AUTHOR=Jedicke Robert , Bolin Bryce T. , Bottke William F. , Chyba Monique , Fedorets Grigori , Granvik Mikael , Jones Lynne , Urrutxua Hodei TITLE=Earth's Minimoons: Opportunities for Science and Technology JOURNAL=Frontiers in Astronomy and Space Sciences VOLUME=5 YEAR=2018 URL=https://www.frontiersin.org/journals/astronomy-and-space-sciences/articles/10.3389/fspas.2018.00013 DOI=10.3389/fspas.2018.00013 ISSN=2296-987X ABSTRACT=
Twelve years ago the Catalina Sky Survey discovered Earth's first known natural geocentric object other than the Moon, a few-meter diameter asteroid designated 2006 RH120. Despite significant improvements in ground-based telescope and detector technology in the past decade the asteroid surveys have not discovered another temporarily-captured orbiter (TCO; colloquially known as minimoons) but the all-sky fireball system operated in the Czech Republic as part of the European Fireball Network detected a bright natural meteor that was almost certainly in a geocentric orbit before it struck Earth's atmosphere. Within a few years the Large Synoptic Survey Telescope (LSST) will either begin to regularly detect TCOs or force a re-analysis of the creation and dynamical evolution of small asteroids in the inner solar system. The first studies of the provenance, properties, and dynamics of Earth's minimoons suggested that there should be a steady state population with about one 1- to 2-m diameter captured objects at any time, with the number of captured meteoroids increasing exponentially for smaller sizes. That model was then improved and extended to include the population of temporarily-captured flybys (TCFs), objects that fail to make an entire revolution around Earth while energetically bound to the Earth-Moon system. Several different techniques for discovering TCOs have been considered but their small diameters, proximity, and rapid motion make them challenging targets for existing ground-based optical, meteor, and radar surveys. However, the LSST's tremendous light gathering power and short exposure times could allow it to detect and discover many minimoons. We expect that if the TCO population is confirmed, and new objects are frequently discovered, they can provide new opportunities for (1) studying the dynamics of the Earth-Moon system, (2) testing models of the production and dynamical evolution of small asteroids from the asteroid belt, (3) rapid and frequent low delta-v missions to multiple minimoons, and (4) evaluating