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The direct long-term changes occurring in the orbital dynamics of a local gravitationally
bound binary system S due to the post-Newtonian tidal acceleration caused by an external
massive source are investigated. A class of systems made of a test particle m rapidly
orbiting with orbital frequency nb an astronomical body of mass M which, in turn, slowly
revolves around a distant object of mass M′ with orbital frequency nb

′ � nb is considered.
The characteristic frequencies of the non-Keplerian orbital variations of m and of M itself
are assumed to be negligible with respect to both nb and nb

′. General expressions for
the resulting Newtonian and post-Newtonian tidal orbital shifts of m are obtained. The
future missions BepiColombo and JUICE to Mercury and Ganymede, respectively, are
considered in view of a possible detection. The largest effects, of the order of ≈ 0.1−0.5
milliarcseconds per year (mas yr−1), occur for the Ganymede orbiter of the JUICE
mission. Although future improvements in spacecraft tracking and orbit determination
might, perhaps, reach the required sensitivity, the systematic bias represented by the
other known orbital perturbations of both Newtonian and post-Newtonian origin would
be overwhelming. The realization of a dedicated artificial mini-planetary system to be
carried onboard and Earth-orbiting spacecraft is considered as well. Post-Newtonian
tidal precessions as large as ≈ 1−102 mas yr−1 could be obtained, but the quite larger
Newtonian tidal effects would be a major source of systematic bias because of the
present-day percent uncertainty in the product of the Earth’s mass times the Newtonian
gravitational parameter.

Keywords: general relativity and gravitation, experimental studies of gravity, experimental tests of gravitational
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1. INTRODUCTION
Gravitation is one of the known fundamental interactions of
physics, and the General Theory of Relativity (GTR) is, at present,
its best theoretical description (Will, 2009). As such, GTR is one
of the pillars of our knowledge of Nature; intense experimental
and observational scrutiny is required not only to gain an ever-
increasing confidence about it, but also to explore the borders of
the realm of its validity at different scales. To this aim, a variety of
different theoretical, experimental and observational approaches
are required to extend the frontiers of our knowledge of the grav-
itational phenomena. Are there some founded hopes to testing
newly predicted gravitational effects in the near future in some
suitable astronomical and astrophysical laboratories? What are
the possibilities opened up by forthcoming space-based missions?
The present paper will try to address these questions by looking
at certain effects that the components of the Riemann space-
time curvature tensor are expected to induce on local systems
according to GTR.

The internal dynamics of a gravitationally bound binary sys-
tem immersed in the external gravitational field of a massive
rotating body is tidally affected at both the Newtonian and the
post-Newtonian level (Mashhoon, 1977; Chicone and Mashhoon,
2002, 2006; Kopeikin et al., 2011). In this paper, we will look in

detail at some of the post-Newtonian orbital effects of tidal origin
arising in the relative motion of a restricted two-body system, and
at the possibility of detecting them in either natural or artificial
space-based scenarios. Special cases widely treated in the liter-
ature are the post-Newtonian tidal effects of the rotating Sun’s
field in the Earth-Moon system (Braginsky and Polnarev, 1980;
Mashhoon and Theiss, 1982, 1986; Gill et al., 1989; Mashhoon
and Theiss, 1991, 2001) and of the spinning Earth itself in arrays
of spaceborne artificial gradiometers (Mashhoon and Theiss,
1982; Theiss, 1985; Mashhoon et al., 1989; Paik, 1989; Theiss,
1992; Paik, 2008; Li et al., 2014). Our calculation will have a broad
range of validity. Indeed, while, on the one hand, certain assump-
tions on the characteristic orbital frequencies of the three-body
system considered will be necessarily made, on the other hand,
we will remove the limitations existing in the literature (Chicone
and Mashhoon, 2006) on either the orientation of the spin axes
of the external objects and on the orbital configurations of the
moving bodies.

The paper is organized as follows. In Section 2, the long-term
rates of change of the orbital parameters of the test particle of
the restricted two-body system are calculated by keeping the ele-
ments of a generic tidal matrix constant over the orbital period of
the particle around its primary. In Section 3, the direct orbital
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effects due to both the gravitoelectric and the gravitomagnetic
tidal matrices are obtained by averaging their elements over the
orbital period of the motion around the distant body. Section 4 is
devoted to exploring some experimental possibilities offered by
forthcoming spacecraft-based missions to astronomical bodies.
Section 5 summarizes our findings.

2. THE LONG-TERM ORBITAL RATES OF CHANGE AVERAGED
OVER PB

Let us consider an isolated rotating body of mass M′, equato-
rial radius R′ and proper angular momentum J ′ at rest in some
parameterized post-Newtonian coordinate system K′ whose spa-
tial axes point to distant stars; as such, K′ is kinematically and
dynamically non-rotating (Brumberg and Kopeikin, 1989). Let a
local gravitationally bound system S move geodesically around
M′; S is assumed to be made of a body of mass M, equatorial
radius R and proper angular momentum J, and of a test particle
of mass m revolving about M itself. For the sake of simplicity,
we will assume m � M � M′; examples of such scenarios are
spacecraft like MESSENGER (Solomon et al., 2007) and the forth-
coming BepiColombo (Benkhoff et al., 2010) to orbit Mercury in
the field of the Sun as well as the future JUICE mission (Grasset
et al., 2013) to orbit Ganymede and to study the Jovian system. To
the Newtonian level, the spatial trajectory of S about M′ can be
parameterized in terms of the usual Keplerian orbital elements.
They are the semimajor axis a′, the eccentricity e′, the inclination
I′ to the reference

{
x′, y′} plane ofK′, the longitude of the ascend-

ing node �′, and the argument of pericenter ω′; nb
′ =

√
GM′a′−3

is the Keplerian orbital frequency, where G is the Newtonian con-
stant of gravitation. In general, such orbital parameters do not
stay constant because of the well known Newtonian and post-
Newtonian departures from spherical symmetry of the field of
M′. They induce the post-Newtonian Einstein (gravitoelectric)
(Einstein, 1915; Nobili and Will, 1986) and Lense-Thirring (grav-
itomagnetic) (Lense and Thirring, 1918) orbital precessions as
well as the classical ones due to the oblateness J2

′ of M′ and,
possibly, to its other multipoles of higher order (Bertotti et al.,
2003).

Let a local inertial frame K, attached to M, be parallel trans-
ported along the geodesic worldline of M through the spacetime
of M′ (Fermi, 1922; Levi-Civita, 1926; Synge, 1927). As such, the
spatial axes ofK change naturally their orientation with respect to
the fixed “Copernican” spatial axes of K′ because of the geodesic
motion of K itself through the external spacetime deformed by
M′ and J ′. As such, K is also said to be kinematically rotat-
ing because of the resulting de Sitter-Fokker (gravitoelectric) (de
Sitter, 1916; Fokker, 1921) and Pugh-Schiff (gravitomagnetic)
precessions1 of its axes with respect to those of K′, but it is
dynamically nonrotating because of the absence of Coriolis and
centrifugal inertial forces (Brumberg and Kopeikin, 1989). To the
Newtonian level, also the motion of m about M will be parame-
terized in terms of a set of Keplerian orbital elements a, e, I, �, ω

in such a way that nb = √
GMa−3 denotes its Keplerian orbital

frequency. Usually, the frequencies of the de Sitter-Fokker and

1A comoving coordinate system is said to be kinematically nonrotating if it is
corrected for the post-Newtonian precessions of its axes.

Pugh-Schiff precessions are quite smaller than both nb
′ and nb;

for a critical discussion tidal phenomena occurring in the Sun-
Earth-Moon system over timescales comparable to or larger than
the de Sitter-Fokker and Pugh-Schiff ones, see (Gill et al., 1989;
Mashhoon and Theiss, 1991). Thus, we can safely assume K
as kinematically nonrotating over timescales comparable to the
orbital periods Pb = 2πn−1

b and P′
b = 2πnb

′−1 of the three-body
system considered. As a further assumption, we will consider the
local motion of m about M much faster than the one of S itself
around M′, i.e., nb

′ � nb. In general, the internal dynamics of
S is not purely Keplerian because of possible departures from
sphericity of M and of the post-Newtonian components of the
field of M. As such, the orbit of m with respect to M undergoes
the well-known Newtonian and post-Newtonian orbital preces-
sions. As it occurs in the systems considered here, the timescales
of such changes are quite longer than the orbital periods Pb, P′

b,
i.e., �̇ � nb

′, where � denotes a generic precessing osculating
Keplerian orbital element of m.

At both the Newtonian and the post-Newtonian level, the
internal dynamics of S is locally affected also by tidal effects due
to its motion through the external deformed spacetime of M′.
The tidal acceleration experienced by m is of the form (Mashhoon
et al., 1989)

Atid = −Kr, (1)

where the elements of the tidal matrix K

Kij = R0i0j, i, j = 1, 2, 3 (2)

are the tetrad components of the curvature Riemann tensor evalu-
ated onto the geodesic of the observer in K, and have dimensions
of T−2. It is

K = K(N) + K(GE) + K(GM), (3)

with the Newtonian (N), gravitoelectric (GE) and gravitomag-
netic (GM) tidal matrices given by (Mashhoon et al., 1989)

K(N)
ij = GM′

r′3
(
δij − 3r̂′

ir̂′
j

)
, (4)

K(GE)
ij = − G2M′2

c2r′4
(

3δij − 9r̂′
ir̂′

j

)

+ GM′

c2r′3

{
3
[

v′2δij − v′
iv

′
j + 3

(
v′ · r̂′

)
r̂′

(iv
′
j)

]

− 3
(

v′ · r̂′
)2

δij − 6r̂′
ir̂′

jv
′2
}

, (5)

K(GM)
ij = − 6GJ′

c2r′4

{
3
(

v′ × k̂′
)

(i
r̂′

j) +
(

r̂′ × k̂′
)

(i
v′

j)

+ r̂′ ·
(

v′ × k̂′
) (

δij − 5r̂′
ir̂′

j

)

− 5
(

r̂′ · v′) (r̂′ × k̂′
)

(i
r̂′

j)

}
. (6)

In Equations (4–6), which are symmetric and traceless, c is the

speed of light in vacuum, r̂′ = r′/r′ is the versor of the position
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vector r′ from M′ to M, v′ is the velocity vector of M with respect

to M′, δij is the Kronecker symbol, k̂′ is the unit vector of the spin
axis of M′, the symbols · and × denote the usual scalar and cross
products among vectors, and parentheses around indices denote
symmetrization.

The tidal acceleration of Equation (1) can be considered as a
small perturbation Apert of the Newtonian monopole of M. As
such, its impact on the orbital dynamics of m can be treated per-
turbatively with standard techniques. By recalling the condition
nb

′ � nb, the elements of the tidal matrix K can be considered
as constant over an orbital period Pb. Thus, by evaluating the
right-hand-sides of the Gauss equations (Burns, 1976)

da

dt
= 2

nb

√
1 − e2

(
eAR sin f + p

r
AT

)
, (7)

de

dt
=

√
1 − e2

nba

{
AR sin f + AT

[
cos f + 1

e

(
1 − r

a

)]}
,

(8)

dI

dt
= cos

(
ω + f

)
nba

√
1 − e2

( r

a

)
AN , (9)

d�

dt
= sin

(
ω + f

)
nba sin I

√
1 − e2

( r

a

)
AN , (10)

dω

dt
+ cos I

d�

dt
=

√
1 − e2

nbae

[
−AR cos f + AT

(
1 + r

p

)
sin f

]
.(11)

onto the unperturbed Keplerian ellipse

r = p

1 + e cos f
, (12)

where p = a
(
1 − e2

)
is the semilatus rectum and AR, AT, AN are

the radial, transverse and out-of-plane components of Equation
(1), the orbital variations of m averaged over Pb can be calculated.
To this aim, let us note that, in principle, the average should be
made by means of (Brumberg, 1991; Will, 2014)

df

dt
= nb

(a

r

)2 √
1 − e2 −

(
dω

dt
+ cos I

d�

dt

)
, (13)

where t is the proper time along the observer’s geodesic,
f is the true anomaly, and �̇, ω̇ are to be intended as
the instantaneous, non-averaged precessions of the node and the
pericenter (Brumberg, 1991). Indeed, f is reckoned from the
pericenter position, which, in general, changes because of possi-
ble variations of � and ω due to the non-Keplerian Newtonian
and post-Newtonian effects within S. As such, the instanta-
neous expressions for �̇ and ω̇ in Equation (13) should be
taken from Equations (10,11) themselves evaluated for the spe-
cific Newtonian and post-Newtonian perturbations (Brumberg,
1991). However, by limiting ourselves just to the order O (

c−2
)
,

and by neglecting small mixed terms of order O (
J2c−2

)
aris-

ing from the interplay between the external tidal and the local
Newtonian perturbations due to J2, the approximate expression

df

dt
= nb

(a

r

)2 √
1 − e2 (14)

can be used by integrating over f between 0 and 2π . By using the
following Keplerian expressions for the position r

x = r
[
cos � cos

(
f + ω

)− cos I sin � sin
(
f + ω

)]
, (15)

y = r
[
sin � cos

(
f + ω

)+ cos I cos � sin
(
f + ω

)]
, (16)

z = r
[
sin I sin

(
f + ω

)]
, (17)

and the velocity v

vx = −
anb

{
cos I sin �

[
e cos ω + cos

(
f + ω

)]
+ cos �

[
e sin ω + sin

(
f + ω

)]}
√

1 − e2
, (18)

vy =
anb

{
cos I cos �

[
e cos ω + cos

(
f + ω

)]
− sin �

[
e sin ω + sin

(
f + ω

)]}
√

1 − e2
, (19)

vz = anb sin I
[
e cos ω + cos

(
f + ω

)]
√

1 − e2
, (20)

it is possible to compute from Equations (15–20) the unit vector
L̂ along the orbital angular momentum as

L̂ = r × v

|r × v| . (21)

Then, the radial, transverse and normal components of Equation
(1) turn out to be

AR = Atid · r̂ = Ka
(
1 − e2

)
1 + e cos f

· {[cos I sin
(
f + ω

)
sin � − cos

(
f + ω

)
cos �

]
· [sin f (K21 cos I cos ω cos � + (K22 + K33) sin ω cos �

+ K31 cos ω sin I) + cos f (K11 cos ω cos �

+ (K21 cos I cos � + K31 sin I) sin ω) + (
K21 cos

(
f + ω

)
+(K22 + K33) cos I sin

(
f + ω

))
sin �

]
+ (cos I cos � sin

(
f + ω

)+ cos
(
f + ω

)
sin �

)
· (cos

(
f + ω

)
(K21 cos � + K22 sin �)

+ sin
(
f + ω

)
(K32 sin I + cos I (K22 cos � − K21 sin �))

)
+ sin I sin

(
f + ω

) (
cos

(
f + ω

)
(K31 cos � + K32 sin �)

+ sin
(
f + ω

)
(K33 sin I + cos I (K32 cos � − K31 sin �))

)}
,

(22)

AT = Atid ·
(

L̂×r̂
)

= − Ka
(
1 − e2

)
4
(
1 + e cos f

) { (−K33 + (2K22 + K33)

· cos 2� − 2K21 sin 2�) cos2 I sin
(
2f + 2ω

)
+ 2

(
2 sin I (K32 cos � − K31 sin �) sin

(
2f + 2ω

)
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+ [2K21 cos 2� + (2K22 + K33) sin 2�]) cos I cos
(
2f + 2ω

)
+ 4 sin I (K31 cos � + K32 sin �) cos

(
2f + 2ω

)
+ [(2 − cos 2I) K33 + (2K22 + K33) cos 2�

− 2K21 sin 2�] sin
(
2f + 2ω

)}
, (23)

AN = Atid · L̂ = − Ka
(
1 − e2

)
4
(
1 + e cos f

) {4 cos I (K31 cos � + K32 sin �)

· cos
(
f + ω

)+ 2 sin I [−2K21 cos 2� − (2K22 + K33) sin 2�]

· cos
(
f + ω

)+ 4 cos 2I (K32 cos � − K31 sin �) sin
(
f + ω

)
+ sin 2I [3K33 − (2K22 + K33) cos 2� + 2K21 sin 2�]

· sin
(
f + ω

)}
, (24)

where K is the dimensional scaling factor of the tidal matrix
considered having dimensions of T−2, while the dimension-
less coefficients Kij, i, j = 1, 2, 3 depend only on the orbital

parameters of M and on the orientation of k̂′. Thus, by insert-
ing Equations (22–24) in the right-hand-sides of Equations
(7–11) and averaging them over Pb with Equation (14), one
finally has

〈
da

dt

〉
Pb

= 0, (25)

〈
de

dt

〉
Pb

= 5Ke
√

1 − e2

8nb
{−2 sin 2ω sin � (2K21cos � + K33 sin �)

+ cos2 I + 2 [2 sin I sin 2ω (K32 cos � − K31 sin �)

+ cos 2ω (2K21 cos 2� + (2K22 + K33) sin 2�)] cos I

+ 4 cos 2ω sin I (K31 cos � + K32 sin �)

+ sin 2ω [K22 (cos 2I + 3) cos 2�

+ K33 (− cos 2I + cos 2� + 2) − 2K21 sin 2�]} , (26)〈
dI

dt

〉
Pb

= − K

8nb

√
1 − e2

{
10e2 cos 2I sin 2ω (K32cos � − K31sin �)

− 5

2
e2 sin 2I sin 2ω [−3K33 + (2K22 + K33) cos 2�

− 2K21 sin 2�] + 2 cos I
(
5e2 cos 2ω + 3e2 + 2

)
· (K31 cos � + K32 sin �) − (

5e2 cos 2ω + 3e2 + 2
)

sin I

· [2K21 cos 2� + (2K22 + K33) sin 2�]} , (27)〈
d�

dt

〉
Pb

= − K csc I

16nb

√
1 − e2

{
20e2 sin 2ω(cos I (K31 cos � + K32 sin �)

− sin I (K21 cos 2� + (2K22 + K33) cos � sin �))

+ 4 cos 2I
(
5e2 cos 2ω − 3e2 − 2

)
(K31 sin � − K32 cos �)

+ (
5e2 cos 2ω − 3e2 − 2

)
sin 2I [−3K33 + (2K22 + K33)

· cos 2� − 2K21 sin 2�]} , (28)

〈
dω

dt

〉
Pb

+ cos I

〈
d�

dt

〉
Pb

= K
√

1 − e2

16nb
{−40 sin I sin 2ω (K31 cos � + K32 sin �)

+ 4 (5 cos 2ω − 3) sin 2I (K32 cos � − K31 sin �)

− 20 cos I sin 2ω [2K21 cos 2� + (2K22 + K33) sin 2�]

+ cos 2I (5 cos 2ω − 3) [−3K33 + (2K22 + K33) cos 2�

− 2K21 sin 2�] + 3 (5 cos 2ω + 1) [K33 + (2K22 + K33)

· cos 2� − 2K21 sin 2�]} . (29)

The long-term rates of Equations (25–29) are valid for any
symmetric and traceless tidal-type perturbation of the form of
Equation (1) whose coefficients can be considered as constant
over the characteristic orbital frequency nb of the local binary sys-
tem considered. As such, Equations (25–29) are not limited just
to Equations (5,6). Moreover, Equations (25–29) hold for a gen-
eral orbital configuration of the test particle m since no a priori
simplifying assumptions concerning its eccentricity and inclina-
tion were made. As shown by Equation (26), the eccentricity of a
circular orbit is not affected by a tidal-type perturbation.

3. THE LONG-TERM ORBITAL RATES OF CHANGE AVERAGED
OVER P ′

b

In general, Equations (25–29) may not be regarded as truly secu-
lar rates over timescales arbitrarily long because of the slow time
dependence encoded in both the tidal matrix elements themselves
and in the orbital elements of m, collectively denoted as {�},
due to possible non-Keplerian local effects taking place in the
non-spherically symmetric field of M.

Let us, now, assume that the characteristic timescales P� of all
the non-Keplerian orbital effects within S are much longer than
the orbital period P′

b of S itself about M′. It is a reasonable tenet,
satisfied in several astronomical scenarios of potential experimen-
tal interest. Thus, it is possible to perform a further average of
Equations (25–29) over P′

b by keeping a, e, I, �, ω constant over
the integration with respect to some fast variable2 of the motion
of M around M′.

The direct effects of order O (
c−2

)
can be obtained by evalu-

ating the post-Newtonian tidal matrices Equations (5,6) onto an
unchanging Keplerian ellipse as reference unperturbed trajectory.

Below, the averaged tidal matrix elements of Equations (4–6),
computed to order O (

c−2
)

and to zero order in J2
′, are listed.

They are to be inserted in Equations (25–29) to have the direct
long-term rates of change of m averaged over P′

b.
As far as the Newtonian tidal matrix of Equation (4) is

concerned, its average, to the zero order in J2
′, is

〈
K(N)

11

〉
P′

b

= −GM′ (1 + 3 cos 2I′ + 6 sin2 I′ cos 2�′)
8a′3 (1 − e′2)3/2

, (30)

〈
K(N)

22

〉
P′

b

= −GM′ (1 + 3 cos 2I′ − 6 sin2 I′ cos 2�′)
8a′3 (1 − e′2)3/2

, (31)

〈
K(N)

33

〉
P′

b

= GM′ (1 + 3 cos 2I′)
4a′3 (1 − e′2)3/2

, (32)

2It turned out computationally more convenient to adopt the true anomaly
f ′.
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〈
K(N)

12

〉
P′

b

= −3GM′ sin2 I′ sin 2�′

4a′3 (1 − e′2)3/2
, (33)

〈
K(N)

13

〉
P′

b

= 3GM′ sin 2I′ sin �′

4a′3 (1 − e′2)3/2
, (34)

〈
K(N)

23

〉
P′

b

= −3GM′ sin 2I′ cos �′

4a′3 (1 − e′2)3/2
. (35)

For the post-Newtonian gravitoelectric tidal field of M′, Equation
(5) yields

〈
K(GE)

11

〉
P′

b

= − 3G2M′2e′2

32c2a′4 (1 − e′2)5/2

· {12 cos 2I′ + 2 cos 2ω′ − 2 cos 2I′ cos 2ω′

+ cos 2�′ [24 sin2 I′ + 2
(
cos 2I′ + 3

)
cos 2ω′]

− 8 cos I′ sin 2�′ sin 2ω′ + 4
}
, (36)

〈
K(GE)

22

〉
P′

b

= 3G2M′2e′2

32c2a′4 (1 − e′2)5/2

· {−12 cos 2I′ − 2 cos 2ω′ + 2 cos 2I′ cos 2ω′

+ cos 2�′ [24 sin2 I′ + 2
(
cos 2I′ + 3

)
cos 2ω′]

− 8 cos I′ sin 2�′ sin 2ω′ − 4
}
, (37)

〈
K(GE)

33

〉
P′

b

= 3G2M′2e′2

4c2a′4 (1 − e′2)5/2

(
sin2 I′ cos 2ω′ + 3 cos 2I′ + 1

)
,

(38)

〈
K(GE)

12

〉
P′

b

= − 3G2M′2e′2

16c2a′4 (1 − e′2)5/2

{
4 cos I′ cos 2�′ sin 2ω′

+ [
12 sin2 I′ + (

cos 2I′ + 3
)

cos 2ω′] sin 2�′} , (39)

〈
K(GE)

13

〉
P′

b

= − 3G2M′2e′2

4c2a′4 (1 − e′2)5/2

· {sin I′ [cos �′ sin 2ω′ + cos I′ (cos 2ω′ − 6
)

sin �′]} ,

(40)

〈
K(GE)

23

〉
P′

b

= 3G2M′2e′2

4c2a′4 (1 − e′2)5/2

· {sin I′ [cos I′ (cos 2ω′ − 6
)

cos �′ − sin 2ω′ sin �′]} .

(41)

In the limit of e′ → 0, Equations (36–41) vanish.
For the post-Newtonian gravitomagnetic tidal field of M′ due

to J′, from Equation (6) one obtains

〈
K(GM)

11

〉
P′

b

= − 3GJ′nb
′

64c2a′3 (1 − e′2)3

·
{

40e′2 sin 2ω′ (2k̂z
′ cos 2I′ + 3k̂x

′ sin 2I′ sin �′) sin 2�′

+ 5 cos 2ω′ (12 sin 3I′ (k̂x
′ sin �′ − k̂y

′ cos �′) sin2 �′

+ sin I′ (k̂y
′ (cos �′ + 15 cos 3�′)

− 3 k̂x
′ (sin �′ + 5 sin 3�′))) e′2

− 20
(

3e′2 + 2
)

k̂z
′ cos 3I′ − 4 cos I′ (5k̂z

′ cos 2ω′ (6 sin2 I′

+ (
3 cos 2I′ + 1

)
cos 2�′) e′2 − 10k̂y

′ sin I′ sin 2ω′

· (sin �′ − 3 sin 3�′) e′2 +
(

3e′2 + 2
)

k̂z
′

· (20 cos 2�′ sin2 I′ + 3
))

+ 2
(

3e′2 + 2
) (

20 sin 3I′ (k̂y
′ cos �′ − k̂x

′ sin �′) sin2 �′

+ sin I′ (k̂y
′ (cos �′ + 15 cos 3�′)− 3k̂x

′ (sin �′ + 5 sin 3�′)))} ,

(42)〈
K(GM)

22

〉
P′

b

= − 3GJ′nb
′

64c2a′3 (1 − e′2)3

·
{

20e′2k̂x
′ (cos �′ + 3 cos 3�′) sin 2I′ sin 2ω′

− 80e′2k̂z
′ cos 2I′ sin 2ω′ sin 2�′ − 20

(
3e′2 + 2

)
k̂z

′ cos 3I′

+ 20
(

3e′2 cos 2ω′ − 6e′2 − 4
)

cos2 �′ sin 3I′

·
(

k̂x
′ sin �′ − k̂y

′ cos �′)
+ 4e′2 cos I′ (5k̂z

′ cos 2ω′ ((3 cos 2I′ + 1
)

cos 2�′ − 6 sin2 I′)
+ 120e′2k̂y

′ cos2 �′ sin I′ sin 2ω′ sin �′

+
(

3e′2 + 2
)

k̂z
′ (20 cos 2�′ sin2 I′ − 3

))
+
(

5e′2 cos 2ω′ + 6e′2 + 4
)

sin I′ (3k̂y
′ cos �′

− 15k̂y
′ cos 3�′ − k̂x

′ sin �′ + 15k̂x
′ sin 3�′)} , (43)

〈
K(GM)

33

〉
P′

b

= − 3GJ′nb
′

16c2a′3 (1 − e′2)3

·
{
−20e′2 sin 2I′ sin 2�′ (k̂x

′ cos �′ + k̂y
′ sin �′)

+ 5e′2 cos 2�′ (12k̂z
′ cos I′ sin2 I′ + k̂y

′ cos �′ (3 sin 3I′ − sin I′)
+ k̂x

′ (sin I′ − 3 sin 3I′) sin �′)
+ 2

(
3e′2 + 2

) (
3k̂z

′ cos I′ + 5k̂z
′ cos 3I′

− (
sin I′ + 5 sin 3I′) (k̂y

′ cos �′ − k̂x
′ sin �′))} , (44)

〈
K(GM)

12

〉
P′

b

= − 3GJ′nb
′

64c2a′3 (1 − e′2)3

·
{
−80e′2k̂z

′ cos 2I′ cos 2�′ sin 2ω′

+ 20e′2 sin 2I′ sin 2ω′ (k̂y
′ cos �′ + 3k̂y

′ cos 3�′

+ k̂x
′ (sin �′ − 3 sin 3�′))
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− 10k̂z
′ cos 3I′ (3e′2 cos 2ω′ − 6e′2 − 4

)
sin 2�′

− 10k̂z
′ cos I′ (5e′2 cos 2ω′ + 6e′2 + 4

)
sin 2�′

+ 10
(

3e′2 cos 2ω′ − 6e′2 − 4
)

sin 3I′

·
(

k̂y
′ cos �′ − k̂x

′ sin �′) sin 2�′

+
(

5e′2 cos 2ω′ + 6e′2 + 4
)

sin I′ (k̂x
′ cos �′ + 15k̂x

′ cos 3�′

− k̂y
′ sin �′ + 15k̂y

′ sin 3�′)} , (45)

〈
K(GM)

13

〉
P′

b

= 3GJ′nb
′

32c2a′3 (1 − e′2)3

·
{
−10e′2k̂z

′ cos 2ω′ (sin I′ − 3 sin 3I′) sin �′

+ 40e′2 sin 2ω′ (k̂z
′ cos �′ sin 2I′

+ cos 2I′ (k̂y
′ cos 2�′ − k̂x

′ sin 2�′))
− 4

(
3e′2 + 2

)
k̂z

′ (sin I′ + 5 sin 3I′) sin �′

+ 5e′2 cos 3I′ (3 cos 2ω′ (k̂x
′ cos 2�′ + k̂y

′ sin 2�′)
+ 2

(
3e′2 + 2

)
k̂x

′)
+ e′2 cos I′ (5 cos 2ω′ (12k̂x

′ sin2 I′

+ 5k̂x
′ cos 2�′ + 5k̂y

′ sin 2�′)
+ 2

(
3e′2 + 2

) (
20
(

k̂x
′ cos 2�′ (46)

+ k̂y
′ sin 2�′) sin2 I′ + 3k̂x

′))} ,

〈
K(GM)

23

〉
P′

b

= − 3GJ′nb
′

64c2a′3 (1 − e′2)3

·
{

10e′2 cos 2ω′ (−12k̂y
′ cos I′ sin2 I′

+ k̂y
′ (5 cos I′ + 3 cos 3I′) cos 2�′

− 2k̂z
′ cos �′ (sin I′ − 3 sin 3I′)

− k̂x
′ (5 cos I′ + 3 cos 3I′) sin 2�′)

−80 e′2 sin 2ω′ (k̂z
′ sin 2I′ sin �′

+ cos 2I′ (k̂x
′ cos 2�′ + k̂y

′ sin 2�′))
+ 4

(
3e′2 + 2

) (
−5k̂y

′ cos 3I′

− 2k̂z
′ cos �′ (sin I′ + 5 sin 3I′)

+ cos I′ (20 sin2 I′ (k̂y
′ cos 2�′ − k̂x

′ sin 2�′)− 3k̂y
′))} . (47)

Note that Equations (42–47) have a general validity since they are
restricted neither to any specific spatial orientation of the spin axis
of M′ nor to circular and/or equatorial orbits of M about M′.

It should be remarked that indirect, mixed effects of order
O (

c−2
)

arise, in principle, also from the Newtonian tidal matrix

of Equation (4) when the post-Newtonian effects of the field of M′
onto the orbital motion of M are taken into account (Mashhoon
et al., 1989). The same holds also with J2

′, accounting for possible
deviations of M′ from spherical symmetry at the Newtonian level
itself. The calculation of such further effects, whose size may be
comparable with that of the direct ones, is beyond the scope of
this paper.

4. POSSIBLE SCENARIOS OF INTEREST FOR EMPIRICAL
TESTS

Forthcoming space-based missions to astronomical bodies orbit-
ing large primaries such as the Sun and Jupiter, in conjunction
with expected progresses in interplanetary tracking techniques
(Iess and Asmar, 2007; Iess et al., 2009, 2014), may, in principle,
represent an opportunity to put on the test the post-Newtonian
tidal effects calculated in the previous sections.

Let us consider the forthcoming BepiColombo3 (Benkhoff
et al., 2010) and JUICE4 (Grasset et al., 2013) missions targeted
to Mercury and the Jovian natural satellite Ganymede, respec-
tively; in the following, the symbol ι will be adopted for the
inclinations of the orbital planes of such spacecrafts to the equa-
tors of the orbited bodies. A probe named Mercury Planetary
Orbiter5 (MPO) (Ashby et al., 2007) is planned to be released
in a polar (ιMPO = 90◦), elliptical orbit (eMPO = 0.16) around
Mercury with an orbital period of approximately 2.3 h (aMPO =
3, 394 km). The nominal science duration is one year, with a pos-
sible extension of another year. Importantly, orbital maneuvers to
change the attitude of the spacecraft are scheduled every about
44 d, so that long smooth orbital arcs should be available. The
JUICE mission (Grasset et al., 2013) to the Jovian system will
culminate in a dedicated orbital tour around Ganymede which
should encompass a 30 d science phase during which JUICE will
orbit6 the satellite in a polar, circular low path with an alti-
tude as little as h = 200 km. Table 1 summarizes the characteristic
frequencies of both the scenarios considered, showing that our
results of the previous sections are applicable to them. In Table 2,
we maximize the values of the post-Newtonian tidal perturba-
tions for both MPO and JGO with respect to their unknown
node � and pericenter ω. We do the same also for some of
the most important competing Newtonian and post-Newtonian
orbital perturbations. It can be noticed that, while for MPO the
gravitoelectric tidal effects are larger than the gravitomagnetic
ones, the situation is reversed for JGO because of its scheduled
zero eccentricity. As far as the magnitudes of the tidal effects are
concerned, they are larger for JGO; its gravitomagnetic tidal pre-
cessions reach the ≈ 10−1 − 10−2 mas yr−1 level. In principle, a
rate of ≈ 0.5 mas yr−1, which naively corresponds to a range-rate
as little as ≈ 0.05 mm s−1 at the distance of Jupiter from us, might
be detectable with the expected improvement down to 0.01 mm
s−1 at 60 s integration time in the Doppler range-rate techniques
from the ASTRA study (Iess et al., 2014). Unfortunately, such
figures are too small if compared with those of the competing

3See also http://sci.esa.int/bepicolombo/ on the Internet.
4See also http://sci.esa.int/juice/ on the Internet.
5See http://sci.esa.int/bepicolombo/48872-spacecraft/ on the Internet.
6See http://sci.esa.int/juice/50074-scenario-operations/ on the Internet.
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Table 1 | Some characteristic orbital frequencies, in s−1, of the

Sun-Mercury-Mercury Planetary Orbiter (MPO) and of the

Jupiter-Ganymede-Jupiter Ganymede Orbiter (JGO) (Grasset et al.,

2013) systems.

Frequency Value (s−1) Frequency (Jupiter- Value (s−1)

(Sun-Mercury-MPO) Ganymede-JGO)

ω̇
(GM)� 1 × 10−18 �̇

(GM)
Gan 8 × 10−16

ω̇

(
J�

2
)

� 8 × 10−17 �̇

(
J�2 )

Gan 3 × 10−9

ω̇
(GE)� 7 × 10−14 ω̇

(GE)
Gan 4 × 10−14

n� 8 × 10−7 nGan 1 × 10−5

�̇
(GM)
MPO 3 × 10−17 �̇

(GM)
JGO 2 × 10−16

ω̇
(GE)
MPO 2 × 10−13 ω̇

(GE)
JGO 8 × 10−14∣∣∣∣∣∣∣∣

ω̇

(
J
�
2

)

MPO

∣∣∣∣∣∣∣∣
6 × 10−9

∣∣∣∣∣ω̇
(
JGan

2

)
JGO

∣∣∣∣∣ 5 × 10−8

nMPO 7 × 10−4 nJGO 6 × 10−4

For JGO, we considered the planned 30 days phase of the Ganymede tour

to be spent in a low altitude (200 km) circular orbit (http:// sci.esa.int/ juice/

50074-scenario-operations/ ). For the sake of simplicity, the Newtonian and

the post-Newtonian precessions due to the oblateness J2 and to the angular

momentum J of the primaries were calculated in equatorial coordinate systems.

Indeed, while both MPO and JGO will move along polar trajectories at ι = 90◦

to the equators of their primaries, the orbits of Mercury and Ganymede lie

almost in the equatorial planes of the Sun (ι� = 3.38◦) and of Jupiter (ιGan =
0.20◦), respectively. For Ganymede, the value JGan

2 = 1.27 × 10−4 (Anderson

et al., 1996) was adopted, while its angular momentum JGan = 3 × 1030 kg

m2 s−1 was inferred from the values of its mass, equatorial radius and nor-

malized polar moment of inertia (Anderson et al., 1996). For Mercury, we

assumed J�
2 = 1.92 × 10−5 (Smith et al., 2010), while its angular momentum

J� = 8.4 × 1029 kg m2 s−1 was obtained from the latest determinations of its

equatorial radius (Byrne et al., 2014) and normalized polar moment of inertia

(Margot et al., 2012). For the angular momentum and the oblateness of the

Sun and of Jupiter, we assumed J� = 1.90 × 1041 kg m2 s−1 (Pijpers, 1998),

J�
2 = 2.1 × 10−7 (Folkner et al., 2014), and J� = 6.9 × 1038 kg m2 s−1 (Soffel

et al., 2003), J�
2 = 1.469 × 10−2 (Jacobson, 2003), respectively.

orbital effects. Suffice it to say that the oblateness of Ganymede
is presently known with a relative uncertainty of the order of
just σJ2/J2 = 2 × 10−2 (Anderson et al., 1996). An improvement
of 6 − 7 orders of magnitude is beyond the goals of the JUICE
mission itself (Grasset et al., 2013). Strictly speaking, such con-
siderations hold only for the direct post-Newtonian tidal effects
calculated in the previous sections; the total sensitivity budget
should account for the indirect, mixed effects of order O (

c−2
)

as well.
In principle, a rather unconventional possibility could be the

realization of an artificial mini-planetary system to be carried
onboard a drag-free spacecraft orbiting, say, the Earth; such an
idea was already proposed in the past to accurately measure the
Newtonian constant of gravitation G (Nobili et al., 1987, 1988,
1990; Keyser, 1992; Sanders and Deeds, 1992; Sanders et al.,
1999, 2000), and more recently, to put on the test the MOND

Table 2 | Maximum nominal values of the direct orbital rates of

change �̇ of MPO and JGO, averaged over both Pb and P ′
b, induced

by the post-Newtonian gravitoelectric and gravitomagnetic tidal field

of M ′, by its Newtonian tidal field, and by some competing

Newtonian and post-Newtonian perturbations due to the deviation

from spherical symmetry of the field of M .

�̇ (MPO) Value �̇ (JGO) Value

ė(tid GM) 1 × 10−21 s−1 ė(tid GM) 0 s−1

İ(tid GM) 4 × 10−6 mas yr−1 İ(tid GM) 0.01 mas yr−1

�̇(tid GM) 1 × 10−5 mas yr−1 �̇(tid GM) 0.07 mas yr−1

ω̇(tid GM) 8 × 10−5 mas yr−1 ω̇(tid GM) 0.54 mas yr−1

ė(tid GE) 1 × 10−18 s−1 ė(tid GE) 0 s−1

İ(tid GE) 0.0025 mas yr−1 İ(tid GE) 8 × 10−7 mas yr−1

�̇(tid GE) 0.0084 mas yr−1 �̇(tid GE) 2 × 10−6 mas yr−1

ω̇(tid GE) 0.0458 mas yr−1 ω̇(tid GE) 1 × 10−5 mas yr−1

İ(GM) 0.1038 mas yr−1 İ(GM) 0.59 mas yr−1

�̇(GM) 0.1907 mas yr−1 �̇(GM) 1.24 mas yr−1

ω̇(GM) 0.2075 mas yr−1 ω̇(GM) 1.18 mas yr−1

ω̇(GE) 1087.78 mas yr−1 ω̇(GE) 499.6 mas yr−1

ė(tid N) 2.9 × 10−10 s−1 ė(tid N) 0 s−1

İ(tid N) 6.7 × 105 mas yr−1 İ(tid N) 7 × 107 mas yr−1

�̇(tid N) 2 × 106 mas yr−1 �̇(tid N) 3 × 108 mas yr−1

ω̇(tid N) 1.3 × 107 mas yr−1 ω̇(tid N) 2 × 109 mas yr−1

İ(J2) 8 × 106 mas yr−1 İ(J2) 6 × 107 mas yr−1

�̇(J2) 3 × 107 mas yr−1 �̇(J2) 2.7 × 108 mas yr−1

ω̇(J2) 4 × 107 mas yr−1 ω̇(J2) 3.5 × 108 mas yr−1

The values of �max and ωmax , which are different for each orbital effect con-

sidered, are not reported. The units for the precessions are milliarcseconds per

year (mas yr−1), apart from the eccentricity e whose rate of change is expressed

in s−1. The Newtonian J2 and the post-Newtonian J orbital precessions for a

generic orientation of the spin axis of M were retrieved from Iorio (2011). The

mean equinox and the mean equatorial plane of the Earth at the epoch J2000.0

of the International Celestial Reference Frame (ICRF) were adopted for both K
and K′. The orientations of the spin axes with respect to the ICRF were retrieved

from Seidelmann et al. (2007).

theory (Sahni and Shtanov, 2008). The conditions of validity of
the present analysis could be fulfilled, e.g., by placing a non-
rotating sphere made of tungsten with density ρW = 19.6 g cm−3

and M = 28 kg, R = 7 cm inside a drag-free spacecraft orbiting
the Earth in some suitably chosen High Earth Orbit (HEO). By
assuming, say, a = 10 cm for the test particle orbiting the tung-
sten sphere and a geostationary orbit with a′ = 42, 164 km for the
spacecraft, it would be possible to obtain

nb
′

nb
= 5 × 10−2. (48)

Moreover, the local dynamics of such a spaceborne artificial
planetary system would be practically free from systematic non-
Keplerian gravitational perturbations due to M. Indeed, careful
manufacturing of the sphere would allow to make its oblate-
ness negligible; the post-Newtonian gravitoelectric pericenter
precession would be completely irrelevant being as little as ω̇ ≈
10−12 mas yr−1. Table 3 summarizes the nominal maximum
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Table 3 | Maximum nominal values of the direct orbital rates of

change �̇ (here, �
.= � + ω is the longitude of the pericenter) of a

member of a spaceborne artificial mini-planetary system orbiting a

tungsten sphere of mass M = 28 kg and radius R = 7 cm in a circular

orbit with a = 10 cm, e = 0, I = 90◦ averaged over both Pb and P ′
b,

induced by the post-Newtonian gravitoelectric and gravitomagnetic

tidal field of the Earth and by its Newtonian tidal field.

�̇ Value

ė(tid GM) 0 s−1

İ(tid GM) 0 mas yr−1

�̇ (tid GM) 3.2 mas yr−1

ė(tid GE) 0 s−1

İ(tid GE) 32.8 mas yr−1

�̇ (tid GE) 189.6 mas yr−1

ė(tid N) 0 s−1

İ(tid N) 2.6 × 1010 mas yr−1

�̇ (tid N) 1.5 × 1011 mas yr−1

For the spacecraft hosting it we assumed an highly elliptical geostationary polar

orbit characterized by a′ = 42,164 km, e′ = 0.7, I′ = ω′ = 90◦, �′ = 0◦. The val-

ues of �max and ωmax , which are different for each orbital effect considered, are

not reported. The units for the precessions are milliarcseconds per year (mas

yr−1), apart from the eccentricity e whose rate of change is expressed in s−1.

The mean equinox and the mean equatorial plane of the Earth at the epoch

J2000.0 of the International Celestial Reference Frame (ICRF) were adopted for

both K and K′. The orientation of the Earth’s spin axis with respect to the ICRF

was retrieved from Seidelmann et al. (2007).

values of the precessions of a “planet” orbiting the aforemen-
tioned tungsten sphere along a circular path perpendicular to the
Earth’s equator in a spacecraft following a highly eccentric polar
orbit around the Earth. In fact, the size of the post-Newtonian
tidal effects are not negligible. Nonetheless, the tidal precessions
of Newtonian origin would overwhelm them since the gravita-
tional parameter GM′ of the Earth is currently known with a
2 × 10−9 relative accuracy (Petit and Luzum, 2010), insufficient
by 1 − 2 orders of magnitude for our purposes.

5. OVERVIEW AND CONCLUSIONS
We looked at the direct long-term orbital rates of change occur-
ring within a local gravitationally bound two-body system as
gradiometers to potentially detect post-Newtonian tidal effects
due to its slow motion in the external field of a distant third
body. We also assumed that the characteristic orbital frequencies
of the internal dynamics of the local binary are quite smaller than
the frequency of its orbital motion around the external source.
We obtained general analytical expressions valid for arbitrary
orbital configurations and for a generic orientation of the spin
axis of the external body. Future work should be devoted to the
calculation of the indirect, mixed post-Newtonian effects aris-
ing from the interplay between the Newtonian tidal matrix and
the post-Newtonian orbital motion of the binary in the external
field.

We applied our results to the future BepiColombo and JUICE
man-made missions to Mercury and Ganymede, respectively. It
turned out that that, although the expected improvements in
interplanetary tracking may, perhaps, allow for a detection of

the tidal effects we are interested in, especially for JUICE, the
impact of several competing orbital effects of Newtonian and
post-Newtonian origin, acting as sources of potential systematic
errors, should be carefully considered.

Another possibility which, in principle, may be further pur-
sued is the realization of an artificial mini-planetary system to be
carried onboard an Earth-orbiting drag-free spacecraft. If, on the
one hand, the post-Newtonian tidal precessions occurring in such
a system may be relatively large, amounting to about 1−102 mas
yr−1, on the other hand, the product of the Earth’s mass times
the Newtonian gravitational constant is currently known with
insufficient accuracy to allow for an effective subtraction of the
competing Newtonian tidal precessions.
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