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Highly-Elliptical Orbits: Luni-Solar
Perturbation Effects for Stability and
Re-entry
Camilla Colombo*
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This paper investigates the long-term evolution of spacecraft in Highly Elliptical Orbits

(HEOs). The single averaged disturbing potential due to luni-solar perturbations, zonal

harmonics of the Earth gravity field is written in mean Keplerian elements. The double

averaged potential is also derived in the Earth-centered equatorial system. Maps of

long-term orbit evolution are constructed bymeasuring themaximum variation of the orbit

eccentricity to identify conditions for quasi-frozen, long-lived libration orbits, or initial orbit

conditions that naturally evolve toward re-entry in the Earth’s atmosphere. The behavior

of these long-term orbit maps is studied for increasing values of the initial orbit inclination

and argument of the perigee with respect to the Moon’s orbital plane. In addition, to allow

meeting specific mission constraints, quasi-frozen orbits can be selected as graveyard

orbits for the end-of-life of HEO missions, in the case re-entry option cannot be achieved

due to propellant constraints. On the opposite side, unstable conditions can be exploited

to target Earth re-entry at the end-of-mission.

Keywords: luni-solar perturbation, third body perturbation, highly elliptical orbit, orbit stability, frozen orbit, orbital

perturbations, re-entry, mission end-of-life

INTRODUCTION

Highly Elliptical Orbits (HEOs) about the Earth are often selected for astrophysics and astronomy
missions, as well as for Earth missions, such as Molniya or Tundra orbits, as they offer vantage
point for the observation of the Earth and the Universe (Draim et al., 2002). Moreover, elliptical
Geostationary Transfer Orbits are commonly selected to inject spacecraft in geostationary orbit.
HEOs guarantees spending most of the time at an altitude outside the Earth’s radiation belt;
therefore, long periods of uninterrupted scientific observation are possible. In addition, geo-
synchronicity is opted to meet coverage requirements, enhanced at the apogee, and optimize the
ground station down-link. If the inclination is properly selected, HEO can minimize the duration
of the motion inside the eclipses.

This paper, whose preliminary version was presented at the 25th AAS/AIAA Space Flight
Mechanics Meeting, in Williamsburg (VA) in January 2015 (Colombo, 2015), investigates the long-
term evolution of spacecraft in HEOs through the exploitation and development of semi-analytical
techniques. The dynamics of HEOs with high apogee altitude is mainly influenced by the effect of
third body perturbations due to the Moon and the Sun, which induces long-term variations in the
eccentricity and the inclination, corresponding to large fluctuations of the orbit perigee and the
effect of the Earth’s oblateness.
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The semi-analytical technique based on averaging is an
elegant approach to analyze the effect of orbit perturbations. It
separates the constant, short periodic and long-periodic terms of
the disturbing function. The short-term effect of perturbations
is eliminated by averaging the variational equations, or the
corresponding potential, over one orbit revolution of the
small body. Indeed, averaging corresponds to filtering the
higher frequencies of the motion (periodic over one orbit
revolution), which typically have small amplitudes (Ely, 2014).
The resulting system allows a deeper understanding of the
dynamics (Shapiro, 1995; Krivov and Getino, 1997). Moreover,
the use of the average dynamics reduces the computational
time for numerical integration as the stiffness of the problem is
reduced, while maintaining sufficient accuracy compatible with
problem requirements also for long-term integrations.

The effect of third body is usually modeled as a series
expansion of the potential with respect to the ratio between the
orbit semi-major axis and the distance to the third body. In
averaged development the potential is usually truncated to the
second order. For example, Cook’s formulation gives the secular
and long-periodic perturbation due to luni-solar perturbation
obtained through averaging over one orbit revolution of the
satellite (Cook, 1962). It assumes circular orbit for the disturbing
bodies and considers only the second term of a/a′, where a
and a′ are, respectively, the spacecraft and the disturbing body
semi-major axis about the Earth (Blitzer, 1970). However, it
does consider the obliquity of the Sun and the Moon over the
equator and the precession of the Moon plane due to the Earth’s
oblateness (in a period of 18.6 years with respect to the ecliptic).
For orbits above Low Earth Orbits, considering only the second
order is not enough to accurately estimate the effect of luni-
solar perturbations. For example, Lara et al. (2012) focused on
orbital configurations, such as the Global Navigation Satellite
Systems, for which the second order effects of J2 can be of the
same order of magnitude as perturbations due to the P2 up to P5
terms in the Legendre polynomials expansion of the third-body’s
disturbing function. For this reason, some recursive formulations
of the third body potential were developed (Cefola and Broucke,

FIGURE 1 | Geometry of the third body with respect to the spacecraft and the

central body.

1975; Laskar and Bou, 2010) also for recovering the short periodic
effects (El’yasberg, 1967).

In this paper, the single averaged disturbing potential due
to luni-solar perturbations is developed in series of Taylor of
the ratio between the orbit semi-major axis and the distance
to the third body, following the approach by Kaufman and
Dasenbrock (1972). The effect of other zonal harmonic of the
Earth gravity field is also modeled up to order 6 considering also
the J22 term (Liu and Alford, 1980). As we want to focus here on
the interaction between the terms of the Legendre polynomial
of the luni-solar perturbation and the Earth’s oblateness, the
effect of solar radiation pressure and aerodynamics drag is
neglected in this work. The perturbed dynamics is propagated
in the Earth-centered equatorial frame by means of the single
averaged variation (over the orbit revolution of the spacecraft)
of the disturbing potential, implemented in the suite PlanODyn
(Colombo, 2016). The long-term evolution of high elliptical
orbits is characterized in the phase space of eccentricity,
inclination and argument of the perigee with respect to the
Earth-Moon plane. Maps of long-term evolution are constructed
to assess the maximum and minimum eccentricity attained
as function of the initial conditions. Through these maps,
conditions for quasi-frozen, or long-lived libration orbits are
identified. Recent projects funded by the European Space Agency
on the design of disposal trajectories for Medium Earth Orbits
(Rossi et al., 2015), Highly Elliptical Orbits and Libration Earth
Orbits (Armellin et al., 2014; Colombo et al., 2014b) have
demonstrated the possibility of exploiting orbit perturbations
for designing of passive mitigation strategies for debris disposal.
From the results of these projects, many work stemmed out
proposing the use of maps for characterizing conditions for
natural re-entry in low Earth orbit (Alessi et al., 2018), medium
Earth orbit (Alessi et al., 2016; Daquin et al., 2016; Gkolias
et al., 2016; Skoulidou et al., 2017), geostationary Transfer orbit
(Srongprapa, 2015), geostationary orbit (Colombo and Gkolias,
2017; Gkolias and Colombo, 2017), and highly elliptical orbit
(Colombo, 2015).

Third body perturbations show important effects on the
long-term evolution of orbits within the Medium Earth orbit
region and above. A relevant contribution to the understanding
of high-altitude orbit dynamics was given by Kozai’s (1962)
analytical theory on secular perturbations of asteroid with high
inclination and eccentricity. Assuming one perturbing body on a
circular orbit, and considering the second term of the disturbing
potential, an analytical solution was found, later named as Kozai-
Lidov dynamics (Kozai, 1962; Lidov, 1962), which links the
eccentricity of the orbit with the inclination, measured from the
perturbing body plane, and the argument of the perigee. Their
work was more recently extended to consider the slow variation
due to the 4th term of the potential and highlighting shirking
characteristics in the phase space (Katz et al., 2011; Naoz et al.,
2013). Always in the line of long term analysis of the third body
effect, El’yasberg (1967) derived the double averaged equations of
the second term of the disturbing potential and Costa and Prado
(2000) continued on the effort by El’yasberg by expanding the
derivation of the double averaged potential up to order 8th. Their
interest concerned the critical value of the inclination between
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the perturbed and the perturbing body related to the stability of
near-circular orbits. In other words for inclination higher than
the critical values, circular orbits get very elliptic, while for lower
values the orbit stays nearly circular. In El’yasberg (1967) and
Costa and Prado (2000) the double averaging was performed
using the orbital elements of the spacecraft as definedwith respect
to the third body plane. However, when considering both the
third body effects of the Sun and the Moon, one has to assume
that they orbit on the same plane; this reduce to consider that
the 5.1◦ inclination of the Moon’s plane over the ecliptic is equal
to zero.

In this work, to guarantee the consistency with the single-
averaged approach, we do not make this assumption. The double
average variation is here obtained averaging on the fast variable
describing the orbital motion of the perturbing body around
the Earth as in El’yasberg (1967) and Costa and Prado (2000),
but the different inclination of the perturbing bodies planes is
retained. The double-averaged disturbing potential is derived in
the Earth-centered equatorial reference system. The choice of
this system has the advance of allowing the description of the
perturbing effect of the Sun and theMoon, considering the actual
ephemerides and their inclination with respect to the equator,

and accommodating also the inclusion of the effect of the zonal
harmonics of the Earth potential, which also affect the motion.

By using the single averaged and double averaged equations
presented in this paper, the behavior of quasi-frozen solutions
appearing for high inclinations orbits can be reproduced. The
choice of representing the maps in terms of inclination and
argument of the perigee with respect to the Moon plane is
quite appropriate here as we want to study the effects on highly
elliptical orbit for which the Moon third body perturbations is
the most relevant effect. In addition, to allow meeting specific
mission constraints, stable conditions for quasi-frozen orbits
can be selected as graveyard orbits for the end-of-life of HEO
missions, in the case re-entry option cannot be achieved due
to propellant constraints, such as XMM-Newton, which is
taken here as practical example. On the opposite side, unstable
conditions can be exploited to target an Earth re-entry at the
end-of-mission (Jenkin andMcVey, 2008; Colombo et al., 2014a).
This is the case of the end-of-life of INTEGRAL mission,
requiring a small delta-v maneuvers for achieving a natural re-
entry assisted by perturbations. In this paper, maps of stable and
unstable HEOs are built, to be used as preliminary design tool for
graveyard or frozen orbit design or natural re-entry trajectories

FIGURE 2 | XMM Newton’s ephemerides: actual ephemerides in blue and propagation with PlanODyn in red. (A) Eccentricity, (B) inclination, (C) argument of the

ascending node, and (D) argument of the perigee. The x-axis represents the time in Modified Julian Date since 2000 (Time origin at 12:00 year 2000).

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 3 July 2019 | Volume 6 | Article 34

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Colombo Highly-Elliptical Orbits Evolution Maps

at the end-of-life. Given the available delta-v on-board, the
reachable space of orbital elements can also be identified as in
the case of XMM-Newton mission.

LONG-TERM ORBIT EVOLUTION

Orbit Evolution With Single-Averaged
Disturbing Potential
To analyze the long-term and secular effect of orbit
perturbations, it is convenient to use an averaging approach.
In the case the effect of perturbations is conservative, this can
be described through a disturbing potential R. In this work we
consider the perturbation to the two-body dynamics due to the
zonal harmonics of the Earth gravity field, and the third-body
perturbation of the Sun and the Moon as

R = Rzonal + R3−Sun + R3−Moon

The variation of the orbital elements is described through the
planetary equations in the Lagrange form (Battin, 1999):

da

dt
= 2

na
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de

dt
= 1

na2e

(

(

1− e2
) ∂R
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na2 sin i
√
1− e2

(

cos i
∂R

∂ω
− ∂R

∂�

)

d�

dt
= 1

na2 sin i
√
1− e2

∂R

∂i

dω

dt
= − 1

na2 sin i
√
1− e2

cos i
∂R

∂i
+

√
1− e2

na2e

∂R

∂e

dM

dt
= n−

(
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)
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∂e
− 2

na
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(1)

that can be written in condense form as

dα

dt
= f

(

α,
∂R

∂α

)

(2)

where α is here used as the condensed form of the Keplerian

elements α =
[

a e i � ω M
]T
, where a is the semi-major axis,

e the eccentricity, i the inclination, � the right ascension of the
ascending node, ω the argument of the perigee and M the mean
anomaly. Through single averaging operation, the potential can
be replaced by the orbit-averaged form of the disturbing function:

R̄ = R̄zonal + R̄3−Sun + R̄3−Moon (3)

obtained under the assumption that the orbital elements are
constant over one orbit revolution of the spacecraft around the
central planet. Therefore, the variation of the mean elements is
described by:

dα

dt
= g

(

α,
∂R̄

∂α

)

(4)

where now ᾱ is the vector of the averaged orbital elements.

Luni-Solar Averaged Potential
For describing the effects of luni-solar third body perturbations,
we follow the approach proposed by Kaufman and Dasenbrock
(1972). Their approach is summarized in this section as is
fundamental to give an insight into the orbital dynamics that
is exploited in section Luni-Solar and Zonal Harmonics Maps.
The disturbing potential due to the third body perturbation is
(Murray and Dermott, 1999):

R
(

r, r′
)

= µ′
(

1

|r− r′| −
r · r′

r′3

)

(5)

FIGURE 3 | Evolution of a high altitude orbit under the effect of luni-solar and zonal perturbations. (A) Comparison of the actual ephemerides (blue) with single

averaged (red) and double averaged (cyan) dynamics. (B) Evolution in the eccentricity-2ω phase space, where the argument of the perigee is measured with respect

to the Moon plane.
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where µ′ is the gravitational coefficient of the third body, r and
r′ are the position vectors of the satellite and the third body
with respect to the central planet, respectively, as represented in
Figure 1. Equation (5) can be expressed as function of the angle
ψ between r and r′ if the cosine rule is exploited in the first term
of Equation (5) and the dot product in the second term is resolved
(Murray and Dermott, 1999):

R
(

r, r′
)

= µ′

r′

(

(

1− 2
r

r′
cosψ +

( r

r′

)2
)−1/2

− r

r′
cosψ

)

(6)

where

cosψ = r · r′
rr′

Kaufman andDasenbrock (1972) express the disturbing potential
as function of the spacecraft’s orbital elements, choosing as
angular variable the eccentric anomaly E, the ratio between the
orbit semi-major axis and the distance to the third body r′:

δ = a

r′

and the orientation of the orbit eccentricity vector with respect to
the third body (Kaufman and Dasenbrock, 1972):

A = P̂ · r̂′

B = Q̂ · r̂′

where the eccentricity unit vector P̂, the semilatus rectum unit

vector Q̂, and the unit vector to the third body r̂′ are expressed
with respect to the equatorial inertial system, through the
following composition of rotations (Kaufman and Dasenbrock,
1972; Lara et al., 2012):

P̂ = ℜ3 (�)ℜ1 (i)ℜ3 (ω) ·
[

1 0 0
]T

FIGURE 4 | XMM-Newton orbit evolution and minimum and maximum

eccentricity attained during the motion evolution. Blue line: actual

ephemerides, red line: propagation with PlanODyn.

R̂ = ℜ3 (�)ℜ1 (i)ℜ3 (ω + π/2 ) ·
[

1 0 0
]T

r̂′ = ℜ3

(

�′)ℜ1

(

i′
)

ℜ3

(

u′
)

·
[

1 0 0
]T

(7)

where R1 represents the rotation matrix around the x axis, R2 the
rotation matrix around y axis and R3 the rotation matrix around

the z axis. The full expression of P̂, Q̂, and r̂′ in terms of Keplerian
elements can be found in Chao-Chun (2005). The variables
�′, ω′, i′, and f ′ in Equation (7) are, respectively, the right
ascension of the ascending node, the argument of the perigee,
the inclination and the true anomaly of the perturbing body on
its orbit (described with respect to the Earth-centered equatorial
reference frame) and u′ = ω′+ f ′. Under the assumption that the
parameter δ is small (i.e., the spacecraft is far enough from the
perturbing body), Equation (6) can be rewritten as a Taylor series
in δ as Kaufman and Dasenbrock (1972):

R
(

r, r′
)

= µ′

r′

∞
∑

k=2

δkFk (A,B, e,E)

Note that the summation starts from k = 2 as the term zero of
the series is influent as is a constant, while the term 1 simplifies
with the second term of Equation (6). The average operation
in eccentric anomaly, passing through the mean anomaly via
dM = (1− e cosE) dE can then be performed, assuming that the
orbital elements of the spacecraft a, e, i, �, and ω are constant
over one orbit revolution:

F̄k (A,B, e) =
1

2π

π
∫

−π

Fk (A,B, e,E) (1− e cosE) dE

to obtain:

R̄
(

r, r′
)

= µ′

r′

∞
∑

k=2

δkF̄k (A,B, e) (8)

where the averaged terms F̄k (A,B, e) are reported in Kaufman
and Dasenbrock (1972) and in Appendix in a more compact
form. Note that the term 2 of Equation (8) is the one given by
Chao-Chun (2005). Equation (8) can be now inserted into the
Lagrange equations by computing the partial derivatives with
respect to the orbital elements, considering that the dependences
of the terms in Equation (8) are: A

(

�, i,ω,�′, i′,ω′ + f ′
)

,
B
(

�, i,ω,�′, i′,ω′ + f ′
)

, and R̄k (A,B, e) (see Appendix

for details).
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(9)
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The derivatives up to the 8th order of the Taylor series are
reported by Kaufman and Dasenbrock (1972); we report them in
Appendix in a more concise form up to order 6th.

Earth Zonal Harmonic Potential
The disturbing function of the zonal harmonic potential is
expressed also in terms of classical orbital elements. The zonal
harmonics were modeled up to order 6 considering also the J22
term (Blitzer, 1970; Liu and Alford, 1980). We report here only
the term associated with J2 that is the one most important one for
the application considered in this work. However, all the terms
were retained in the orbit propagation.

R̄J2 = W
na2

6

3cos2i− 1
(

1− e2
)3/2

whereW is the oblateness parameter

W = 3

2
J2
R2
Earth

a2
n

where J2 = 1.083 · 10−3 denotes the second zonal harmonic
coefficient and REarth is the mean radius of the Earth. n =
√

µEarth/a3 is the orbit angular velocity of the spacecraft on its
orbit, with µEarth the gravitational constant of the Earth.

Model Validation
The averaged dynamical model described in section Orbit
Evolution With Single-Averaged Disturbing Potential was
validated by comparison with the actual ephemerides of two
artificial satellites in highly-elliptical orbit: INTEGRAL and
XMM-Newton. The orbit of INTEGRAL was used in Colombo
et al. (2014a) and validated against the ephemerides from the
NASA-Horizon system. XMM-Newton orbit was propagated in
the time span from 1999/12/15 to 2013/01/01 with the initial
Keplerian elements on 1999/12/15 at 15:00 as: a = 67045 km,
e = 0.7951, i = 0.67988 rad, Ω = 4.1192 rad, ω = 0.99259 rad,
true anomaly f = 3.2299 rad, and radius of the perigee 13,737 km.
Figure 2 shows the results of the validation with the actual

ephemerides form ESA (2013) (blue line). Luni-solar and Earth
zonal harmonics perturbations are included in this validation
with PlanODyn (red line) (Colombo, 2016). The reference system
used is inertial, centered at the Earth, on the Earth equator.

Orbit Evolution With Double-Averaged
Disturbing Potential
Under the further assumption that the orbital elements do not
change significantly during a full revolution of the perturbing
body around the central body (i.e., Earth), the variation of the
orbit over time can be approximately described through the
disturbing potential double averaged over one orbit evolution
of the s/c and over one orbital revolution of the perturbing
body (either the Moon or the Sun) around the Earth. The
terms of the disturbing potential due to the third body effect
in Equation (3) can be substituted by the double-averaged one
¯̄R3−Sun and

¯̄R3−Moon:

¯̄R = R̄zonal + ¯̄R3B-Sun + ¯̄R3B-Moon (10)

¯̄R3B
(

r, r′
)

= µ′

r′

∞
∑

k=2

δk ¯̄Fk
(

e, i,�,ω, i′
)

(11)

In this work we decided to express the double-averaged potential
with respect to the Keplerian elements described in the Earth’s
centered equatorial reference system. This will give a more
complex expression for the potential in Equation (11), with
respect to the one by El’yasberg (1967) and Costa and Prado
(2000) but it has the advantage of avoiding the simplification
that Moon and Sun orbit on the same plane and facilitating the
introduction of the effect of the zonal harmonics.

The terms of the third body potential are obtained starting
from the single-averaged terms, performing the averaging

operation ¯̄Fk (A,B, e).

¯̄Fk
(

e, i,1�,ω, i′
)

= 1

2π

∫ 2π

0
F̄k
(

A
(

�, i,ω,�′, i′,ω′ + f ′
)

,

B
(

�, i,ω,�′, i′,ω′ + f ′
)

, e
)

df ′

FIGURE 5 | Luni-solar + zonal 1e maps for XMM Newton orbit: (A) Forward propagation, and (B) backward propagation. The initial inclination and the argument of

the perigee are measured with respect to the Moon’s plane.
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where 1� = � − �′. The term up to order four of the

potential were computed; only the second term ¯̄F2 is reported

here as ¯̄F3 = 0:

¯̄F2 = 1

128
·
(

cos
(

2i′
) (

6+ 9e2 + 90e2 cos (2ω) sin2i
)

+
(

2+ 3e2+15e2 cos (2ω)
) (

1+ 6 cos (21�) sin2i′
)

+3 cos (2i)
((

6+ 9e2
)

cos
(

2i′
)

+
(

−2− 3e2 + 5e2 cos (2ω)
)

(

−1+ 2 cos (21�) sin2i′
))

12
(

2+ 3e2 − 5e2 cos (2ω)
)

cos (21�) sin (2i) sin
(

2i′
)

+120e2 sin i sin
(

2i′
)

sin (2ω) sin (1�)−
120e2 cos isin2i′ sin (2ω) sin (21�)

)

(12)

The evolution of the orbit in time can be then computed
computing the partial derivatives of Equation (10) and
substituting them into the Lagrange form of planetary equations
Equations (1).

FIGURE 6 | Luni-solar + zonal maps for semi-major axis of XMM Newton orbit a = 67045.39 km: (A) 1e map, (B) 1te map, (C) imin map, (D) imax map, and (E) 1i

map. The initial inclination and the argument of the perigee are measured with respect to the Moon’s plane.
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FIGURE 7 | Continued
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FIGURE 7 | Continued

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 9 July 2019 | Volume 6 | Article 34

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Colombo Highly-Elliptical Orbits Evolution Maps

FIGURE 7 | Continued
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FIGURE 7 | Luni-solar + zonal 1e maps for semi-major axis equal to 67045.39 km (XMM Newton’s orbit) for different values of initial inclination with respect to the

orbiting plane of the Moon. The initial inclination and the argument of the perigee are measured with respect to the Moon’s plane. (A) Initial inclination = 0.5 deg.

(B) Initial inclination = 5deg. (C) Initial inclination = 10deg. (D) Initial inclination = 15deg. (E) Initial inclination = 20deg. (F) Initial inclination = 25deg. (G) Initial

inclination = 30deg. (H) Initial inclination = 35deg. (I) Initial inclination = 40deg. (J) Initial inclination = 45deg. (K) Initial inclination = 50deg. (L) Initial

inclination = 55deg. (M) Initial inclination = 60deg. (N) Initial inclination = 64.2823deg. (O) Initial inclination = 65deg. (P) Initial inclination = 70deg. (Q) Initial

inclination = 75deg. (R) Initial inclination = 80deg. (S) Initial inclination = 85deg. (T) Initial inclination = 90deg.

Note that, with the same procedure, the double averaged
disturbing potential can be also written in the form proposed
by El’yasberg (1967) and Costa and Prado (2000). A different
reference system needs to be used, which is still centered
at the central body (i.e., Earth) but the x-y plane lay
on the perturbing body orbital plane, with its x-axis in
the direction of the perturbing body on its orbit, the
z-axis in the direction of the perturbing body angular
momentum, and the y-axis that completes the reference
system. The corresponding orbital elements are α3Bsys =
[

a3Bsys e3Bsys i3Bsys �3Bsys ω3Bsys M
3Bsys

]T
. It is interesting to

note that this rotating reference system is equivalent to
the synodic system used in the circular restricted three-
body problem.

In this case the eccentricity unit vector P̂3Bsys, the semilatus

rectum unit vector Q̂3Bsys and the unit vector to the third body
r̂′3Bsys have to be expressed with respect to the third body rotating
system, through the following composition of rotations

P̂3Bsys = ℜ3

(

�3Bsys

)

ℜ1

(

i3Bsys
)

ℜ3

(

ω3Bsys

)

·
[

1 0 0
]T

R̂3Bsys = ℜ3

(

�3Bsys

)

ℜ1

(

i3Bsys
)

ℜ3

(

ω3Bsys + π/2
)

·
[

1 0 0
]T

r̂′3Bsys = ℜ3 (0)ℜ1 (0)ℜ3 (0) ·
[

1 0 0
]T =

[

1 0 0
]T

(13)

where �3Bsys = �3Bsys, 0 − u′. By using Equations (13), the new
expressions of A3Bsys and B3Bsys are found as

A3Bsys = P̂3Bsys · r̂′3Bsys
B3Bsys = Q̂3Bsys · r̂′3Bsys

that are function of A3Bsys

(

u′ −�3Bsys, i3Bsys,ω3Bsys

)

,
B3Bsys

(

u′ −�3Bsys, i3Bsys,ω3Bsys

)

so that the doubly averaged

potential loses the dependence on the right ascension of the
ascending node,

¯̄F3Bsys, k
(

e3Bsys, i3Bsys,ω3Bsys

)

= 1

2π

∫ 2π

0
F̄3Bsys, k

(

A3Bsys

(

u′ −�3Bsys, i3Bsys,ω3Bsys

)

,

B3Bsys
(

u′ −�3Bsys, i3Bsys,ω3Bsys

)

, e3Bsys
)

df ′.

So equivalently to Equation (12), we can compute the terms 2 to
4 were we dropped the subscript 3BSys.

¯̄F3Bsys, 2 =
1

32

((

2+ 3e2
)

(1+ 3 cos (2i))+ 30e2 cos (2ω) sin2i
)

¯̄F3Bsys, 3 = 0

¯̄F3Bsys, 4 =
9

32768

((

8+ 40e2 + 15e4
)

(9+ 20 cos (2i)+ 35 cos (4i))

+560e2
(

2+ e2
)

(5+ 7 cos (2i)) cos (2ω) sin2i

+ 5880e4 cos (4ω) sin4i
)

that are equivalent to the expression in El’yasberg (1967) and
Costa and Prado (2000). If the partial derivatives of Equation
(11) are inserted into the Lagrange form of planetary equations
we get the expression of variation of elements double-averaged
over one orbit evolution of the s/c and over one orbital
revolution of the perturbing body (either the Moon or the
Sun). Figure 3 compares the evolution of a high-altitude orbit
using the single averaged dynamics (red line) and the double
averaged dynamics (cyan line) in eccentricity and argument of
the perigee with respect to the Moon plane. It is interesting
to see the evolution in the phase space of eccentricity and
argument of the perigee measured with respect to the Moon
orbiting plane as done in Ely (2005) and Colombo et al. (2014a).
For the initial conditions in Figure 3, the simplified model by
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El’yasberg (1967) and Kozai (1962) predicts a pure librational
orbit (Ely, 2005) (magenta line) which, in reality, is corrupted
by the coupling between Moon and Sun third-body effect and
by the effect of J2 (see the red and cyan lines). The double
averaged propagation derived in Equation (12) is used for the
Moon and the Sun in Equation (10) for obtaining the orbit
propagation represented with the cyan line, while the single

averaged propagation described in sections Luni-Solar Averaged
Potential and Earth Zonal Harmonic Potential is used for
obtaining the orbit propagation represented with the red line.
The single and double average propagation are compared against
the actual spacecraft ephemerides from the NASA Horizon
system in blue. Both the single and the double averaged approach
show very good accuracy against the real ephemerides. With

FIGURE 8 | Maps for initial inclination with respect to the Moon’s plane of 45◦ and semi-major axis equal to 67045.39 km. The initial inclination and the argument of

the perigee are measured with respect to the Moon’s plane. (A) Eccentricity-2ω plot for e0 = 0.05. (B) Eccentricity-2ω plot for e0 = 0.25. (C) Eccentricity-2ω plot for

e0 = 0.45. (D) Eccentricity-2ω plot for e0 = 0.65. (E) Eccentricity-2ω plot for e0 = 0.8. (F) Eccentricity-2ω plot for e0 = 0.9.
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respect to the pure librational loop predicted by the Lidov-Kozai
dynamics, still a quasi-librational behavior can be noted and will
be further studied in the next section through propagation via the
single-averaged dynamics.

LUNI-SOLAR AND ZONAL HARMONICS
MAPS

To the purpose of studying the long term evolution of many
initial conditions, a grid was built in the domain of inclination,
eccentricity and argument of the perigee. Equally spaced steps
in initial eccentricity (19 steps between 0.05 and 0.9), initial
inclination (20 steps between 0.5◦ and 90◦) and initial right
ascension of the ascending node (36 steps between 0◦ and
180◦) were selected as starting points. Note that, inclination and
argument of the perigee are here described with respect to the
Moon plane reference system; in other words i is the inclination

of the spacecraft orbit with respect to the Moon’s orbit plane and
ω is the argument of the perigee measured from the direction
of the ascending node of the spacecraft’s orbit with respect to
the Moon’s orbit plane. Each initial condition on the grid is
propagated over 30 years with the tool PlanODyn (Colombo,
2016) using the single averaged dynamics. As mentioned before,
only luni-solar and zonal harmonics perturbations are here taken
into account as we want to analyze their interaction. For each
initial condition we evaluate the change between the minimum
and the maximum eccentricity that the spacecraft will attain
during its motion (see Figure 4):

1e = emax − emin (14)

with

emax = max
t

e (t) t ∈
[

0 1tdisposal
]

emin = min
t

e (t) t ∈
[

0 1tdisposal
] (15)

FIGURE 9 | Continued
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FIGURE 9 | Continued
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FIGURE 9 | Continued
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FIGURE 9 | Maps for initial inclination with respect to the Moon’s plane of 64.28◦ and semi-major axis equal to 67045.39 km. The initial inclination and the argument

of the perigee are measured with respect to the Moon plane. (A) Eccentricity-2ω plot: e0 = 0.05. (B) Polar plot: e0 = 0.05. (C) Eccentricity-2ω plot: e0 = 0.15. (D)

(Continued)
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FIGURE 9 | Polar plot: e0 = 0.15. (E) Eccentricity-2ω plot: e0 = 0.25. (F) Polar plot: e0 = 0.25. (G) Eccentricity-2ω plot: e0 = 0.35. (H) Polar plot: e0 = 0.35. (I)

Eccentricity-2ω plot: e0 = 0.45. (J) Polar plot: e0 = 0.45. (K) Eccentricity-2ω plot: e0 = 0.55. (L) Polar plot: e0 = 0.55. (M) Eccentricity-2ω plot: e0 = 0.65. (N) Polar

plot: e0 = 0.65. (O) Eccentricity-2ω plot: e0 = 0.705. (P) Polar plot: e0 = 0.705. (Q) Eccentricity-2ω plot: e0 = 0.75. (R) Polar plot: e0 = 0.75. (S) Eccentricity-2ω

plot: e0 = 0.85. (T) Polar plot: e0 = 0.85. (U) Eccentricity-2ω plot: e0 = 0.90. (V) Polar plot: e0 = 0.90.

setting 1tdisposal = 30 years. As introduced the idea will be
then to select limited 1e for graveyard disposal orbits or, at
the opposite, maximum 1e orbits can be exploited for disposal
through re-entry or for passive orbit transfer by exploiting the
effects of perturbations.

Figure 5 represents the result of the forward (a) and backward
(b) integration for 30 years using, as initial conditions, the
semi-major axis of XMM-Newton orbit, i.e., 67045.39 km, and
different values of initial eccentricity and argument of the perigee
in the grid, measured in the Moon reference system. The initial
condition in terms of inclination and eccentricity corresponding
to the one of the XMM-Newton orbit is represented by a
star symbol. The maps are colored according to the maximum
change of eccentricity 1e = emax − emin during the 30-year
forward or backward propagation, respectively. If, for some
initial conditions, the maximum eccentricity reaches the value
of the critical eccentricity ecritical, corresponding to a perigee of
hp, re-entry = 50 km

ecritical = 1−
RE + hp, re-entry

a

the integration is terminated and the corresponding initial
condition is marked with a cross symbol in Figure 5. Note
that, for those solutions, the actual orbit evolution should be
computed considering the effect of aerodynamic drag. This
was not done in the current work to limit the computational
time, however, we expect that the effect of drag will act as a
dumping of the dynamical system, decreasing the amplitude of
the librational or rotational loops in the (e, 2ω) phase space
and progressively decreasing the semi-major axis, as shown in
Colombo and McInnes (2011) for the case of solar radiation
pressure, Earth’s oblateness and drag. This will be subject of
future work.

Now, if we compute the maps considering both a forward and
a backward propagation, both for 30 years, the map becomes
more symmetric, as no particular choice (in terms of symmetry
in the position of the Sun and the Moon) was made for the
initial epoch. This is due to the fact that, if in the propagation the
eccentricity reaches the maximum value eimpact corresponding to
a perigee equal to the Earth radius,

eimpact = 1− RE

a

the integration is terminated. Performing, from each starting
point in the grid both a forward and a backward integration
in time, instead, allows characterizing the dynamics in the
phase space (e, 2ω) in terms of reachable conditions. Figure 6A
shows the forward-backward maps starting from a semi-major

axis of 67045.39 km, where now 1e = emax − emin is
computed as

emax = max
t

e (t) t ∈
[

−1tdisposal +1tdisposal
]

emin = min
t

e (t) t ∈
[

−1tdisposal +1tdisposal
]

setting 1tdisposal = 30 years. The map in Figure 6A present and
island of low eccentricity variation close to the initial condition
of XMM Newton’s orbit. The condition of quasi-frozen orbit is
located around 2ω0 = 180 deg and e0 ≃ 0.8. The solutions
around this conditions librate around the limited-eccentricity
orbit. Other two islands of small eccentricity are present in this
map, one around 2ω0 = 180 deg and e0 ≃ 0.2 and another
around 2ω0 = 0 deg and high values of the initial eccentricities.
Those solution corresponds to orbits which rotate is terms of ω
but have a limited variation in terms of eccentricity. Solutions
starting at eccentricity close to zero have the highest variation
of eccentricity. This means that for this semi-major axis and
inclination, spacecraft on circular orbit can naturally get on an
elliptical orbit and eventually reach re-entry.

In order to approximate the half-period of the oscillation in
the (e, 2ω) phase space, the time interval between the points
when the spacecraft attain the minimum and the maximum
eccentricity is computed (as an averaged between the forward
and the backward propagation) and shown in Figure 6B. From
Figure 6B it is for example possible to see that the quasi-
frozen solution is stable for 30 years. Indeed, due to the
oscillation in inclinations, which has longer period, the orbit
may encounter some instability is a longer propagation time
is chosen as the eccentricity may increase beyond the critical
eccentricity [this can be noted for example in the case of the
INTEGRAL spacecraft (Colombo et al., 2014a)]. The maximum
and minimum inclination attained with respect to the Moon’s
plane are shown in Figures 6C, D, while the variation of
inclination is represented in Figure 6E. As it can be seen from
Figure 6E the limited eccentricity conditions do not have a zero
variation of the inclination; therefore, the long-term stability over
longer time period is not guaranteed and an analysis over longer
timeframe is required.

Once the behavior on the (e, 2ω) phase space is understood
by looking at the map showing the result of the backward and
forward propagation as in Figure 6A, it is possible to study the
sensitivity to the initial condition in inclination with respect to
the Moon’s plane. In Figure 7, the 1e maps are computed for
different starting inclination with respect to the orbiting plane
of the Moon to show how the phase space changes depending
on the initial inclination. For low inclinations the solutions are
all rotational in ω (measured with respect to the Moon’s plane)
and exhibits a higher variation of eccentricity the more the
initial eccentricity is high (Figures 7A–E) and for a high initial
eccentricity the solutions which exhibits a higher eccentricity
variation are characterized by 2ω0 = 180 deg. This behavior is
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clearer in Figures 7F–L: the solutions initiating from the yellow
area of high initial eccentricities and 2ω0 = 180 deg rotate in
ω, while quasi-equilibrium solutions exists at high eccentricities
and 2ω0 ≃ 0 deg (red island around 2ω0 ≃ 0 deg). This is
also visible from Figure 8 that shows the orbit evolution in the

(e, 2ω) phase space for many initial conditions all at starting
inclination with respect to the Moon’s plane of 45◦ and semi-
major axis equal to 67045.39 km but for different starting ω0

(color code) and for different initial eccentricity (Figures 9A,L).
Going back at the 1e maps in Figure 7, a new island appear

for inclinations above 45◦ at low eccentricities and 2ω0 ≃
180 deg of quasi-equilibrium solutions and librational solutions
(Figure 7L), while the island at high eccentricities and 2ω0 ≃
0 deg move up. This is clearly visible from Figure 9 that shows
the orbit evolution in the (e, 2ω) phase space and the polar
plots for many initial conditions all at starting inclination with
respect to the Moon’s plane of 64.28◦ and semi-major axis equal
to 67045.39 km but for different starting ω0 (color code) and for
different initial eccentricity (Figures 9A, L).

For the semi-major axis considered (67045.39 km)
i0 = 45 deg is approximately the critical inclination (Kozai,
1962; Costa and Prado, 2000). Indeed, for inclination higher
than the critical values, circular orbits get very elliptic (see
yellow path in Figures 7L–T). The more the initial inclination
with respect to the Moon increases, the more the initial orbit
reaches the critical eccentricity for re-entry (cross symbols).
Finally, for initial inclinations above i0 = 70 deg, the quasi-
equilibrium solutions in correspondence of 2ω0 ≃ 180 deg are
in correspondence of e0 > ecritic, therefore not feasible, however,
the fast eccentricity solution starting from e0 = 0 still exist. It
is important to remember that, even if qualitatively similar, the
behavior depends also on the orbit semi-major axis that here is
kept constant.

RE-ENTRY OR GRAVEYARD DESIGN

The initial conditions characterized by limited 1e variation
identified in Figures 7L–T could be selected as graveyard orbits
(Ely, 2005), while the high eccentricity variation solutions as

initial condition for passive eccentricity increase to target Earth
re-entry. It must be stressed that, while a re-entry trajectory will
remove completely the spacecraft from the space environment, a
graveyard solution will leave the satellite on a long-term stable
orbit. In this sense, however, the time within which the orbit
stability has been verified becomes an important parameter as
the orbit may de-stabilize afterwards (Daquin et al., 2016). On
the other side, it must be noted that re-entry need to be carefully
designed according to casualty risk constraints on ground
(Merz et al., 2015).

This section will exploit the findings from the previous
Sections to design the end-of-life disposal for XMM-Newton
mission by enhancing the effect of the natural dynamics or luni-
solar and J2 perturbation. The approach for the optimal 1v
computation was detailed in Colombo et al. (2014a) where the re-
entry of the INTEGRAL spacecraft was designed. The approach is
summarized here and extended to the graveyard disposal design.
For the disposal a single maneuver is considered, performed
during the natural orbit evolution of the spacecraft (computed
under the effect of perturbations). The finite variation in orbital
elements 1α achieved by an impulsive maneuver, is computed
through Gauss’ planetary equations written in finite-difference
form and the new set of orbital elements after the maneuver is
propagated with PlanODyn (Colombo, 2016) in single-averaged
orbital elements considering luni-solar perturbation and the
zonal terms of the Earth gravity potential for the maxim
disposal time 1tdisposal = 30 years. Re-entry transfer orbits
are selected that achieve in the propagation time 1tdisposal the
critical eccentricity ecritical as in Colombo et al. (2014a), while
for selecting a suitable graveyard disposal, solutions that attain
the minimum 1e over the propagation time are selected. A
graveyard orbit is designed imposing that after the maneuver,
the variation of the eccentricity in time stays limited, that is
1e in Equation (14) is minimized. In order to analyze a wide
range of disposal dates, different starting dates for the disposal
were selected, whereas, to determine the maneuver magnitude
1v and direction (α and β) and the point on the orbit where the
maneuver is performed f, an optimization procedure with genetic
algorithm was performed in order to find the optimal set of

FIGURE 10 | XMM-Newton re-entry disposal. (A) Maneuvers in the eccentricity-2ω phase space (black points: starting times analyzed for the re-entry disposal). (B)

Minimum perigee reached during the orbit long-term evolution for each solution. The initial inclination and the argument of the perigee are measured with respect to

the Moon’s plane.
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parameters x = [1v α β f ] thatminimizes the cost function J =
1e+w·1vwherew is a weighting factor set equal to 1,000. Rather
than optimizing the timing for the optimal disposal maneuver;
it was chosen instead to leave the time for that maneuver as a
parameter of a sensitivity analysis; in other words, the insertion
to graveyard was optimized for many different starting dates to
analyze how the natural evolution of the orbit can be exploited.
A maximum magnitude for the 1v is considered based on the
available on-board propellant.

XMM-Newton Re-entry Disposal
The time interval considered for the disposal design is from
2013/01/01 to 2035/01/01. The maximum 1v available for the
maneuver sequences is estimated to be 40.5 m/s in 2013/01/01
(Colombo et al., 2014a). The re-entry can be considered satisfied
when an altitude of 50 km or lower is reached from the Earth’s
surface. The natural orbit evolution of the spacecraft is shown
in Figure 10 in the (e, 2ω) phase space. The black points
represent the initial conditions (and corresponding starting time)
considered for the maneuver of disposal. For each starting point
an impulsive maneuver of maximum magnitude equal to two
times the available 1v on board on 2013/01/01 (equal to 81.1
m/s) is optimized in direction in order to maximize the following
variation of the orbit eccentricity in the available 1tdisposal. The
results of the 1v optimization for each initial starting condition
along the natural orbit evolution are reported in Figure 10 in
colored line. Moving toward the external part of the phase space
correspond to target the yellow regions in Figure 7P (for that
map the initial semi-major axis and inclination are the one of the
XMM spacecraft). Corresponding to large eccentricity variation.
However, as it can be seen from Figure 10B, re-entry is not
achievable within the considered 1tdisposal for the maximum
1v considered (equal to 81.1 m/s) as the minimum perigee
reached (among all the possible starting dates) is equal or above
4,700 km (too high for re-entry). This demonstrates that re-
entry for XMM-Newton is not a feasible option during this
time range as the propellant requirements for such a disposal

would be over the actual propellant on-board the spacecraft.
Figure 10A represents the maneuver in the eccentricity-perigee
angle (measured with respect to the Earth-Moon plane) phase
space. Future studies for XMM-Newton disposal through re-
entry could investigate the possibility to increase the propagation
time to verify whether the interaction between Moon and Sun
third body perturbation will cause a natural decrease in the
perigee. However, it needs to be taken into account that the
available 1v on-board the spacecraft decreases with time due to
orbit correction.

XMM-Newton Graveyard Disposal
Another disposal option that can be investigated for HEO in
case the re-entry option is not feasible, is the option to transfer
the spacecraft into a graveyard orbit. The existence of long-
term stable orbits can be investigated, where the evolution of
the orbital elements due to natural perturbation is limited. Such
orbits can be chosen as graveyard orbits. Such orbits are visible
in the map in Figure 7P (for that map the initial semi-major
axis and inclination are the one of the XMM spacecraft) with
a red color corresponding to a small variation of eccentricity.
Importantly, note that the strategy would ideally aims at reaching
the center of libration in the phase space; however, due to
the limitation in the maximum available 1v, imposed as an
upper bound for the global optimization, a more stable orbit
cannot be reached, but only an orbit that is more stable than
the nominal one. In other words, optimal solution is to move
toward the center of the phase space loop. Also note that,
due to the chaotic behavior of the orbit evolution under the
effect of luni-solar perturbation, a driving factor is the time
period 1tgraveyard used for the propagation of the orbit after
the maneuver to compute Equations (15) and (14). For this
study 1tgraveyard was set equal to 30 years, but this number
can be easily increased for further work. Figure 11A shows the
optimal maneuver for a transfer into a graveyard orbit for each
starting time analyzed. The maneuver is represented in the phase
space of eccentricity, inclination and anomaly of the percenter

FIGURE 11 | XMM-Newton graveyard disposal. (A) Optimal maneuvers in the eccentricity-2ω phase space (black points: starting times analyzed for the re-entry

disposal). (B) Example of a disposal trajectory (cyan line). The initial inclination and the argument of the perigee are measured with respect to the Moon’s plane.
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with respect to the Earth-Moon plane. The magnitude of the
maneuver is always close to the upper bound of available 1v
as is clear that a higher 1v would allow reaching a more stable
orbit. However, the new graveyard orbit reduces at least the
oscillations in eccentricity, preventing the spacecraft from an
uncontrolled re-entry within the 30-year period. As an example, a
disposal trajectory, whose maneuver is performed on 20/04/2016,
is shown in Figure 11B.

CONCLUSION

This article analyzed the effect of luni-solar perturbations and
the Earth’s oblateness on the stability of highly elliptical orbits.
The disturbing potential of the third body perturbation is written
in Taylor expansion of the distances to the third body. The
potential is firstly averaged over the revolution of the spacecraft
around the Earth (mean anomaly) then is averaged again over
the revolution of the perturbing body around the Earth. The
existence of quasi-frozen, librational and rotational trajectories
foreseen by the Kozai’s analytical theory are found also when
the Sun third body effect and the Earth’s oblateness are included
in the simulation. Maps are constructed over a wide domain
of initial conditions in terms of eccentricity, inclination and
argument of the perigee with respect to the Moon’s plane. These
maps represents the change in eccentricity over a long time space
and in general can be used to study the orbit stability properties.
These findings are finally used to design the end-of-life disposal
for the XMM-Newton spacecraft as graveyard orbit injection or
Earth re-entry. In this work, the effect of tesseral harmonics was
not taken into account, while this could be important for creating
maps in correspondence of lower semi-major axis, for example
for Geostationary transfer orbits; the same approach however
could be followed.
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APPENDIX

Luni-Solar Perturbation Development
The average disturbing potential due to the third body effect can
be written as Kaufman and Dasenbrock (1972):

R̄
(

r, r′
)

= µ′

r′

∞
∑

k=2

δkF̄k (A,B, e) (16)

where µ′ is the gravitational coefficient of the third body, r′ is the
spacecraft distance to the third body. The factors of the Taylor
expansion can be written as function of the power of the ratio
between the orbit semi-major axis and the distance to the third
body δ = a/r′ multiplied by the function Rk(A,B, e), which is
function of the orbit eccentricity and the functionA and B (Chao-
Chun, 2005) that are here written in terms of ABlizer and BBlizer
given by Blitzer (1970) to show the link between them.

A = cosωABlizer + sinωABlizer

B = − sinωABlizer + cosωABlizer

ABlizer = cos1� cos u′ + cos i′ sin u′ sin1�

BBlizer = − cos i
(

cos u′ sin1�− cos i′ cos1� sin u′
)

+ sin i sin i′ sin u′

The terms Fk(A,B, e) in Equation (16) are given by Kaufman and
Dasenbrock (1972) and are here reported in a more compact
form up to order 6th as:

F̄2 (A,B, e) = 1

4

((

−2+ 3A2 + 3B2
)

− 3
(

1− 4A2 + B2
)

e2
)

F̄3 (A,B, e) = 5

16
Ae
((

12− 15A2 − 15B2
)

+
(

9− 20A2 + 15B2
)

e2
)

F̄4 (A,B, e) = 3

64

((

8− 40A2 + 35A4 − 40B2 + 70A2B2 + 35B4
)

+
(

40− 410A2 + 420A4 + 10B2 + 350A2B2 − 70B4
)

e2

+
(

15− 180A2 + 280A4 + 30B2 − 420A2B2 + 35B4
)

e4
)

F̄5 (A,B, e) = − 21

128
Ae
((

40− 140A2 + 105A4 − 140B2

+210A2B2 + 105B4
) (

100− 490A2

+ 420A4 + 70B2 + 210A2B2 − 210B4
)

e2

+
(

25− 140A2 + 168A4 + 70B2 − 420A2B2

+ 105B4
)

e4
)

F̄6 (A,B, e) =
1

256

((

−80+ 840A2 − 1890A4 + 1155A6

+ 840B2 − 3780A2B2 + 3465A4B2 − 1890B4

+ 3465A2B4 + 1155B6
)

+
(

−840+ 16380A2

− 42525A427720A6 + 1260B2 − 39690A2B2

+ 51975A4B2 + 2835B4 + 20790A2B4

−3465B6 + 20790A2B4 − 3465B6
)

e2

+
(

−1050+ 23625A2 − 75600A4 + 55440A6

−1575B2 + 28350A2B2 − 51975A2B4

+ 3465B6
)

e4

+
(

−175+ 4200A2 − 15120A4

+ 14784A6 − 525B2 + 15120A2B2 − 55440A4B2

− 945B4 + 27720A2B4 − 1155B6
)

e6
)

The derivatives of Equation (16) with respect to the orbital
elements need to be computed to be inserted into the Lagrange
planetary equations Equation (4) as in Equation (9), with

∂B

∂�
= cosω

(

− cos u′ sin1�+ cos i′ cos1� sin u′
)

− cos i sinω
(

cos1� cos u′ + cos i′ sin1� sin u′
)

∂B

∂�
= sinω

(

cos u′ sin1�− cos i′ cos1� sin u′
)

− cos i cosω
(

cos1� cos u′ + cos i′ sin1� sin u′
)

∂A

∂i
= CBlitzer sinω

∂B

∂i
= CBlitzer cosω

∂A

∂ω
= B

∂B

∂ω
= −A

where (Blitzer, 1970): CBlizer =
sin i

(

cos u′ sin1�− cos i′ cos1� sin u′
)

+ cos i sin i′ sin u′.
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