance:

E
[
NM′

∗(ω′)NM(ω)
]
= δM′Mδω′ω. (28)

In Equations (27) and (28) we only consider the positive-
frequency part of the spectrum (ω and ω′ > 0) since I(θβ ,φβ , t)

is real. The negative-frequency part is related to the positive
part by I(θβ ,φβ ,−ω) = I∗(θβ ,φβ ,ω). The function LM(ω)
is a Lorentzian

LM(ω) =

[
1+

(
ω − ωM

Ŵ/2

)2
]−1

, (29)

appropriate for describing the power spectrum of an
exponentially damped oscillator with full width at half maximum
(FWHM) Ŵ (see e.g., Anderson et al., 1990).

We transform Equation (27) back to the time domain
by inverse Fourier transformation to obtain I(θβ ,φβ , t). The
intensity I(θ ,φ, t) as seen by the observer in the inertial frame
R is obtained by applying a passive rotation of Euler angles
(0,−i,�β t) to express Ym

ℓ (θβ ,φβ ) in terms of θ and φ (Messiah,
1960):

Ym
ℓ (θβ ,φβ ) = e−im�β t

ℓ∑

m′=−ℓ

Ym′

ℓ (θ ,φ)r(ℓ)m′m(−i). (30)

In the frequency domain, the intensity fluctuations become

I(θ ,φ,ω) =

ℓ∑

M=−ℓ

ℓ∑

m=−ℓ

ℓ∑

m′=−ℓ

AM
mYm′

ℓ (θ ,φ)r(ℓ)m′m(i)

×L
1/2
M (ω −m�β )NM(ω −m�β ), (31)

where we used the property r(ℓ)m′m(−i) = r
(ℓ)
mm′ (i). Since LM(ω −

m�β ) peaks at frequencyω = ωM+m�β , the intensity spectrum
observed in the inertial frame has (2ℓ+ 1)2 peaks, corresponding
to all combinations ofm andM.

To obtain the full-disk integrated intensity fluctuations Iobs(ω)
we perform an integration over the visible disk of the star:

Iobs(ω) =

∫ 2π

0
dφ

∫ π/2

0
dθ I(θ ,φ,ω)W(θ) cos θ sin θ ,

where W(θ) is the limb-darkening function. The components
withm′ 6= 0 vanish upon integration over φ, thus

Iobs(ω) =
ℓ∑

M=−ℓ

ℓ∑

m=−ℓ

BMmL
1/2
M (ω −m�β )NM(ω −m�β ), (32)

with BMm = AM
m Vℓ r

(ℓ)
m0(i) and

Vℓ =

∫ 2π

0
dφ

∫ π/2

0
dθ Y0

ℓ (θ ,φ)W(θ) cos θ sin θ . (33)

The matrix elements r(ℓ)m0(i) are written explicitly in terms of the
associated Legendre polynomials (Messiah, 1960):

r
(ℓ)
m0(i) = (−1)m

√
(ℓ −m)!

(ℓ +m)!
Pmℓ (cos i). (34)

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 6 December 2019 | Volume 6 | Article 72

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Papini and Gizon Asteroseismic Signature of a Large Active Region

FIGURE 3 | Perturbations to the mode eigenfrequencies in the frame that is corotating with the active region, for the multiplets with (ℓ, n) = (1, 18) (A) and with

(ℓ, n) = (2, 18) (B). The star is Sun-like and rotates with a scaled solar differential rotation profile (rotation period is approximately 8 days). The active region perturbation

is specified by εnℓ = 0.003, α = 23◦, and β = 80◦. The rotational frequency of the active region at colatitude β is �β/2π is 1.504 µHz. The frequency of the mode

M = 0 is the most shifted. (C,D) The (2ℓ + 1)2 peaks of the power spectrum as seen in the observer’s frame, for an inclination angle i = 80◦. For each m, the

M-components are identified with different colors: red for M = 0, black for M = 1, blue for M = −1, orange for M = 2, and pink for M = −2. The peaks with the same

colors are statistically correlated to each other (according to Equation 66).

A realization of the power spectrum is given by

P(ω) = |Iobs(ω)|
2

=

∣∣∣∣∣

ℓ∑

M=−ℓ

ℓ∑

m=−ℓ

BMmL
1/2
M (ω −m�β )NM(ω −m�β )

∣∣∣∣∣

2

,

(35)

which depends on 2ℓ + 1 independent realizations of complex
Gaussian random variables. The expectation value of P(ω) is

P(ω) = E
[
P(ω)

]
=

ℓ∑

m=−ℓ

ℓ∑

M=−ℓ

PMm LM(ω −m�β ). (36)

As mentioned earlier, the power spectrum displays (2ℓ + 1)2

Lorentzian peaks, centered at frequencies
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ωM
m : = ωM +m�β = ω

(0)
nℓ + δωM +m�β , (37)

with peak power

PMm : = (BMm )2 =
(ℓ − |m|)!

(ℓ + |m|)!

[
VℓA

M
mP

|m|
ℓ (cos i)

]2
. (38)

Example power spectra for a dipole and a quadrupole multiplet
are shown in Figure 3. The frequencies and amplitudes of the
(2ℓ + 1)2 peaks are obtained from Equations (37) and (38),
using the limb-darkening function quoted by Pierce (2000) to
calculate Vℓ.

Figure 3 also displays the different contributions to the
frequency splittings due to rotation and to the active region
perturbation in the corotating frameRβ . For both multiplets, the
M = 0 peaks are shifted by the largest amount, they are the most
affected by the AR perturbation and in the frame R̂β (see also
Papini et al., 2015). This feature, which arises from geometrical
considerations only, is preserved in the spectrum as seen in the
observer’s frame, where theM = 0 peaks are clearly visible. With
increasing AR surface coverage the frequency shifts of theM 6= 0
modes increase and the peaks get less clustered.

3. RESULTS

3.1. Dipole and Quadrupole Power Spectra
In this section we describe the changes imprinted by a large active
region in the spectrum of two multiplets with (ℓ, n) = (1, 18) and
(2, 18), for a star rotating with a period of 8 days.

Figure 4 shows the results for the quadrupole multiplet,
for four combinations of the values of α and β selected in
section 2.2: the observed power spectra are plotted for two
angles of observation, i = 30◦ and 80◦, and are normalized
with respect to V2, i.e., with respect to the m = 0 peak of the
pure rotational spectrum seen with i = 0. The corresponding
theoretical Lorentzian envelope (solid line) has been calculated
from Equation (36), by setting a value for the FWHM of Ŵ/2π =

1µHz, typical for this multiplet in the Sun (see e.g., Chaplin et al.,
2005). Due to the finite lifetime of the modes of oscillation, it
is clear that is not possible to resolve all the (2ℓ + 1)2 peaks,
and an observer would identify not many more than (2ℓ + 1)
peaks in a multiplet. In the cases shown here, it is possible to
identify from 5 to 6 peaks for i = 80◦, the additional peak
coming from the uppermost shifted m = 2,M = 0 peak. We
note that the Lorentzian envelope displays an asymmetric profile.
Because of their large shift in frequency, the M = 0 peaks
blend with peaks from different m-quintuplets. This blending
increases with activity level. Figure 4A shows a case for which the
(M,m) = (0, 0) and (M,m) = (1, 1) peaks have close frequencies
and comparable amplitudes, they contribute equally to a single
peak in the power spectrum.

The envelope of the power spectrum is very sensitive to the
latitudinal position of the AR and to the inclination angle: in
Figure 4C the power spectrum is near the standard rotationally-
split spectrum, while the same configuration observed from a

different inclination angle (Figure 4D) shows a more asymmetric
profile with additional peaks. This is better seen in Figure 5,
which shows contours of the acoustic power as a function of
inclination angle, for both the ℓ = 1 and ℓ = 2 multiplets,
for the same active region parameters as in Figure 4. For an
active region at high latitude (middle panels of Figure 5), the
central peak shows a significant shift and overlaps with the
m = 1 peak. For a low-latitude active region (bottom panels)
the envelope of the power spectrum displays more than 2ℓ + 1
peaks. A distinct feature is the presence of two peaks instead
of one when observing an ℓ = 2 multiplet at zero inclination
angle. The sensitivity of the spectrum to the colatitude of the AR,
shown in Figure 6, is due in part to the variation with β of the
non-diagonal elements of the rotation matrix R(ℓ).

An observed power spectrum is, of course, much more
difficult to interpret than its expectation value. The power
spectrum in Figure 7 includes realization noise due to the
stochastic nature of stellar oscillations and to additional shot
noise. At each frequency the observed power is a realization
of an exponential distribution (a chi-squared with two degrees
of freedom) with standard deviation and mean equal to the
expectation value of the power spectrum. Realization noise
considerably degrades the spectrum, however in some cases it is
still possible to distinguish between the pure rotational spectrum
and a spectrum with the active region.

3.2. Asymptotics
3.2.1. Limit of Small Latitudinal Differential Rotation
The examples shown so far suggest that the power spectrum of a
multiplet may be approximated by the sum of 2(2ℓ + 1) peaks,
for two reasons. First, in the corotating frame the splitting due
to rotation is small compared to the shift induced by the AR
perturbation (see e.g., Figure 3). Second, the AR perturbation
induces a shift that is largest for theM = 0 mode. Therefore, for
eachm, all theM 6= 0 peaks are clustered near the pure rotational
frequencies and appear as a single peak, while the M = 0 peaks
are well separated.

Here we wish to find an approximation for the power
spectrum of a multiplet in terms of 2(2ℓ + 1) Lorentzians only.
In the following we assume the rotation perturbation to be
small compared to the active region perturbation, and seek an
approximate solution to the eigenvalue problem (14).

It is convenient to solve the eigenvalue problem in the frame
where the dominant perturbation is diagonal, i.e.,the frame R̂β of
the active region. The following results are similar to section 19.5
of Unno et al. (1989). We rewrite the elements of the full matrix
Ô in R̂β as

Ôm′′m′ = δm′′m′δωAR
m′ +

ℓ∑

m=−ℓ

r
(ℓ)
m′′m(β)r

(ℓ)
m′m(β)δω

�
m, (39)

where the term with the sum in the right hand side correspond to
Ô�
m′′m′ . We look for solutions of the form

δωM = δωAR
M + δω

(1)
M (40)
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FIGURE 4 | Oscillation power spectra for the (ℓ, n) = (2, 18) multiplet observed at two inclination angles i = 30◦ (A,C) and 80◦ (B,D), for a star with a rotation period of

8 days and for an active region with εnℓ = 0.003, β = 20◦ (A,B) or 80◦ (C,D), and for a surface coverage with α = 23◦. The power spectra are normalized with

respect to V2 (Equation 33). The vertical line segments show the theoretical frequencies and amplitudes for the M = ±1,±2 modes (black) and the M = 0 mode (red).

The envelopes of the power spectra (solid black curves) are obtained by summing over Lorentzians with widths of 1 µHz. The dashed black curve shows the envelope

of the pure rotational power spectrum, which includes the centrifugal distortion (Equation 17).

and

Â
M = Â

M,AR + Â
M,(1), (41)

where
(
δω

(1)
M , ÂM,(1)

)
are the perturbations to the (partially

degenerate) eigenvalues δωAR
M and eigenvectors ÂM,AR of ÔAR,

with ÂM,AR
m = δmM . The eigenvector perturbation is orthogonal

to the reference eigenspace (see e.g., Messiah, 1960, p. 687),

Â
M,(1)

· Â
±M,AR

= 0, (42)

which gives ÂM,(1)
±M = 0. The eigenvectorsAM in the frameRβ are

given by

A
M = R(ℓ)

Â
M (43)

via the rotation matrix R(ℓ) (see Equation 16).
To first order, the eigenvalue problem (Equation 14) becomes

(
Ô� − δω

(1)
M I

)
Â
M,AR +

(
ÔAR − δωAR

M I
)
Â
M,(1) = 0, (44)
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FIGURE 5 | Expectation value of power spectra of oscillation, as functions of inclination angle i. The left panels are for the dipole multiplet ℓ = 1, n = 18, and the right

panels for the quadrupole multiplet ℓ = 2, n = 18. The top panels are for the pure-rotation case, the middle panels are for an active region at colatitude β = 20◦, and

the bottom panels for β = 80◦. The active region parameters are εnℓ = 0.003, α = 23◦, and the stellar rotation period is 8 days.

where I is the identity matrix. To calculate ÂM,(1) and δω
(1)
M we

multiply the above equation on the left by the transpose of Âm′ ,AR

to obtain:

Ô�
m′M − δω

(1)
M δm′M +

(
δωAR

m′ − δωAR
M

)
Â
M,(1)
m′ = 0, −ℓ ≤ m′ ≤ ℓ.(45)

We find the perturbed eigenvalues by setting m′ = M in the
above equation

δω
(1)
M =

ℓ∑

m=−ℓ

[r(ℓ)Mm(β)]
2δω�

m. (46)

The non-zero elements ofAM,(1) are obtained from them′ 6= ±M
components of Equation (45):

Â
M,(1)
m′ =

Ô�
m′M

δωAR
M − δωAR

m′

form′ 6= ±M. (47)

The explicit expressions for the eigenvalues and eigenvectors of
the combined perturbations are

δωM = δωAR
M +

ℓ∑

m=−ℓ

[r(ℓ)Mm(β)]
2δω�

m (48)
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FIGURE 6 | Expectation value of power spectra of oscillation, as functions of active-region colatitude β, at fixed inclination angle i = 80◦. The other physical

parameters are the same as in Figure 5.

FIGURE 7 | A realization of the power spectrum of an ℓ = 2 multiplet (gray) and its expectation value (black solid curve, also shown in Figure 4D). The observation

duration is 6 months and the signal-to-noise ratio is 50. The dashed black curve shows the expectation value of the pure rotational spectrum.

and

ÂM
m′ =





1 form′ = M,

0 form′ = −M,

ℓ∑

m=−ℓ

r
(ℓ)
m′m(β)r

(ℓ)
Mm(β)δω

�
m

δωAR
M − δωAM

m′

form′ 6= M.

(49)

The explicit expression for the amplitudes AM
m in the frame Rβ

is then.

AM
m =

ℓ∑

m′=−ℓ

ÂM
m′ r

(ℓ)
m′m(β) = r

(ℓ)
Mm(β)+

ℓ∑

m′=−ℓ,m′ 6=±M

r
(ℓ)
m′m(β)

δωAR
M − δωAR

m′

×

ℓ∑

m′ ′=−ℓ

r
(ℓ)
m′m′ ′ (β)r

(ℓ)
Mm′ ′ (β)δω

�
m′ ′ . (50)

3.2.2. Neglecting Latitudinal Differential Rotation
If we neglect differential rotation then Equation (18) reduces to

δω�
m = −m�βCnℓ + ηQ2ℓm ω

(0)
nℓ . (51)

Then, by using the identities (Unno et al., 1989; Gough and
Thompson, 1990)

ℓ∑

m′′=−ℓ

[
r
(ℓ)
m′m′′ (β)

]2
m′′ = m′ cosβ (52)
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and

ℓ∑

m′′=−ℓ

[
r
(ℓ)
m′m′′ (β)

]2
Q2ℓm′′ = P2(cosβ)Q2ℓm′ , (53)

the frequency shifts (Equation 48) simplify to

δωM = δωAR
M −MCnℓ�β cosβ + ηP2(cosβ)Q2ℓM ω

(0)
nℓ . (54)

Note that for moderately fast rotating stars the Coriolis term
in the above equation is much smaller than the centrifugal
distortion term (e.g., Gizon and Solanki, 2004).

Due to the clustering of the M 6= 0 peaks, the power
spectrum in the observer’s frame can be approximately modeled
by 2(2ℓ + 1) Lorentzians, some of which may overlap. Half of
these correspond to the peaks with M = 0. The remaining
2ℓ+ 1 (approximate) Lorentzians are obtained by summing over
the M 6= 0 peaks; their mean frequency shifts are given by a
power weighted average of the M 6= 0 frequency shifts δωm

M =

δωM +m�β . We denote by 〈δω〉m this average:

〈δω〉m = (6m)
−1


 ∑

1≤|M|≤ℓ

(AM
m )2δωM


 +m�β , (55)

with

6m =
∑

1≤|M|≤ℓ

(AM
m )

2
. (56)

The corresponding averaged power amplitudes 〈P〉m are (see
Equation 38)

〈P〉m =
(ℓ − |m|)!

(ℓ + |m|)!

[
VℓP

|m|
ℓ (cos i)

]2
6m. (57)

Figure 8 shows how good is the 2(2ℓ + 1)-Lorentzian model
in reproducing the expected power spectrum for the case of
Figure 7. The vertical red lines are for the (2ℓ + 1) peaks with
M = 0, while the vertical black lines refer to the (2ℓ + 1) peaks
with power 〈P〉m and frequency shifts 〈δω〉m. The envelope of
power of the 2(2ℓ + 1)-model compares well with the envelope
obtained by summing over all the (2ℓ + 1)2 peaks.

Figure 9 shows the frequency shifts 〈δω〉m (black lines) and
the shifts of the M = 0 peaks (red lines) calculated from the
solution of Equation (14) (solid lines) and from the approximate
solutions (dashed lines), as a function of stellar rotation rate and
for an active region with a surface coverage of 4% (α = 23◦)
and β = 80◦. The linear approximation successfully returns the
frequency shifts of the 2(2ℓ+1) Lorentzians, even for moderately
high rotation rates.

3.2.3. Limit of Small-Size Active Region (α . 15◦)
The above formulae for the frequency shifts simplify further
when the active region has a small surface area. For small values
of α, the integral in Equation (21) can be approximated,
∫ 1

cosα

[
P
|m′′|
ℓ (µ)

]2
dµ ∼

α→0

[
P
|m′′|
ℓ (0)

]2 α2

2
+O(α4) = δm′′0

α2

2
+O(α4),

(58)

such that Gm′′

ℓ (α) becomes

Gm′′

ℓ (α) = δm′′0
α2

4
(2ℓ + 1)+O(α4). (59)

As shown in Figure 2, the above approximation is very good for
α . 15◦ and ℓ ≤ 2. Up to order α2, the active region induces a
shift only in the frequency of theM = 0 mode

δωAR
M = δM0 ω

(0)
nℓ εnℓ

α2

4
(2ℓ + 1)+O(α4). (60)

Perturbed frequency shifts and amplitudes are obtained by
following the calculation described in section 3.2.1, but taking
into account the fact that the eigenfrequencies δωAR

M are now
degenerate for M 6= 0. The frequencies in the observer’s frame
can then be approximated by

ωM
m = ω

(0)
nℓ + δωM +m�β , (61)

where

δωM =δM0 ω
(0)
nℓ εnℓ

α2

4
(2ℓ + 1)+ (1− δM0)ηP2(cosβ)Q2ℓM ω

(0)
nℓ .

(62)

The peak amplitudes in the power spectrum, PMm , are given by
Equation (38), where AM

m is replaced by

AM
m =

ℓ∑

m′=−ℓ

A
M
m′ r

(ℓ)
m′m(β) (63)

with

A
M
m′ = δMm′ + (δM0 − δm′0)

ηω
(0)
nℓ

δωAR
0

ℓ∑

m′′=−ℓ

r
(ℓ)
m′m′′ (β)r

(ℓ)
Mm′′ (β)Q2ℓm′′ .

(64)

Figure 10 shows the frequency error in µHz introduced
by the small-α approximation. Dark blue shades indicate
the regions in parameter space (α and �β ) where the
approximation is very good. For an active region with a
surface coverage below 2%, i.e., α < 15◦, the frequency
shift δωM=0 is within ∼ 0.1 µHz of δωM=0, even for fast
rotation rates.

3.3. Correlations in Frequency Space
Due to the fact that the active region perturbation is unsteady
in the observer’s frame, the intensity fluctuations (Equation 32)
are not statistically independent in frequency space. Given two
frequencies ω and ω′, the intensity covariance is

Cov
[
Iobs(ω), Iobs(ω

′)
]
= E

[
I∗obs(ω)Iobs(ω

′)
]
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FIGURE 8 | Acoustic power spectrum for the same case as in Figure 4D, (black solid line) and the power spectrum resulting from neglecting differential rotation and

by assuming a small rotation perturbation with respect to the AR perturbation (black dashed line), as calculated from Equations (50, 51, 54). Vertical red lines denote

the M = 0 peaks, and black lines the averaged M 6= 0 peaks from Equations (55, 57).

=
∑

M,m

∑

M′ ,m′

BMmBM
′

m′ L
1/2
M (ω −m�β )L

1/2
M′ (ω

′ −m′�β )

× E
[
N

∗
M(ω −m�β )NM′ (ω′ −m′�β )

]

=

ℓ∑

M=−ℓ

ℓ∑

m=−ℓ

ℓ∑

m′=−ℓ

BMmBMm′LM(ω −m�β )δm′ ,m+(ω′−ω)/�β
.

(65)

To simplify the analysis we assumed that k = (ω′ − ω)/�β is an
integer (this is not a weakness of the theory though). The above
expression vanishes unless |k| ≤ 2ℓ. The quantities Iobs(ω) and
Iobs(ω

′) are correlated for frequency separations 1ω = ω′−ω =

(m′ −m)�β .
The power spectrum is also correlated for 1ω = (m−m′)�β .

Using the formulae given in appendix C of Fournier et al. (2014),
we find

Cov
[
P(ω), P(ω′)

]
= Cov

[
I∗obs(ω)Iobs(ω), I

∗
obs(ω

′)Iobs(ω
′)
]

= E
[
I∗obs(ω)Iobs(ω

′)
]
E

[
Iobs(ω)I

∗
obs(ω

′)
]

=
∣∣Cov

[
Iobs(ω), Iobs(ω

′)
]∣∣2 , (66)

where the intensity covariance is given above. We note that
the values of the intensity and power spectrum covariances
(Equations 65 and 66) depend on the parameters of the model.
However the existence of a correlation is a general feature, which
arises from the fact that the active region rotates with the star.
Remarkably, the expectation value of the power spectrum P(ω)
(see Equation 36) is as if all the terms in Equation (32) were
statistically independent.

4. DISCUSSION

4.1. Non-linear Frequency Shifts and
Amplitudes From Numerical Simulations
In order to compare with the perturbation theory, we study the
non-linear regime by means of numerical simulations. We use
the GLASS wave propagation code, with the same numerical
setup employed by Papini et al. (2015).

4.1.1. Rotation in Post-processing
Running different numerical simulations for different values
of β and different perturbation amplitudes is computationally
expensive. Instead we performed simulations for a 3D polar
perturbation to the sound speed and for a star with no rotation,
that is equivalent to solve the numerical problem in the reference
frame R̂β . We introduced the effect of rotation later in processing
the output. This approach has the advantage that, for a given
amplitude of the AR perturbation, we only need to run one
simulation in order to calculate the power spectrum for any given
value of β and rotation period. However we can only reproduce
solid body rotation, and it is not possible to include the effects
of the centrifugal distortion and of the Coriolis force, therefore
in each nℓ-multiplet we expect to find only (2ℓ + 1)(ℓ + 1)
peaks. Nonetheless the results are useful for exploring the non-
linear regime. We note that, as a consequence of neglecting these
rotational effects, M can be identified with the azimuthal degree
of the spherical harmonics YM

ℓ (θ̂β , φ̂β ) in the frame R̂β (see
section 2.1.1).

4.1.2. Sound-Speed Perturbation
As was done earlier, we approximate the perturbation introduced
by the starspot by a local increase in sound speed. We consider
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FIGURE 9 | Black lines: Averaged frequency shifts 〈δω〉m vs. stellar rotation rate, as given by Equation (55) and calculated using Equation (14) (solid lines) and using

the approximations of Equations (50, 51, 54) (dashed lines). Red lines: Approximate frequency shifts δωM=0 +m�β of the M = 0 peaks as given by Equation (54)

(dashed lines) and first-order shifts (solid lines).

separable perturbations in the square sound speed of the form

1c2(r, θ̂β ) = ǫ c20(r) f (r) g(θ̂β ), (67)

where ǫ > 0 is a positive amplitude, f is a radial profile, and g
a latitudinal profile. Explicitly, g = 1/2 + cos(κθ)/2 is a raised
cosine for 0 ≤ κθ < π and is zero otherwise, where π/(2κ) =
0.65 rad = 37.5◦. The function f = exp(−|r − rc|

2/2σ 2)[1/2 +
cos(|r − rc|/σ )/2] is a Gaussian function centered at radius rc =
0.9985 R⊙ with dispersion σ = 0.004 R⊙, multiplied by a raised
cosine. This functional form is the same as the one described by
Papini et al. (2015). The perturbation is thus placed along the
polar axis at a depth of 4 Mm, with a surface coverage of 12%.

4.2. Synthetic Power Spectrum
As in section 2.3, we assume that the intensity fluctuations are
proportional to the Eulerian pressure perturbation measured at
r0 = R + 200 km above the surface (see Papini et al., 2015). To
calculate the expectation value of the observed power spectrum,

we performed a first set of simulations for which all the modes
were excited with the same phase at the initial time.

The approximation that the changes in the eigenfunction of
a mode M are limited to the same angular degree ℓ (Equation
3) does not hold in the non-linear case: the horizontal shape
of an eigenfunction is a combination of spherical harmonics
of different ℓ values. However, since the perturbation is
axisymmetric (see Equation 67), the eigenfunction for a modeM
is a combination of spherical harmonics YM

ℓ (θ̂β , φ̂β ) of different
angular degree ℓ and sameM. Therefore the intensity fluctuations
IM(θ̂β , φ̂β , t) due to all the modes with the sameM take the form

IM(θ̂β , φ̂β , t) ∝
ℓmax∑

ℓ=|M|

Re
{
pℓM(r0, t)Y

M
ℓ (θ̂β , φ̂β )

}
, (68)

where pℓM(r0, t) are the coefficients of the spherical harmonic
decomposition of the pressure wavefield p(r0, θ̂β , φ̂β , t) returned
by the GLASS code in the frame R̂β . The index ℓmax is set by the
spectral resolution of the spherical harmonic transform.
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FIGURE 10 | (Left) Contour plot of the absolute difference |δωM=0 − δωM=0| between the approximate shifts δωM=0 (see Equation 62) and the first-order shifts δωM=0,

as a function of stellar rotation rate and surface coverage of the active region. (Right) Contour plot of the maximum of the absolute difference |〈δω〉m − 〈δω〉m| over all

values of m, as a function of stellar rotation rate and surface coverage of the active region.

To obtain the full-disk integrated intensity in the observer’s
frame we express each YM

ℓ (θ̂β , φ̂β ) in terms of the spherical
harmonics in the frameR

YM
ℓ (θ̂β , φ̂β ) =

ℓ∑

m=−ℓ

r
(ℓ)
mM(β)e−im�β t

ℓ∑

m′=−ℓ

Ym′

ℓ (θ ,φ) r(ℓ)m′m(−i),

(69)

by means of two consecutive rotations of the Euler angles
(0,−i,�β t) and (0,β , 0). Combining this equation with
Equation (68) and integrating over the visible disk, we obtain the
full-disk integrated intensity of eachmM-component:

ImM(t) =
ℓmax∑

ℓ=max{|m|,|M|}

Vℓ r
(ℓ)
m0(i) r

(ℓ)
mM(β) Re

{
pℓM(r0, t)e

−im�β t
}
.

(70)

We then perform a Fourier transform to calculate the intensity
ImM(ω) in the frequency domain. Finally, we derive the
expression for the expectation value of the power spectrum

P(ω) =
ℓmax∑

m=−ℓmax

ℓmax∑

M=−ℓmax

∣∣ImM(ω)
∣∣2 , (71)

that is analogous to Equation (36), but for the entire wavefield.
For the non-linear study we chose three perturbation

amplitudes ǫ = 0.1, 0.2, and 0.3 which, for the multiplet (ℓ, n) =
(2, 18), correspond to ǫnℓ ≃ 0.005, 0.010, and 0.015, i.e.,roughly
twice to six times the value used in the linear analysis. The
simulations run for 80 days (stellar time), in order to reach an
accuracy of ∼ 0.14 µHz in the frequency domain. The wavefield
computed by GLASS includes some numerical damping that
increases with frequency with an exponential dependence. We
took advantage of this damping and selected two ℓ = 2
multiplets: one with n = 18 and a FWHM comparable to the
solar value, the other with n = 12 and a FWHM small enough to
resolve all themM peaks in the multiplet. Model S is convectively
stabilized (Papini et al., 2014), which implies that the unperturbed
frequencies of the quadrupole modes are 1970.50µHz for n = 12
and 2783.62 µHz for n = 18. Figure 11 shows the observed
power spectra of the two selected multiplets in the case β = 80◦

and i = 80◦, normalized with respect to the highestM 6= 0 peak.
In the case ǫ = 0.1, the simulated power spectrum (black curve)
of the (ℓ, n) = (2, 12) multiplet (top left panel) is well reproduced
by the power spectrum computed with linear theory (red dot-
dashed curves), except for the peaks corresponding to M = 0
(vertical red curves show the M = 0 peaks from linear theory),
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FIGURE 11 | Numerical simulations of oscillation power spectra for two quadrupole multiplets with n = 12 (left panels) and n = 18 (right panels), for an inclination

angle i = 80◦ and a stellar rotation period of 8 days (solid body rotation). The active region has a colatitude β = 80◦ and different perturbation amplitudes of ǫ = 0.1

(top), 0.2 (middle), and 0.3 (bottom), with rc = 0.9985 R⊙, σ = 0.004 R⊙, and κ = 2.4 (see Equation 67). The black curves show the power spectra computed with

the GLASS code, the red dot-dashed curves indicate the power spectra computed using linear perturbation theory. Vertical lines show the peaks from linear theory, in

red for M = 0 and in black M 6= 0. The blue curves in the right panels display the contribution of the M = 0 peaks to the simulated power spectrum. The n = 12 peaks

have a FWHM of Ŵ/2π ≃ 0.2 µHz, while for n = 18 the peaks have Ŵ/2π ≃ 1 µHz.

which are less shifted in frequency and have smaller amplitudes
than predicted. For the (ℓ, n) = (2, 18) multiplet (top right panel)
the non-linear effects are less visible, due to the overlapping
Lorentzian profiles. A blue curve, displaying the contribution to
the power spectrum of theM = 0 peaks, shows that also for this
multiplet theM = 0 component of the power spectrum deviates
from the linear behavior, both in frequency and amplitude. This
plot also shows an example of the combined action of mode
mixing and mode visibility, which almost suppresses the m = 0,
M = 0 peak located at a frequency shift of∼ 3.1 µHz.

With increasing ǫ (middle and bottom panels) the interaction
of the wavefield with the active region becomes strongly non-
linear, and for a perturbation with ǫ = 0.3 results in a
massive distortion of the power spectrum with respect to that
one predicted by linear theory. Here two different behaviors are
evident: in the (ℓ, n) = (2, 12) multiplet the m = 0,M = 0
peaks are almost suppressed, while the peak with m = 0,M = 0
in the (ℓ, n) = (2, 18) multiplet, that was suppressed in the
case ǫ = 0.1, increases in amplitude as ǫ increases (middle and

bottom right panels). Moreover the peaks with M = 1 start to
deviate from the linear prediction. This is in agreement with what
found in the non-rotating case by Papini et al. (2015), who also
showed that second-order perturbations would correct most of
the differences.

4.3. Correlations in Synthetic Power
Spectra
In section 3.3 we showed that in presence of an active region
rotating with the star, the power spectrum of a multiplet is
correlated at frequency separations that are multiple of the
rotational frequency of the active region. However, for small
perturbations this correlation is too weak to be observed. Here
we ask whether such a correlation can be measured in presence
of a perturbation of moderate amplitude. For that purpose, we
ran a second set of simulations, in which the acoustic waves
were excited by applying a random forcing function at 150 km
below the surface at each time step, as described by Hanasoge and
Duvall (2007). The duration of the simulation is 80 days (stellar
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FIGURE 12 | Autocorrelation of the intensity power spectrum as defined by Equation (73) for a starspot with ǫ = 0.1 (red curve). A stellar rotation period

2π/�β = 8 days, an inclination angle i = 80◦, and a starspot colatitude β = 80◦ were chosen for the post processing. Vertical dotted lines denote frequency

separations 1ω = j�β where j = 1, 2, 3, 4. For comparison, the black curve is the case with no starspot.

time). In the frequency domain, the observed intensity is

Iobs(ω) =
ℓmax∑

m=−ℓmax

ℓmax∑

M=−ℓmax

ImM(ω), (72)

where ImM(ω) is obtained by Fourier transformation of
Equation (70) using the numerical realizations of pℓM(r0, t).

The autocorrelation of the intensity spectrum is

CI(1ω) =

∑25
n=15

∫
[ωnℓ]

I∗obs(ω)Iobs(ω + 1ω)dω
∑25

n=15

∫
[ωnℓ]

|Iobs(ω)|2dω
, (73)

where [ωnℓ] denotes an appropriate frequency interval of size
∼ 20 µHz containing the multiplet nℓ but excluding the nearby
l = 0 mode. The average is performed over all ℓ = 2 multiplets
with n ranging from 15 to 25.

Figure 12 shows the real part of CI for the special case
of an inclination angle i = 80◦ and a starspot at colatitude
β = 80◦ with ǫ = 0.1. A correlation is clearly visible at
frequency separations 1ω = 2�β and 4�β . This suggests that
the frequency-domain autocorrelation function could be used as
a diagnostic tool to identify unsteady perturbations in the time
series of stellar oscillation. We note that the imaginary part of CI

contains no visible signal above the noise level.

4.4. Toward a Physical Model for Mode
Interaction With an Active Region
In this paper we replaced the active region by a localized increase
in sound-speed near the stellar surface. We focused on the
geometrical aspects of the problem rather than on the physics.
One may ask, however, what would be the difference in the
obtained results if we had instead considered a realistic model
for the magnetic active region. Although we will not answer this
question here, it is worth listing some of the steps involved.

A typical solar active region consists of a pair of sunspots
surrounded by plage with strong vertical field. Local
helioseismology of the visible disk and the far side indicates that
p modes are strongly scattered by both sunspots and extended
plage (see e.g., Gizon et al., 2009, and references therein).
Some studies of the interaction of high-degree p modes with
magnetostatic sunspots (e.g., Moradi et al., 2010; Cameron et al.,
2011) have been carried out using MHD wave propagation
codes (Cameron et al., 2008; Felipe et al., 2016). Other studies
are based on numerical magneto-convective simulations (e.g.,
Rempel et al., 2009; DeGrave et al., 2014). The main conclusion
of these simulations is that the interaction takes place in the
top few hundred kilometers below the surface, where the
direct effects of the magnetic field and the indirect effects due
to changes in thermodynamic structure with respect to the
reference atmosphere (e.g., the Wilson depression) are large.
Wave simulations indicate that the outgoing p modes are phase
shifted with respect to the incoming p modes in such a way
that the effective wave speed is increased, as observed. The
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physical interaction involves the conversion of p modes into
fast and slow magnetoacoustic modes in the sunspot (e.g.,
Khomenko and Collados, 2006; Cameron et al., 2008). A fraction
of the incoming p-mode energy is tunneled downward in
the form of slow MHD waves, leading to absorption (Braun,
1995; Zhao and Chou, 2016). See also, e.g., Saio and Gautschy
(2004) and Cunha (2006) for mode conversion calculations in
roAp stars.

Using 2D ray tracing, Liang et al. (2013) showed that high-
degree helioseismic waveforms can be reproduced by increasing
the effective wave speed by 10% in the sunspot. This provides
some justification for the values that we have used in the
present paper, although the extension to low-degree p modes
has not been studied. Clearly, much additional work will be
needed to determine the correct active-region perturbation
amplitude from first principles. Until then, a simple calibration
can be obtained from the observational study by Santos et al.
(2016) who estimated empirically the contribution of sunspots
to the low-degree p-mode frequency shifts associated with the
solar cycle. By combining our Equation (20) with Equation
(3) from Santos et al. (2016), we find εnℓ = −1δch/Iℓ,
where 1δch is the integral phase difference introduced in
the mode eigenfunction by a sunspot and Iℓ is related to
mode inertia. Using the value 1δch = −0.44 estimated by
Santos et al. (2016), we have εnℓ ∼ 0.05 for a quadrupole
mode, i.e., a larger value than proposed by Liang et al. (2013)
and used in the present paper. This may suggest that for
large active regions the spectra calculations may have to be
carried out in the non-linear regime. However, only realistic
numerical modeling would help settle this question. The full
problem would also have to include multiple scattering by
collections of flux tubes in plage (see e.g., Hanson and Cally,
2015).

5. CONCLUSIONS

In this paper we investigated the changes in global acoustic
oscillations caused by a localized sound-speed perturbation
on a rotating star mimicking a large active region,
using both linear perturbation theory and 3D numerical
simulations. In an inertial frame, the active region perturbation
is unsteady.

We find that the power spectra of low-degree modes have
a complex structure. The combined effects of the active region
and differential rotation cause each nℓ-multiplet to appear as
(2ℓ+1)2 peaks, each with a different amplitude.Most of the peaks
are clustered near the classical rotationally-split frequencies, and
only 2ℓ + 1 peaks (the M = 0 peaks, which correspond to the
axisymmetric mode in the reference frame of the AR) are shifted
to higher frequencies. This leads to an apparent asymmetry in
the line profiles. However, due to the finite lifetime of acoustic
oscillations, most of the peaks cannot be resolved. For solar-type
stars, the results are not very sensitive to the choice of latitudinal
differential rotation profile.

The structure of the power spectra is sensitive to the latitudinal
position of the active region and to the inclination angle

i of the stellar rotation axis. The latter plays a major role
in determining the relative visibility of the individual peaks.
We find that the envelope of the power spectrum becomes
more complex as the latitude of the active region decreases.
In practice, it would be very difficult to perform a fit of
the (2ℓ + 1)2 peaks in a multiplet, due to peak blending
and noise. However, by neglecting differential rotation it is
possible to derive a simplified formula that approximates the
power spectrum of a multiplet to a sum of only 2(2ℓ + 1)
Lorentzian profiles. For small-area active regions, the formula
further simplifies and directly links the frequencies of the
peaks in the power spectrum to the active region parameters.
Such formula may find applications in the analysis of real
asteroseismic observations.

Numerical simulations were performed to explore the non-
linear regime of the perturbation. We find that theM = 0 peaks
deviate from the linear behavior for active-region perturbation
amplitudes εnℓ & 0.005. Depending on each particular case, the
amplitude of these peaks is either reduced or enhanced compared
to first-order linear theory, due to mixing with modes with other
values of ℓ andm (Papini et al., 2015).

We found that there are correlations in the power spectrum
at frequency separations that are multiples of the active-region
rotation rate. In the linear regime the correlation signal is
too weak to be observed. However the numerical simulations
show that for active-region perturbations of moderate amplitude,
such a correlation might be detectable, provided that the
frequency intervals are carefully selected to increase the signal to
noise ratio.

We note that perturbation theory can easily be extended
to compute the effect of multiple active regions provided
that latitudinal differential rotation is small. The treatment of
several active regions rotating at different rotation rates would
require a different setup, since there is no frame in which
these perturbations are steady. A numerical approach would be
preferable in such a case.

The work presented in this paper uses simplified physics,
but it should provide useful guidance to identify the seismic
signature of a large active region in the power spectrum
of stellar oscillations. Given that the values of ǫnℓ are
uncertain, we believe that it is worth searching for low-degree
multiplets consisting of 2(2ℓ + 1) components in available
asteroseismic observations. Ideal targets are stars that are known
to have high-quality oscillation power spectra (high SNR,
narrow lineprofiles, clear rotational splitting, see e.g., Nielsen
et al., 2014) and show evidence for long-lived starspots (e.g.,
Nielsen et al., 2013, 2019). The catalog of potential targets,
currently limited to CoRoT and Kepler, will increase fast
with TESS (Ricker et al., 2015) and PLATO (Rauer et al.,
2014).

AUTHOR CONTRIBUTIONS

LG provided the basic theory. EP provided the numerical
applications. Both authors contributed to the analysis of the
results and to the writing of the article.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 18 December 2019 | Volume 6 | Article 72

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Papini and Gizon Asteroseismic Signature of a Large Active Region

ACKNOWLEDGMENTS

This paper is a contribution to PLATO PSM activity Seismic
diagnostics of stellar activity. We acknowledge financial
support from the German Aerospace Center DLR and

from the Max Planck Society. We thank Shravan Hanasoge
for making the GLASS code available. Computational
resources were provided by the German Data Center
for SDO. This work appeared in part in the Ph.D. thesis
of Papini (2016).

REFERENCES

Aerts, C., Christensen-Dalsgaard, J., and Kurtz, D. W. (2010). Asteroseismology.
Dordrecht: Springer.

Anderson, E. R., Duvall, T. L. Jr., and Jefferies, S. M. (1990). Modeling of solar
oscillation power spectra. Astrophys. J. 364, 699–705. doi: 10.1086/169452

Bigot, L., and Dziembowski, W. A. (2002). The oblique pulsator model revisited.
Astron. Astrophys. 391, 235–245. doi: 10.1051/0004-6361:20020824

Braun, D. C. (1995). Scattering of p-Modes by sunspots. I. Observations.
Astrophys. J. 451:859. doi: 10.1086/176272

Cameron, R., Gizon, L., and Duvall, T. L., J. (2008). Helioseismology of sunspots:
confronting observations with three-dimensional MHD simulations of wave
propagation. Solar Phys. 251, 291–308. doi: 10.1007/s11207-008-9148-1

Cameron, R. H., Gizon, L., Schunker, H., and Pietarila, A. (2011). Constructing
semi-empirical sunspot models for helioseismology. Solar Phys. 268, 293–308.
doi: 10.1007/s11207-010-9631-3

Chaplin, W. J., Elsworth, Y., Houdek, G., and New, R. (2007). On prospects for
sounding activity cycles of Sun-like stars with acoustic modes. Mon. Not. Roy.

Astron. Soc. 377, 17–29. doi: 10.1111/j.1365-2966.2007.11581.x
Chaplin, W. J., Houdek, G., Elsworth, Y., Gough, D. O., Isaak, G. R., and

New, R. (2005). On model predictions of the power spectral density
of radial solar p modes. Mon. Not. Roy. Astron. Soc. 360, 859–868.
doi: 10.1111/j.1365-2966.2005.09041.x

Christensen-Dalsgaard, J. (2008). ADIPLS – the Aarhus adiabatic oscillation
package. Astrophys. Space Sci. 316, 113–120. doi: 10.1007/s10509-007-9689-z

Christensen-Dalsgaard, J., Däppen, W., Ajukov, S. V., Anderson, E. R., Antia,
H. M., Basu, S., et al. (1996). The current state of solar modeling. Science 272,
1286–1292. doi: 10.1126/science.272.5266.1286

Cunha, M. S. (2006). Improved pulsating models of magnetic Ap stars - I.
Exploring different magnetic field configurations. Mon. Not. Roy. Astron. Soc.

365, 153–164. doi: 10.1111/j.1365-2966.2005.09674.x
Cunha, M. S., and Gough, D. (2000). Magnetic perturbations to the acoustic

modes of roAp stars. Mon. Not. Roy. Astron. Soc. 319, 1020–1038.
doi: 10.1046/j.1365-8711.2000.03896.x

DeGrave, K., Jackiewicz, J., and Rempel, M. (2014). Time-distance
helioseismology of two realistic sunspot simulations. Astrophys. J. 794:18.
doi: 10.1088/0004-637X/794/1/18

Dicke, R. H. (1982). The 5-min oscillations of the sun are incompatible with a
rapidly-rotating core. Nature 300, 693–697. doi: 10.1038/300693a0

Dziembowski, W., and Goode, P. R. (1984). Simple asymptotic estimates of the fine
structure in the spectrum of solar oscillations due to rotation and magnetism.
Mem. Soc. Astron. Ital. 55, 185–213.

Dziembowski, W., and Goode, P. R. (1985). Frequency splitting in AP stars.
Astrophys. J. 296, L27–L30. doi: 10.1086/184542

Dziembowski, W. A., and Goode, P. R. (1992). Effects of differential rotation
on stellar oscillations - A second-order theory. Astrophys. J. 394, 670–687.
doi: 10.1086/171621

Felipe, T., Braun, D. C., Crouch, A. D., and Birch, A. C. (2016). Helioseismic
holography of simulated sunspots: magnetic and thermal contributions to
travel times. Astrophys. J. 829:67. doi: 10.3847/0004-637X/829/2/67

Fournier, D., Gizon, L., Hohage, T., and Birch, A. C. (2014). Generalization of the
noise model for time-distance helioseismology. Astron. Astrophys. 567:A137.
doi: 10.1051/0004-6361/201423580

García, R. A., Mathur, S., Salabert, D., Ballot, J., Régulo, C., Metcalfe, T. S., et al.
(2010). CoRoT reveals a magnetic activity cycle in a sun-like star. Science
329:1032. doi: 10.1126/science.1191064

Gizon, L. (1995). “Can we see the back of the sun?,” in Proceedings of the Solar and

Terrestrial Energy Program (STEP) 1995 Conference, eds R. A. Vincent and I. M.
Reid (Adelaide, SA: University of Adelaide) 173–176.

Gizon, L. (1998). “Comments on the influence of solar activity on p-mode
oscillation spectra,” in New Eyes to See Inside the Sun and Stars, volume 185

of IAU Symposium, eds F.-L. Deubner, J. Christensen-Dalsgaard, and D. Kurtz
(Dordrecht: Kluwer), 173.

Gizon, L. (2002). Prospects for detecting stellar activity
through asteroseismology. Astron. Nachrichten 323, 251–253.
doi: 10.1002/1521-3994(200208)323:3/4<251::AID-ASNA251>3.0.CO;2-9

Gizon, L., Birch, A. C., and Spruit, H. C. (2010). Local helioseismology:
three-dimensional imaging of the solar interior. Ann. Rev. Astron.

Astrophys. 48, 289–338. doi: 10.1146/annurev-astro-082708-
101722

Gizon, L., Schunker, H., Baldner, C. S., Basu, S., Birch, A. C., Bogart, R. S., et al.
(2009). Helioseismology of sunspots: a case study of NOAA region 9787. Space
Sci. Rev. 144, 249–273. doi: 10.1007/s11214-008-9466-5

Gizon, L., Sekii, T., Takata, M., Kurtz, D. W., Shibahashi, H., Bazot, M., et al.
(2016). Shape of a slowly rotating star measured by asteroseismology. Sci. Adv.
2:e1601777. doi: 10.1126/sciadv.1601777

Gizon, L., and Solanki, S. K. (2004). Measuring stellar differential
rotation with asteroseismology. Solar Phys. 220, 169–184.
doi: 10.1023/B:SOLA.0000031378.29215.0c

Goode, P. R., and Thompson, M. J. (1992). The effect of an inclined magnetic
field on solar oscillation frequencies. Astrophys. J. 395, 307–315. doi: 10.1086/1
71653

Gough, D. O., and Taylor, P. P. (1984). Influence of rotation and magnetic fields
on stellar oscillation eigenfrequencies.Mem. Soc. Astron. Ital. 55, 215–226.

Gough, D. O., and Thompson, M. J. (1990). The effect of rotation and a buried
magnetic field on stellar oscillations. Mon. Not. Roy. Astron. Soc. 242, 25–55.
doi: 10.1093/mnras/242.1.25

Hanasoge, S. M., and Duvall, Jr., T. L. (2007). The solar acoustic
simulator: applications and results. Astronom. Nach. 328, 319–322.
doi: 10.1002/asna.200610737

Hansen, C. J., Cox, J. P., and van Horn, H. M. (1977). The effects of differential
rotation on the splitting of nonradial modes of stellar oscillation. Astrophys. J.
217, 151–159. doi: 10.1086/155564

Hanson, C. S., and Cally, P. S. (2015). Multiple scattering of seismic waves from
ensembles of upwardly lossy thin flux tubes. Solar Phys. 290, 1889–1896.
doi: 10.1007/s11207-015-0732-x

Khomenko, E., and Collados, M. (2006). Numerical modeling of
magnetohydrodynamic wave propagation and refraction in sunspots.
Astrophys. J. 653, 739–755. doi: 10.1086/507760

Kiefer, R., Schad, A., Davies, G., and Roth, M. (2017). Stellar magnetic
activity and variability of oscillation parameters: an investigation of
24 solar-like stars observed by Kepler. Astron. Astrophys. 598:A77.
doi: 10.1051/0004-6361/201628469

Kurtz, D. W. (1982). Rapidly oscillating AP stars.Mon. Not. Roy. Astron. Soc. 200,
807–859. doi: 10.1093/mnras/200.3.807

Kurtz, D. W. (2008). The solar-stellar connection: magneto-acoustic
pulsations in 1.5 M⊙ – 2 M⊙ peculiar A stars. Solar Phys. 251, 21–30.
doi: 10.1007/s11207-008-9139-2

Kurtz, D. W., and Shibahashi, H. (1986). An analysis of the ℓ = 1 dipole
oscillation in HR 3831 (HD 83368). Mon. Not. Roy. Astron. Soc. 223, 557–579.
doi: 10.1093/mnras/223.3.557

Ledoux, P. (1951). The nonradial oscillations of gaseous stars and the problem of
beta canis majoris. Astrophys. J. 114:373. doi: 10.1086/145477

Liang, Z. C., Gizon, L., Schunker, H., and Philippe, T. (2013). Helioseismology
of sunspots: defocusing, folding, and healing of wavefronts. Astron. Astrophys.
558:A129. doi: 10.1051/0004-6361/201321483

Libbrecht, K. G., andWoodard, M. F. (1990). Solar-cycle effects on solar oscillation
frequencies. Nature 345, 779–782. doi: 10.1038/345779a0

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 19 December 2019 | Volume 6 | Article 72

https://doi.org/10.1086/169452
https://doi.org/10.1051/0004-6361:20020824
https://doi.org/10.1086/176272
https://doi.org/10.1007/s11207-008-9148-1
https://doi.org/10.1007/s11207-010-9631-3
https://doi.org/10.1111/j.1365-2966.2007.11581.x
https://doi.org/10.1111/j.1365-2966.2005.09041.x
https://doi.org/10.1007/s10509-007-9689-z
https://doi.org/10.1126/science.272.5266.1286
https://doi.org/10.1111/j.1365-2966.2005.09674.x
https://doi.org/10.1046/j.1365-8711.2000.03896.x
https://doi.org/10.1088/0004-637X/794/1/18
https://doi.org/10.1038/300693a0
https://doi.org/10.1086/184542
https://doi.org/10.1086/171621
https://doi.org/10.3847/0004-637X/829/2/67
https://doi.org/10.1051/0004-6361/201423580
https://doi.org/10.1126/science.1191064
https://doi.org/10.1002/1521-3994(200208)323:3/4<251::AID-ASNA251>3.0.CO;2-9
https://doi.org/10.1146/annurev-astro-082708-101722
https://doi.org/10.1007/s11214-008-9466-5
https://doi.org/10.1126/sciadv.1601777
https://doi.org/10.1023/B:SOLA.0000031378.29215.0c
https://doi.org/10.1086/171653
https://doi.org/10.1093/mnras/242.1.25
https://doi.org/10.1002/asna.200610737
https://doi.org/10.1086/155564
https://doi.org/10.1007/s11207-015-0732-x
https://doi.org/10.1086/507760
https://doi.org/10.1051/0004-6361/201628469
https://doi.org/10.1093/mnras/200.3.807
https://doi.org/10.1007/s11207-008-9139-2
https://doi.org/10.1093/mnras/223.3.557
https://doi.org/10.1086/145477
https://doi.org/10.1051/0004-6361/201321483
https://doi.org/10.1038/345779a0
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Papini and Gizon Asteroseismic Signature of a Large Active Region

Messiah, A. (1960). Mécanique Quantique. Volume II, Appendix C.IV. Paris:
Dunod.

Moradi, H., Baldner, C., Birch, A. C., Braun, D. C., Cameron, R. H., Duvall, T. L.,
et al. (2010). Modeling the subsurface structure of sunspots. Solar Phys. 267,
1–62. doi: 10.1007/s11207-010-9630-4

Mosser, B., Baudin, F., Lanza, A. F., Hulot, J. C., Catala, C., Baglin, A., et al. (2009).
Short-lived spots in solar-like stars as observed by CoRoT. Astron. Astrophys.
506, 245–254. doi: 10.1051/0004-6361/200911942

Nielsen, M. B., Gizon, L., Cameron, R. H., andMiesch, M. (2019). Starspot rotation
rates versus activity cycle phase: butterfly diagrams of Kepler stars are unlike
that of the Sun. Astron. Astrophys. 622:A85. doi: 10.1051/0004-6361/2018
34373

Nielsen, M. B., Gizon, L., Schunker, H., and Karoff, C. (2013). Rotation
periods of 12 000 main-sequence Kepler stars: dependence on stellar spectral
type and comparison with vsini observations. Astron. Astrophys. 557:L10.
doi: 10.1051/0004-6361/201321912

Nielsen, M. B., Gizon, L., Schunker, H., and Schou, J. (2014). Rotational splitting as
a function of mode frequency for six Sun-like stars. Astron. Astrophys. 568:L12.
doi: 10.1051/0004-6361/201424525

Pallé, P. L., Régulo, C., and Roca Cortés, T. (1989). Solar cycle induced variations
of the low L solar acoustic spectrum. Astron. Astrophys. 224, 253–258.

Papini, E. (2016). Simulating the signature of starspots in stellar oscillations. (Ph.D.
thesis). Georg-August-Universität Göttingen, Göttingen, Germany.

Papini, E., Birch, A. C., Gizon, L., and Hanasoge, S. M. (2015).
Simulating acoustic waves in spotted stars. Astron. Astrophys. 577:A145.
doi: 10.1051/0004-6361/201525842

Papini, E., Gizon, L., and Birch, A. C. (2014). Propagating linear waves in
convectively unstable stellar models: a perturbative approach. Solar Phys. 289,
1919–1929. doi: 10.1007/s11207-013-0457-7

Pierce, K. (2000). Allen’s Astrophysical Quantities, ed A. N. Cox. New York, NY:
Springer.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992).
Numerical Recipes in FORTRAN. The Art of Scientific Computing, 2nd Edn. New
York, NY: Cambridge University Press.

Rauer, H., Catala, C., Aerts, C., Appourchaux, T., Benz, W., Brandeker,
A., et al. (2014). The PLATO 2.0 mission. Exp. Astron. 38, 249–330.
doi: 10.1007/s10686-014-9383-4

Rempel, M., Schüssler, M., and Knölker, M. (2009). Radiative
magnetohydrodynamic simulation of sunspot structure.
Astrophys. J. 691, 640–649. doi: 10.1088/0004-637X/691/
1/640

Ricker, G. R., Winn, J. N., Vanderspek, R., Latham, D. W., Bakos, G. Á., Bean,
J. L., et al. (2015). Transiting exoplanet survey satellite (TESS). J. Astron. Telesc.
Instrum. Syst. 1:014003.

Saio, H. (1981). Rotational and tidal perturbations of nonradial oscillations
in a polytropic star. Astrophys. J. 244, 299–315. doi: 10.1086/1
58708

Saio, H., and Gautschy, A. (2004). Axisymmetric p-mode pulsations of stars
with dipole magnetic fields. Mon. Not. Roy. Astron. Soc. 350, 485–505.
doi: 10.1111/j.1365-2966.2004.07659.x

Santos, A. R. G., Cunha, M. S., Avelino, P. P., Chaplin, W. J., and Campante,
T. L. (2016). On the contribution of sunspots to the observed frequency
shifts of solar acoustic modes. Mon. Not. Roy. Astron. Soc. 461, 224–229.
doi: 10.1093/mnras/stw1348

Schunker, H., Gizon, L., Cameron, R. H., and Birch, A. C. (2013).
Helioseismology of sunspots: how sensitive are travel times
to the Wilson depression and to the subsurface magnetic
field? Astron. Astrophys. 558:A130. doi: 10.1051/0004-6361/2013
21485

Shibahashi, H., and Takata, M. (1993). Theory for the distorted dipole modes of
the rapidly oscillating AP stars: a refinement of the oblique pulsator model.
Pub. Astron. Soc. Japan 45, 617–641.

Strassmeier, K. G. (2009). Starspots. Astron. Astrophys. Rev. 17, 251–308.
doi: 10.1007/s00159-009-0020-6

Toutain, T., and Gouttebroze, P. (1993). Visibility of solar p-modes. Astron.
Astrophys. 268, 309–318.

Unno, W., Osaki, Y., Ando, H., Saio, H., and Shibahashi, H. (1989). Nonradial
Oscillations of Stars. Tokyo: University of Tokyo Press.

Zhao, H., and Chou, D.-Y. (2016). Measurements of the absorption and scattering
cross sections for the interaction of solar acoustic waves with sunspots.
Astrophys. J. 822:23. doi: 10.3847/0004-637X/822/1/23

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2019 Papini and Gizon. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 20 December 2019 | Volume 6 | Article 72

https://doi.org/10.1007/s11207-010-9630-4
https://doi.org/10.1051/0004-6361/200911942
https://doi.org/10.1051/0004-6361/201834373
https://doi.org/10.1051/0004-6361/201321912
https://doi.org/10.1051/0004-6361/201424525
https://doi.org/10.1051/0004-6361/201525842
https://doi.org/10.1007/s11207-013-0457-7
https://doi.org/10.1007/s10686-014-9383-4
https://doi.org/10.1088/0004-637X/691/1/640
https://doi.org/10.1086/158708
https://doi.org/10.1111/j.1365-2966.2004.07659.x
https://doi.org/10.1093/mnras/stw1348
https://doi.org/10.1051/0004-6361/201321485
https://doi.org/10.1007/s00159-009-0020-6
https://doi.org/10.3847/0004-637X/822/1/23
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles

	Asteroseismic Signature of a Large Active Region
	1. Introduction
	2. Methods
	2.1. Signature of an Active Region in the Oscillation Power Spectrum: Linear Theory
	2.1.1. Linear Problem in the Corotating Frame
	2.1.2. Frequency Splittings Due to Rotation
	2.1.3. Frequency Splittings Due to the Active Region

	2.2. Numerical Setup for the Linear Problem
	2.3. Power Spectrum in the Observer's Frame: (2+1)2 Peaks

	3. Results
	3.1. Dipole and Quadrupole Power Spectra
	3.2. Asymptotics
	3.2.1. Limit of Small Latitudinal Differential Rotation
	3.2.2. Neglecting Latitudinal Differential Rotation
	3.2.3. Limit of Small-Size Active Region (α15)

	3.3. Correlations in Frequency Space

	4. Discussion
	4.1. Non-linear Frequency Shifts and Amplitudes From Numerical Simulations
	4.1.1. Rotation in Post-processing
	4.1.2. Sound-Speed Perturbation

	4.2. Synthetic Power Spectrum
	4.3. Correlations in Synthetic Power Spectra
	4.4. Toward a Physical Model for Mode Interaction With an Active Region

	5. Conclusions
	Author Contributions
	Acknowledgments
	References


