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in finance: impact of ESG factors
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There is a growing concern about the sustainability of artificial intelligence, in

terms of Environmental, Social and Governance (ESG) factors. We contribute to

the debate measuring the impact of ESG factors on one of the most relevant

applications of AI in finance: credit rating. There is not yet conclusive evidence

on whether EGS factors impact on credit rating. In this paper, we propose

several machine learning models to measure such impact, and a set of metrics

that can improve their ability to do so. In this way, machine learning models

and, more generally, decisions based on artificial intelligence, can become

more sustainable.
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1 Introduction

Artificial intelligence applications can bring many opportunities and increase

efficiency, but can also increase the risks of harms, to the individuals, the society and

the environment. For this reason, there is a growing concern about the sustainability

of artificial intelligence applications, from the environmental viewpoint (e.g. in terms

of energy consumption) but also in terms of its social impacts (e.g. fairness and

discrimination) and in its governance (e.g. controllability and cybersecurity).

In the financial sector, artificial intelligence methods are increasingly applied to

determine credit ratings, the fundamental information on which credit lending is based.

Although the sustainability of credit ratings suggests that they should depend on

Environmental, Social and Governance factors, the empirical results available in the

literature do not bring conclusive evidence that this is the case.

The lack of a conclusive evidence depends on the fact that it is not easy to demonstrate

the relationship between ESG factors and credit ratings. First of all, it is not clear whether

ESG factors do impact credit ratings in the short term. Second, the effect of ESG scores

on credit ratings may be non linear, and difficult to capture. Third, ESG scores are not

standardized: Dorfleitner et al. (2015) showed little convergence between different ESG

ratings and, more recently, Abhayawansa and Tyagi (2021) provided evidence of the low

correlation between ESG ratings issued by different providers.

We believe that machine learning models may be useful to capture the relationship

between ESG scores and credit ratings, as they can capture nonlinearity. Furthermore,

ensemble machine learning models could mitigate the lack of standardization by providing

model averaged estimates, as shown in Agosto et al. (2024). A problemwith the application

of machine learning methods in finance is that, while accurate, they may lack explainability

and robustness, as described in the recently proposed SAFE machine learning framework

(Babaei et al., 2025). To fill this gap, in this paper we propose ensemble machine learning

models that: (i) can model the non-linear relationship between ESG scores and credit

ratings; (ii) can average the results from different models; iii) can be made explainable and

robust.
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The remainder of this paper is arranged as follows: Section

2 contains some theoretical background on ESG factors; Section

3 presents a literature review on the relationship between ESG

factors and credit ratings, and details our research hypotheses;

Section 4 introduces the proposed approach; Section 5 presents an

application of the methodology to a sample of companies asking for

credit, Section 6 discussed the obtained results and, finally, Section

7 concludes.

2 Background

The stream of literature closest to our work is in the field of

Corporate Social Performance (CSP), which aims to evaluating

the degree to which companies are sustainable, that is, how they

conduct their business activities in relation to external stakeholders

while considering economic, environmental, social, and time

factors (Lozano, 2012; Lozano et al., 2017; Muñoz-Torres et al.,

2019). We follow this approach, and consider Environmental,

Social and Governance (ESG) factors as a proxy for the sustainable

behavior of companies.

Environmental factors (E) relate to the impact on the

environment deriving from the production of goods or

services and include carbon emissions, preservation of the

natural environment, biodiversity protection, waste and water

management (Commission, 2024; Times, 2024; Robeco, 2024).

A company that operates with minimal environmental impact

may reduce the likelihood of future scandals, legal actions, and

losses associated with legal claims and may benefit from a better

reputation and lower risks (Fafaliou et al., 2022).

Social factors (S) refer to the impacts of companies on society,

including issues of employee satisfaction, diversity, inequality,

gender gap, protection of youth and children, investment in human

capital and community development, as well as human rights

(Commission, 2024; Van Duuren et al., 2016).

Governance factors (G) measure the quality and effectiveness

of corporate governance. Shortcomings in governance have

historically been the cause of major scandals and crises, such as

the Enron crisis in the US, Volkswagen in Germany, Parmalat

in Italy, and the banking crisis of 2007–2008 (Shin et al., 2022;

Soltani, 2014). Improved governance practices can drive more

sustainable and balanced company growth, which in turn supports

more sustainable economic development (Adams and Mehran,

2012; Esteban-Sanchez et al., 2017).

The above factors are the basis for investment decisions and

drive investors’ choices regarding which companies to finance

through equity or debt. To improve the interpretability of ESG,

specialized companies (including rating agencies) have started to

provide measures and proxies for ESG behavior, publishing ESG

ratings or ESG scores that convey the level of sustainability of

companies and the degree of accountability of these companies on

ESG aspects (Scalet and Kelly, 2010; Avetisyan and Ferrary, 2013).

Each rating provider collects information from different

sources (company reports, news, stock exchange information, etc.)

and applies proprietarymethodologies to combine this information

and produce a summary measure of ESG behavior. Unfortunately,

different methodologies yield different measurements, which often

produce divergent results (Dorfleitner et al., 2015; Abhayawansa

and Tyagi, 2021; Dimson et al., 2020; Billio et al., 2021) leading to a

lack of standardization.

The significance of ESG metrics is expected to increase in

the future, with ESG ratings potentially influencing investors’

decisions, firms’ access to financing for their investments, and

their ability to pursue sustainable business models. Consequently,

understanding the impact of ESG ratings (whether and how)

on creditworthiness represents a critical managerial and policy

challenge.

3 Literature review and research
hypotheses

The topic of sustainable artificial intelligence is recent,

especially from a quantitative viewpoint, and few papers are present

in the literature. Among them, the following are related to our

work.

Nishant et al. (2020) argues that artificial intelligence (AI) not

only reshapes business operations and industrial landscapes but

also hold the potential to address critical societal issues, including

sustainability. In the face of the environmental degradation and

the climate crisis, cutting-edge innovative solutions are particularly

necessary. To foster novel research and practical applications of

AI in environmental protection, AI could assist in developing

organizational processes and personal behavioral norms adaptable

to diverse cultures, thereby reducing the intensity of human

activities’ demands on natural resources and energy. Indeed, the

core value of AI lies not only in its ability to enhance the

efficiency of energy, water, and land use but also in its capacity to

promote environmental governance by improving the formulation

and implementation effects of environmental protection policies

through technological means.

Vinuesa et al. (2020) highlights that the rise of AI and its

expanding influence across numerous fields leads to evaluate its role

in achieving the Sustainable Development Goals (SDGs). Through

a consensus-based expert consultation process, the paper finds

that AI could facilitate the achievement of 134 SDG targets while

potentially hindering the progress of 59 others. However, current

research often overlooks certain key aspects. To ensure that the

development of AI technology supports sustainable development,

rapidly evolving AI requires accompanying regulatory insights and

oversight mechanisms; otherwise, it might lead to deficiencies in

transparency, safety, and ethical standards.

Rolnick et al. (2022) provides a comprehensive overview of how

machine learning (ML) could aid in mitigating climate change.

The study not only summarizes the current applications of ML

in this field but also proposes many new ideas, from smart grids

to disaster management. The authors calls for the establishment

of a multidisciplinary collaboration platform to involve various

stakeholders in addressing global warming.

Alzoubi and Mishra (2024) aims to explore the potentials and

challenges of green AI initiatives. With the widespread application

of AI technologies, especially generative AI, significant energy

consumption issues have become a focal point, posing threats

to sustainable development goals and environmental protection.

The study extensively reviews existing literature, professional

websites, and expert blogs, identifying and analyzing 55 green
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AI initiatives, which are categorized into six themes: cloud

optimization, model efficiency, carbon footprinting, sustainability-

focused AI development, open-source initiatives, and green AI

research and community.

Rohde et al. (2024) points out that with the wide application of

AI systems, the social, environmental, and economic impacts have

become increasingly complex, necessitating a multidimensional

perspective to understand and assess them. The article aims to

provide a comprehensive evaluation framework for sustainable AI,

namely a set of “Sustainability Criteria and Indicators for Artificial

Intelligence Systems (SCAIS),” comprising 19 sustainability criteria

and 67 related indicators to support the responsible development

and application of AI technology.

Nishant et al. (2020) argues that artificial intelligence (AI) not

only reshapes business operations and industrial landscapes, but

also hold the potential to address critical societal issues, including

sustainability. They point out that the core value of AI lies not

only in its ability to enhance the efficiency of energy, water,

and land use but also in its capacity to promote environmental

governance by improving the formulation and implementation of

environmental protection policies through technological means.

Vinuesa et al. (2020) highlights that the rise of AI and its

expanding influence across numerous fields could facilitate the

achievement of several SDG targets while potentially hindering

the progress others. Goralski and Tan (2020) underlines that AI

presents both opportunities and risks. By means of three case

studies, it analyzes AI’s impact on management and leadership

development, integrating perspectives from business strategy and

public policy. Ahmad et al. (2021) explores the role of AI in

optimizing the integration of energy sources into smart grids.

It highlights that AI techniques surpass traditional models in

handling big data, preventing cyberattacks, and enhancing energy

efficiency and predictive maintenance. Rolnick et al. (2022)

provides a comprehensive overview of how machine learning

(ML) could help mitigating climate change. Moon (2023) points

that while artificial intelligence (AI) has started to transform

individual lives, business operations, and public services, there has

been insufficient discussion regarding its role in contributing to

social good. Alzoubi and Mishra (2024) explores the potentials

and challenges of green AI initiatives. The study extensively

reviews the existing literature, professional websites, and expert

blogs, identifying and analyzing 55 green AI initiatives, which are

categorized into six themes: cloud optimization, model efficiency,

carbon footprinting, sustainability-focused AI development, open-

source initiatives, and green AI research and community. Rohde

et al. (2024) points out that with the wide application of AI

systems, the social, environmental, and economic impacts have

become increasingly complex, necessitating a multidimensional

perspective to understand and assess them. Hernandez et al. (2024)

investigates AI’s role in achieving sustainable development goals,

particularly in sustainable agriculture and wastemanagement. Rane

et al. (2024a)suggests that the transition to smart and sustainable

industries through AI faces several challenges. Overcoming these

challenges requires an integrated approach involving government

policies, academic education, and industry innovation to foster

a conducive environment for developing efficient, sustainable AI

solutions. Rane et al. (2024b) suggests that integrating AI and

ML into logistics and supply chain management is vital for

boosting resilience and efficiency in the volatile global market.

Rane et al. (2024c) highlights that the integration of artificial

intelligence (AI), machine learning (ML), and deep learning (DL)

is pivotal in the development of smart and sustainable cities

and infrastructure, driving efficiency, sustainability, and livability.

Habib and Mourad (2024) uses generalized least-squares (GLS)

regression estimator and dynamic analysis techniques on a sample

of 406 firms to examine the impact of ESG practices during the

coronavirus crisis. Habib (2024) explores the connection between

real earnings management (REM), ESG performance (ESGP),

financial performance (FP), and total enterprise value (TEV) using

multiple methods including PLS-SEM and regression analyses.

Their findings reveal that REM strategies lead to lower ESGP

and TEV, whereas ESG strategies enhance both TEV and FP.

Ali (2024) employs a Bayesian Belief Network (BBN) model to

explore tillage adaptation for flood management in soils with

varying organic carbon contents during winter wheat production,

thereby aligning with the UN SDGs 12 and 13. Li and Guo (2024)

proposes a framework for co-creative communication to address

the complexity and potential conflicts within the UN Sustainable

Development Goals (SDGs).

The topic of Corporate Social Performance is also relatively

recent, and not so many papers are available, especially with a

rigorous quantitative approach. Among them, the following should

be considered.

Dorfleitner et al. (2015) empirically examines various rating

methodologies for Corporate Social Performance (CSP) using

Environmental, Social, and Governance (ESG) scores from three

rating agencies. The research reveals a significant divergence in

ESG measurement approaches. Billio et al. (2021) delves into the

ESG rating criteria utilized by leading rating agencies, highlighting

the absence of common standards in defining ESG characteristics,

attributes, and benchmarks for each component. Habib (2023)

investigates the relationship between business strategies, ESG

performance, and bankruptcy probability using partial least squares

structural equation modeling (PLS-SEM). The results indicate that

firms with stronger cost leadership strategies exhibit higher ESG

performance and lower likelihood of financial distress. Roy (2023)

underlines that as sustainable investment becomes a key driver of

capital allocation, the significance of Environmental, Social, and

Governance (ESG) measures continues to grow. It proposes an

ESG performance-based credit ratingmodel that employs the Fuzzy

Best-Worst Method (BWM) for determining weights. The research

identifies the financial pillar as the most significant, accounting for

43% of overall importance, followed by environmental (24%), social

(19%), and governance (14%) pillars. Kumar Roy et al. (2023) shows

that for Small and Medium-sized Enterprises (SMEs), which often

lack structured financial data management, existing credit rating

systems face numerous difficulties when dealing with sparse data.

To bridge this gap, this study extends the application of expert

systems by proposing a multi-criteria credit rating system.

Based on the previous literature, in this paper we will consider

the following research hypotheses: i) Machine learning models

can identify a positive relationship between ESG factors and

credit ratings; ii) Machine learning models can be compared, and

chosen, by means of a Sustainable, Accurate, Fair and Explainable
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(S.A.F.E.) metrics, threby further improving the sustainability of

credit ratings.

4 Methodology

As already discussed, the aim of this paper is to build machine

learning models capable to identify a relationship between ESG

scores and credit ratings and, then, compare such models in

terms of their Sustainability, Accuracy, Fairness and Explainability

(S.A.F.E.)

To this aim, in the next subsection we briefly describe four

alternative ensemble machine learning models, which seem well

suited to the examined research context, being the ESG scores

themselves the result of an aggregation of different indicators.

Specifically, we will consider random forest, gradient boosting,

stacking and voting models.

We will then proceed with the description of the S.A.F.E.

metrics that will be used to compare the models, and of the related

software package.

4.1 Ensemble models

Ensemble learning is a technique that enhances predictive

performance by combining multiple base models. Noticeable

examples of such models are random forest and gradient boosting

methods, which have proved to be state of the art non linear

models in credit scoring, and a powerful alternative to logistic

regression models. Both models exploit the diversity between their

components: in random forest models subsequent trees are built

by means of training samples that differ not only in terms of data

points but also in terms of the employed variables; in gradient

boosting subsequent trees are generated on the residuals from

the previous models. In both cases, the ensemble is built using

components that belong to the same class of models: specifically,

tree models.

The notion of ensemble models can be extended to the

aggregation of models from different classes: for example, random

forest models with logistic regression, or with gradient boosting. In

this case, the diversity among models is greater.

In the context of credit rating prediction, general ensemble

models of this type offer several advantages: first, by aggregating

predictions from multiple models, they can mitigate the risk of

any one model overfitting the training data, thus enhancing the

model’s generalization ability. Second, the aggregated predictions

from multiple models are typically more stable and accurate than

those from a single model, as they can capture different features

and patterns in the data, leading to improved prediction accuracy.

Third, ensemble models exhibit lower sensitivity to outliers and

noise, making them perform better with complex and irregular

data, which in turn strengthens the robustness of the model.

In this paper, we consider two types of general ensemble

models: Stacked Ensemble Model (SEM) and Voting Ensemble

Model (VEM).

Stacked Ensemble Model (SEM) enhances predictive modeling

by integrating the outputs of multiple base models through a

meta-model. The process begins with training several diverse base

models, such as neural networks, random forests, and gradient

boosting trees, each capturing different aspects of the data. These

base models then generate predictions on both the training and

test datasets, forming new feature matrices that serve as inputs for

the next step. A meta-model, such as a linear regression model,

is subsequently trained using these new feature matrices, aiming

to learn how to best combine the predictions of the base models.

The final predictions are made by applying the trained meta-model

to the test set. This approach leverages the strengths of different

base models, improving the overall stability and accuracy of the

predictions by synthesizing their outputs through the meta-model.

Voting Ensemble Model (VEM) involves generating the final

prediction result by either averaging the weighted predictions or

selecting themajority vote frommultiple basemodels. In this paper,

we employ weighted averaging as, in regression tasks, the goal is to

predict continuous values. In such scenarios, majority voting is not

applicable because it is typically used for classification tasks, where

the final prediction is determined by selecting the class that receives

the most votes from the predictions of multiple models. Weighted

averaging, on the other hand, can produce a continuous prediction

value by summing up the weighted predictions from multiple

models. The process involves first training multiple distinct base

models and, then, using these models to make predictions on

the test set. Finally, the predictions from multiple models are

averaged with weights to generate the final prediction. One of

the key advantages of this method is that it does not require

additional training of a meta-model; instead, it directly processes

the predictions from the base models. By weighting the predictions

from multiple models, the instability of a single model can be

reduced. The final prediction is a composite outcome of multiple

models, making it easy to understand and interpret. Without loss

of generality, in this paper we assign equal weights to the models.

4.2 The S.A.F.E. AI framework

Babaei et al. (2025) has recently proposed Sustainable,

Accurate, Fair and Explainable (S.A.F.E.) metrics to evaluate the

trustworthiness of AI output. The work extends a previous paper

focused on AI applications in finance (Giudici and Raffinetti, 2023).

Babaei et al. (2025) provides a model agnostic approach to assess

machine learning, valid for all AI applications, independently on

the underlying field domain, data and models, along with a Python

software implementation: the safeaipackage, which allows full

reproducibility.

The metrics proposed in their paper are consistent with each

other, according to a commonmathematical framework: the Lorenz

curve. The Lorenz curve is a well known robust statistical tool,

which has been employed, along with the related Gini index,

to measure income and wealth inequalities. It thus appears as

a natural methodology on which to build an integrated set of

AI measurement metrics, allowing their integration in a unified

decision theoretic framework.

Let us now briefly review the metrics. The requirement of

accuracy refers to the measurement of the difference between

the predicted and the actually observed (or expected) values of

a response variable. Babaei et al. (2025) proposes to measure
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accuracy with the Rank Graduation Accuracy (RGA) which, in

the binary case, is equal to the Area Under the Curve (AUC) but

that, differently from the AUC, can be calculated for all types of

variables. The RGA is a function of the area between the cumulative

distribution of the observed values and the concordance curve: the

same cumulative distribution, but ordered in terms of the predicted

values.

The requirement of sustainability implies the themodel outputs

are stable under variations in the data and, in particular, when

extreme data enter the available database. Babaei et al. (2025)

propose to compare the concordance curves obtained using the

ranks of the model and the ranks of a model in which the input

data are perturbed. The area between the two concordance curves

leads to a Rank Graduation Robustness measure (RGR) which can

be interpreted as a measure of sustainability of a machine learning

model.

The requirement of fairness implies that the predictions of

AI applications do not present biases among different population

groups, that typically derive from lack of representativeness and/or

lack of quality of group specific data. To measure the fairness

of AI applications, Babaei et al. (2025) proposes to compare

the concordance curve of the predictions, with and without the

protected variable which may lead to a bias This leads to a Rank

Graduation Fairness (RGF) metric that will be, differently from the

available metrics, model agnostic, thereby allowing comparison of

fairness between different machine learning models.

An important advantage of the S.A.F.E. model just described

is that all four proposed metrics are based on the same notion

of variability, derived from the Lorenz curve. They can therefore

be similarly normalized to [0,1] and integrated in a single [0,1]

measure that can assess the trustworthiness of any AI application.

We now describe in more detail the mathematical comcepts

behind the S.A.F.E. metrics. Let Y be a statistical variable to

be predicted. In the machine leaning context, we observe n

observations of Y in a test set, which will be employed to assess

whether the predictions for the same observations, obtained from

a machine learning model trained on a set of m observations, are

Sustainable, Accurate, Fair and Explainable.

To this aim, the observed Y in the test set can be employed

to build their Lorenz curve L, arranging the Y values in a non-

decreasing sense. For i = 1, . . . , n, the Lorenz curve (Lorenz, 1905)

can be defined by the pairs: (i/n,
∑i

j=1 yrj/(nȳ)), where rj indicates

the non-decreasing ranks of Y and ȳ indicates the mean of Y .

The same Y values can also be used to build the dual Lorenz

curve, L
′

Y , ordering the Y values in a non-increasing sense. For

i = 1, . . . , n, the dual Lorenz curve can be defined by the pairs:

(i/n,
∑i

j=1 yrn+1−j/(nȳ)), where rn+1−j indicates the non-increasing

ranks of Y .

Now considering the predicted values for the Y values, which

are obtained from a machine learning model. We can denote them

by Y∗. Let r∗i , for i = 1, . . . , n, indicate the non-decreasing ranks of

Y∗.

To measure the divergence between Y and Y∗, with a function

which is based on the data and model independence, Giudici and

Raffinetti (2024) proposes to calculate a concordance curve C =

C(Y ,Y∗) ordering the Y values not in terms of their ranks, but

with respect to r∗i , the ranks of the Y∗ values. More formally,

for i = 1, . . . , n, a concordance curve is defined by the pairs:

(i/n,
∑i

j=1 yr∗j /(nȳ)), where r
∗
i indicates the non-decreasing ranks

of Y∗.

The introduction of the concordance curve has led (Giudici and

Raffinetti, 2024) to introduce a Rank Graduation Accuracymeasure

(RGA), defined by the area between the L′Y and the C curve, divided

by the area of the Lorenz Zonoid. They also show that RGA is

equivalent to the well-known Area Under the Curve (AUC), when

Y is binary, with the advantage that RGA can be calculated in a

similar way and also when Y is ordinal or continuous.

The other metrics, RGR, RGF and RGE can be defined in a

similar manner, as detailed in Babaei et al. (2025).

5 Results

In this section we describe the employed data and the results

from the application of the machine learning models and the

S.A.F.E: metrics to them.

5.1 Data

We consider annual balance sheet data from a large sample of

italian small and medium enterprises, covering the period from

2020 to 2022. The data source is the Modefinance database, a

FinTech company accredited as a Credit Rating Agency by the

European Securities and Markets Authority. The dataset includes

ESG scores derived from indicators of environmental sustainability,

social responsibility, and governance practices, along with financial

metrics such as revenue, profit, assets, and liabilities, taken from the

balance sheet of these companies.

Before analyzing the data, we have cleaned the data by

removing rows that contain zero or null values, to improve data

quality. Subsequently, the credit ratings have been transformed into

numerical values, according to the conversion rule that we describe

below, without loss of generality.

We need to ensure that the ratings from AAA to DDD are

decreasing and that the difference between each rating is consistent.

For example, we can assume that AAA corresponds to 95 and DDD

to 5. Then, since there are a total of 13 ratings, the space between

each rating can be assumed to be equal to 95−5
13−1 =

90
12 = 7.5. The

result of the numerical coding is represented in Table 1.

We remark that the described numerical coding method is

a simplified example; other codings may be specified, without

altering the methdology we are going to describe. After this

transformation, the response (dependent) variables are three

variables, named MORE_evaluation_Score (the name assigned by

the rating agency which issues the ratings), for the years 2020, 2021,

and 2022.

The explanatory variables that can be employed to predict the

credit ratings are described in Table 2. They include both ESG

factors, assessed by the rating agency, and financial ratios, taken

from the publicly available balance sheets of the companies. While

the former are normalized and take values in [0,1], the latter are real

numbers.
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TABLE 1 Credit rating conversion.

Credit rating Numerical value

AAA 95.0

AA 87.5

A 80.0

BBB 72.5

BB 65.0

B 57.5

CCC 50.0

CC 42.5

C 35.0

DDD 27.5

DD 20.0

D 12.5

TABLE 2 Explanatory variables.

ESG factors Financial ratios

ESG_score Total_assets_EUR

final_normalized_score_env Current_assets_EUR

final_normalized_score_social Shareholders_funds_EUR

final_normalized_score_

governance

Current_liabilities_EUR

Operating_revenue_Turnover_EUR

Operating_profit_loss_EBIT_EUR

Profit_loss_for_the_period_Net_income_EUR

EBITDA_EUR

5.2 Exploratory analysis

Figure 1 represents the distribution of companies by sector. The

Sector of belonging is another potential predictor variable.

From Figure 1, we can observe that certain sectors exhibit a

higher number of companies. For instance, Business Services and

Wholesale have the largest number of entities, reaching 149 and

155, respectively. In contrast, the Biotechnology and Life Sciences,

Mining & Extraction, and Miscellaneous Manufacturing industries

have few entities.

Figure 2 represents the distribution of companies along

the twenty italian regions, another explanatory variable

of interest.

Figure 2 shows that the majority of the companies in the dataset

are concentrated in the Lombardia region, with a total of 264

entities; while the Molise region has the fewest, with only 23.

Additionally, regions like Lazio and Veneto also show a significant

number of data points. This geographical distribution reveals the

varying levels of economic activity across different areas.

Figure 3 represents the distribution of companies in terms of

ESG scores, and by their components: Environmental scores, Social

scores, Governance scores.

Figure 3 illustrates that, according to the ESG classification,

the S3 and S4 categories include the majority of companies, 500

and 400, respectively, indicating that most companies are at a

moderate level in terms of ESG performance. Meanwhile, the S1

(highest) and S6 (lowest) categories have relatively few entities,

with only 7 and 5, respectively. This distribution suggests that

although there are a few companies with exceptionally good or

poor ESG performance, the majority still have considerable room

for improvement. When discussing how ESG scores affect credit

ratings, it would be beneficial to focus on those companies with

better ESG performance (such as S1 and S2 categories) and

analyze whether they enjoy higher market credibility and lower

cost of capital. By doing so, the relationship between good ESG

management and financial stability and long-term value creation

can be more clearly demonstrated.

Figure 3 also reveals that, from the environmental, social, and

governance perspectives, S2 is the most common rating for both

environmental and social aspects, while in the governance rating,

S2 and S3 take up a larger proportion. This indicates that most

companies perform reasonably well in environmental protection

and social responsibility, but may face more challenges in corporate

governance. For investors, a robust corporate governance structure

is often a key factor in investment decisions. Therefore, when

exploring the impact of ESG scores on credit ratings, it is important

to delve into the significance of each dimension, particularly the

performance in the governance aspect, as effective governance

structures are often seen as crucial for reducing business risks

and enhancing transparency. Moreover, specific case studies could

be used to illustrate how high ESG rated companies maintain

their reputation through strengthened internal management and

external communication, ultimately achieving a better credit status.

Figure 4 displays the distribution of the companies in terms of

credit ratings, for the considered years, as assigned by the MORE

credit rating of the rating agency.

Figure 4 shows that the distribution of the credit ratings is quite

stable over time, and is somewhat skewed to the right.

5.3 Empirical findings

Before applying the machine learning models, we have

performed and extensive preprocessing, including extracting ESG

scores and financial indicators from the raw dataset as explanatory

variables, and credit ratings as the response variable. For categorical

variables, one-hot encoding was applied to ensure that the

model could correctly interpret the information. For numerical

explanatory variables, standardization was performed to eliminate

the effects of different scales among variables.

We are going to employ data from 2020 to forecast the credit

ratings for 2021; and data from 2020 and 2021 to forecast the

credit ratings for 2022. By combining 2020 and 2021 data, the

experiments will explore whether integrating multiple time points

enhances predictive accuracy for 2022 credit ratings. Additionally,

the 2020 data will be used to forecast 2022 credit ratings,

extending the prediction horizon to examine how well historical

data can predict more distant credit ratings, two years into

the future.
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FIGURE 1

Distribution of companies by sectors.

FIGURE 2

Distribution of companies by regions.

To objectively evaluate the models’ predictive performance,

we will use the Mean Square Errors and the Coefficient of

Determination (R-squared) as evaluation metrics and, later in the

paper, with the SAFE AImetrics introduced in the previous section.

As models to be compared, we have chosen the two state of

the art non linear models for credit ratings: random forests and

gradient boosting, as well as the two general ensemble models

described in the previous Section.
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FIGURE 3

Distribution of companies by ESG classes, by environmental, social, and governance scores (clockwise).

5.3.1 Random forest and gradient boosting tree
The results from the application of a random forest model and

of a gradient boosting model are shown in Table 3.

From Table 3, columns 2, note that, when using 2020 data to

predict 2021 credit ratings, the model’s MSE is 64.54 and R-squared

is 0.3942, indicating that the model has some predictive capability,

but limited explanatory power. When attempting to predict 2022

credit ratings using 2020 data, the model’s MSE increases to

101.205 and R-squared decreases to 0.081435, suggesting that

long-term predictions are more challenging, especially when using

older data. However, when using 2021 data to predict 2022 credit

ratings, the model’s performance significantly improves, with a

MSE of 64.9365 and an R-squared of 0.41062, demonstrating

that using more recent data can effectively enhance prediction

accuracy. Finally, combining 2020 and 2021 data to predict

2022 credit ratings further reduces the MSE to 60.414 and

increases the R-squared to 0.45167, proving the effectiveness

of integrating data from multiple time periods in improving

prediction accuracy.

In summary, the application of the random forest model

demonstrates that short-term predictions of credit ratings based on

ESG factors (along with financial variables) are more accurate than

long-term predictions, and that combining data frommultiple time

periods can significantly enhance the model’s predictive capability.

These findings deepen the understanding of how ESG scores

influence credit ratings and provide valuable directions for future

research on sustainability.

Table 3, columns 3 compares the prediction performance of

the Gradient Boosting tree model under different time periods.

When using 2020 data to predict 2021 credit ratings, the model’s

MSE is 61.4790 and R-squared is 0.42293, indicating that the

model has a slightly better explanatory power compared to the

random forest model. When attempting to predict 2022 credit

ratings using 2020 data, the model’s MSE increases to 103.5172
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FIGURE 4

Distribution of companies by 2020, 2021, and 2022 credit ratings; from left to right.

and R-squared decreases to 0.06045, suggesting that long-term

predictions are again more challenging. However, when using

2021 data to predict 2022 credit ratings, the model’s performance

significantly improves, with an MSE of 61.4940 and R-squared of

0.44186, demonstrating that using more recent data can enhance

prediction accuracy. Again, the gradient boosting trees model

performs slightly better than the random forest model. Finally,

combining 2020 and 2021 data to predict 2022 credit ratings

further reduces the MSE to 48.0326 and increases the R-squared to

0.56404, proving the effectiveness of integrating data frommultiple

time periods in improving prediction accuracy. Also in this case,

the gradient boosting trees model outperforms the random forest

model significantly.

In summary, the gradient boostingmethod confirms that short-

term predictions aremore accurate than long-term predictions, and

that combining data from multiple time periods can significantly

enhance the model’s predictive capability. Additionally, the

gradient boosting trees algorithm shows a good performance, and

outperforms the random forest model. The Table 4 summarizes the

obtained results, in a comparative manner.

Table 4 shows that the gradient boosting trees model

outperforms the random forest model in most scenarios.

Specifically, when using 2020 data to predict 2021 and 2022, and

when leveraging both 2020 and 2021 data to predict 2022, the

gradient boosting trees model demonstrates superior performance

over the random forest model in terms of both MSE and R-squared

(R-squared) metrics. Only in the case of predicting 2022 using

only 2020 data the random forest model show a slight advantage.

This suggests that, for the majority of predictive tasks, the gradient

boosting trees model provides more accurate predictions.

We can conclude this part of the analysis stating that short term

predictions using more recent data generally perform better, and

that combining data from multiple time periods can significantly

enhance the models’s predictive capability. We can also conclude

that the gradient boosting trees offers a better predictive accuracy

with respect to a random forest model.

5.3.2 Ensemble models
We now consider the ensemble models presented in the

previous Section, the Stacked ensemble model and Voting

ensemble model. The results of the predictions, using the

same training and test samples as before, are reported in

Table 5, column 2.

Comparing Table 3 with Table 5 column 2 with note that, for

all four predictions, the stacked ensemble model (SEM) shows a

better performance, with substantially higher MSE and lower R-

squared, compared to both Random Forest and Gradient boosting

models. This makes it a very good choice for use in credit

rating predictions.

In Table 5 column 3 we instead report the results from

the Voting Ensemble Model. The results show that the Voting

Ensemble Model (VEM) performs slightly better then the Random

Forest or the Gradient Boosting model. However, it is clearly

overperformed by the Stacked ensemble model, which shows the

best performances.

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2025.1566197
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Giudici and Wu 10.3389/frai.2025.1566197

TABLE 3 Prediction performance metrics for random forest and gradient

boosting tree.

Metric Random
forest

Gradient boosting
trees

MSE (using 2020 data to

predict 2021)

64.54 61.4790

MSE (using 2020 data to

predict 2022)

101.205 103.5172

MSE (using 2021 data to

predict 2022)

64.9365 61.4940

MSE (using 2020 and

2021 data to predict

2022)

60.414 48.0326

R-squared (using 2020

data to predict 2021)

0.3942 0.42293

R-squared (using 2020

data to predict 2022)

0.081435 0.06045

R-squared (using 2021

data to predict 2022)

0.41062 0.44186

R-squared (using 2020

and 2021 data to predict

2022)

0.45167 0.56404

TABLE 4 Model performance metrics.

Prediction
scenario

MSE R-squared

Using 2020 data to

predict 2021

GBT (61.4790) < RF

(64.54)

GBT (0.42293) > RF

(0.3942)

Using 2020 data to

predict 2022

RF (101.205) < GBT

(103.5172)

RF (0.081435) >

GBT (0.06045)

Using 2021 data to

predict 2022

GBT (61.4940) < RF

(64.9365)

GBT (0.44186) > RF

(0.41062)

Using 2020 and

2021 data to predict

2022

GBT (48.0326) < RF

(60.414)

GBT (0.56404) > RF

(0.45167)

5.4 SAFE AI metrics

We now present the application of the SAFE AI metrics,

introduced in the previous Section, for a more comprehensive

evaluation of the proposed models.

Specifically, we calculate the RGA (Rank Graduation

Accuracy), RGR (Rank Graduation Robustness), RGE (Rank

Graduation Explainability), and RGF (Rank Graduation Fairness).

These metrics aim to comprehensively evaluate the overall

sustainability of credit rating models, providing a scientific basis

for their practical assessment, monitoring and mitigation.

For RGE, since the standardized final scores for the

Environmental(E), Social (S), and Governance (G) aspects remain

quite stable from 2020 to 2022, data processing for this part

is relatively simplified. For RGF, we divide the samples into

Northern and Southern regions, which are known to have different

economic development, adding corresponding prefix identifiers

(“N_” or “S_”). We then conduct a detailed analysis based on the

geographical division and the industry categories of the different

companies.

TABLE 5 Performance metrics for stacked ensemble model and voting

ensemble model.

Metric Stacked
ensemble model

Voting ensemble
model

MSE (2020 data to

predict 2021)

26.0257 58.2021

MSE (2020 data to

predict 2022)

39.2241 97.7470

MSE (2021 data to

predict 2022)

27.2251 58.0859

MSE (2020 and 2021

data to predict 2022)

35.2000 48.4130

R-squared (2020 data

to predict 2021)

0.75571 0.45369

R-squared (2020 data

to predict 2022)

0.64399 0.11282

R-squared (2021 data

to predict 2022)

0.75290 0.47280

R-squared (2020 and

2021 data to predict

2022)

0.68051 0.56059

As machine learning models, we compare the Random Forest

(RF), the Gradient Boosting Tree (GBT), the Stacked Ensemble

Model (SEM), and the Voting Ensemble Model (VEM). For the

Voting Ensemble Model, we use a simple average, where each

model’s weight is the same.

For the sake of clarity if, in the following, ESG scores are not

included in the calculation of RGE, the latter is marked as RGE

(ESG); if the influence of any single dimension–Environmental,

Social, or Governance- is removed, they are named RGE (E), RGE

(S), and RGE (G), respectively. Similarly, when the calculation of

RGF ignores the industry factor, it is reported as RGF (Sectors);

if the differences between the Northern or Southern regions are

not considered, they are labeled as RGF (Region_N) and RGF

(Region_S), respectively.

We present in Table 6 the resulting SAFE AI metrics of the

models, using 2020 and 2021 data to predict 2022. Similar results

can be shown for the other periods but we do not report them here,

for lack of space.

We first consider the RGA, which extends the AUC for

continuous responses, as that considered here, and measures

predictive accuracy. From Table 6, the Stacked ensemble model

(SEM) achieves an RGA value of 0.51132, outperforming all other

tested models. It is followed by RF, with an RGA value of 0.50997.

This indicates that when aiming to enhance prediction accuracy, RF

and SEM serve as better options.

Then, we consider RGR, which measures a model’s ability to

maintain stability in the face of data variations. In this regard, RF

demonstrates the strongest stability with an RGR value of 0.52579.

Notably, while the VEM also performs well, its RGR is slightly

lower compared to that of RF. The SEM shows a lower RGR

value of 0.50415, indicating that it may be more susceptible to

fluctuations in input data. Therefore, for applications which require

high stability, it is more appropriate to prioritize the use of RF or

VEM.
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TABLE 6 Model performance using data from 2020 and 2021 to predict

2022 credit ratings.

RGB
metric

RF GBT SEM VEM

RGA 0.50997 0.50814 0.51132 0.50950

RGR 0.52579 0.48267 0.50415 0.51030

RGE (ESG) 0.48961 0.49179 0.48884 0.49025

RGE (E) 0.49024 0.49449 0.49036 0.49188

RGE (S) 0.49060 0.49179 0.48903 0.49074

RGE (G) 0.49043 0.49200 0.48915 0.49078

RGF (Sectors) 0.49995 0.50000 0.49972 0.49998

RGF

(Region_N)

0.49996 0.50000 0.49987 0.49999

RGF

(Region_S)

0.49997 0.50000 0.49984 0.50000

In evaluating the explainability of the models, we examine each

model’s performance, excluding different ESG factors to obtain

different RGE values. Specifically, with the aim of assessing the

impact of ESG scores on credit ratings, we consider RGE values

when, respectively, the total ESG score, the environmental score,

the social score, and the governance score are not included in the

considered machine learning model.

For RF, the RGE values are 0.48961, 0.49024, 0.49060, and

0.49043, respectively. These results indicate that, even when

certain key ESG indicators are removed, RF can still provide

relatively stable predictive performance. However, compared to

other models, its performance is slightly less impressive. GBT

exhibits the highest RGE values in all four scenarios: 0.49179

without the total ESG score, 0.49449 without the environmental

score, 0.49179 without the social score, and 0.49200 without the

governance score. This not only indicates GBT’s advantage in

maintaining high explainability but also reflects its flexibility and

robustness in handling complex datasets. SEM has RGE values

of 0.48884, 0.49036, 0.48903, and 0.48915, respectively. Although

SEM performs well in ensemble learning methods, its lower RGE

values may suggest that the model’s internal structure is more

complex and difficult to interpret in terms of single variable

influences. The VEM demonstrates high RGE values in every

scenario evaluated: 0.49025, 0.49188, 0.49074, and 0.49078. This

indicates that VEM maintains good predictive performance while

also possessing a certain level of explainability. By calculating the

average of RGE values for each model, our conclusion is that

GBT takes the lead with an average RGE value of 0.4925175,

followed by VEM (0.4909125), then RF (0.49022), and finally

SEM (0.489345). Thus, in terms of RGE: Gradient Boosting

Tree > Voting Ensemble Model > Random Forest > Stacked

Ensemble Model. Therefore, if a powerful yet easily interpretable

model is needed, A Gradient Boosting model is undoubtedly the

best choice.

To assess the fairness of the models’ output, we examine the

impact of different geographical regions and industry backgrounds

on model performance by means of the RGF values. Here, we focus

on the RGF values when industry information and north/south

regional data are not considered. GBT shows RGF values 0.50000

in all three scenarios, indicating that regardless of whether specific

regional or industry information is included, GBT can produce

consistent and fair results. However, compared to other models,

its RGF values are slightly lower. RF has RGF values ranging

from 0.49995 to 0.49997 which implies that RF remains a good

fair model option in different. contexts. Similarly, the VEM also

performs well, with RGF values consistently around 0.49999.

This indicates that the VEM remains a highly fair model option

in diverse contexts. The SEM has RGF values ranging from

0.49972 to 0.49987, showing some variability. Although it generally

maintains good fairness, SEM is slightly less consistent across

regions compared to GBT, RF and VEM. By calculating the mean

of RGF values for each model, GBT leads with an average RGF

value of 0.5000, followed by VEM (0.49999), RF (0.49996), and

SEM (0.49981). Thus, in terms of RGF: Gradient Boosting Tree >

Voting Ensemble Model > Random Forest > Stacked Ensemble

Model. It is evident that Gradient Boosting models not only excel

in explainability but they are also the optimal choice in terms

of fairness.

Therefore, if higher prediction accuracy is the primary goal,

then VEM is recommended. In scenarios where model stability

is a priority, RF emerges as the preferred choice. If the main

objective is to enhance model explainability and fairness, GBT

is the best option. For applications requiring a balance between

high explainability and fairness, while also considering other

performance metrics such as MSE and R-squared, the VEM is

also a worthy recommendation. Although RF and SEM perform

well in these two aspects, it is slightly inferior to GBT and VEM,

making it suitable for situations where explainability and fairness

are important but not the highest priority. The SEM, which

performs relatively weaker in these two key metrics, may not be the

first choice for applications emphasizing model transparency and

model bias.

5.5 Robustness

In this subsection we evaluate whether our findings are robust

to alternative measures and estimations. In particular, we compare

the obtained SAFE AI metrics with other metrics available in the

literature which can provide a useful benchmark. Such metrics

include the ROC (Receiver Operating Characteristic Curve) for

assessing accuracy and SHAP (SHapley Additive exPlanations)

values for model explainability. The comparison with standard

metrics can enhance the robustness of our results, to assess the

sustainability of AI applications.

In comparison with RGA the ROC curve reflects the model’s

ability to rank accurately the predicted values. When evaluating

credit rating prediction models, the ROC is obtained by plotting

the relationship between the True Positive Rate (TPR) and False

Positive Rate (FPR) at various thresholds and calculating the area

under the resulting curve. While is is known that RGA=AUC, it is

of interest to calculate the coordinates of the ROC curve for specific

threshod values, as this may give an indication about the possible

prevalence of false positives over true positives.

For our data, Table 7 shows the results of the comparison.
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TABLE 7 RGA and ROC at di�erent thresholds.

Metric RF GBT SEM VEM

RGA 0.50997 0.50814 0.51132 0.50950

AUROC at

threshold 70%

0.9385 0.8913 0.8124 0.8117

AUROC at

threshold 85%

0.9774 0.9535 0.8869 0.8850

From Table 7 we can draw the following conclusions. RF

exhibits the highest ROC values among all models, particularly

reaching 0.9774 at the threshold of 85%, demonstrating its very

good classification ability at high thresholds. GBT also shows

good ROC values which are slightly lower than RF, and it can

still maintain high levels at both thresholds. The SEM and VEM

perform relatively lower in ROC, especially at the threshold of

70%, with values of 0.8124 and 0.8117, respectively, indicating

their weaker ability to distinguish between positive and negative

companies at low thresholds.

Thus, although the VEM performs best in terms of MSE and

R-squared, its performance in ROC is inferior to that of RF and

GBT. This suggests that while considering the overall accuracy of

credit rating predictions, attention must also be paid to the model’s

classification ability at different thresholds. We therefore suggest

that, when selecting the most suitable model, it is essential to

consider a comprehensive range of performance metrics to ensure

that the model delivers reliable credit rating predictions in practical

applications.

In the context of explainability, the RGE metrics should

be compared with Shapley values, the most used measure to

obtain explainability of the machine learning output. RGE (Rank

Graduation Explainability) measures the model’s explainability

by quantifying the impact on prediction rankings when specific

features are removed. On the other hand, Shapley values,

which originate from cooperative game theory, quantify the

contribution of each feature to the predictions made by a machine

learning model.

By comparing RGE with Shapley values, we can gain a

comprehensive understanding of how themodel’s performance and

explainability are affected by the inclusion or exclusion of different

ESG factors, thereby better assessing the sustainability of a machine

learning model.

In our results, we use Shapley (without ESG_score) to

denote the Shapley values calculated without considering the

ESG score, and similarly, we have Shapley (E), Shapley (S),

and Shapley (G) for the cases where the environmental, social,

and governance scores are excluded, respectively. The detailed

results from the application of Shapley values are presented in

Table 8.

Table 8 shows that, in terms of the overall ESG score (ESG),

GBT has the highest Shapley value at 0.22201, indicating the

strongest overall dependency on the ESG score. The RF has the

second highest Shapley value at 0.21417, suggesting a weaker

dependency on the ESG score than that of GBT. The SEM and

VEM have close Shapley values of 0.15801 and 0.15880, showing

a relatively lower but similar dependency on the ESG score.

TABLE 8 RGE and Shapley.

RGE and
Shapley

RF GBT SEM VEM

RGE (ESG) 0.48961 0.49179 0.48884 0.49025

RGE (E) 0.49024 0.49449 0.49036 0.49188

RGE (S) 0.49060 0.49179 0.48903 0.49074

RGE (G) 0.49043 0.49200 0.48915 0.49078

Shapley (ESG) 0.21417 0.22201 0.15801 0.15880

Shapley (E) 0.08127 0.64233 0.21299 0.21128

Shapley (S) 0.07772 0.11497 0.11503 0.11642

Shapley (G) 0.34705 1.92621 0.31991 0.31635

For the environmental score (E), GBT again has the highest

Shapley value at 0.64233, indicating a higher emphasis on

environmental factors. The SEM and VEM have close Shapley

value of 0.21299 and 0.21128, showing a moderate emphasis on

environmental factors. The RF has the lowest Shapley value at

0.08127, indicating a lower emphasis on environmental factors.

Regarding the social score (S), the VEM has the highest Shapley

value at 0.11642, indicating a higher emphasis on social factors,

followed by SEM (0.11503) and GBT (0.11497). These three values

are close. The RF has the lowest Shapley value at 0.07772, indicating

a lower emphasis on social factors.

For the governance score (G), the GBT has a significantly higher

Shapley value at 1.92621, indicating an extremely high emphasis on

governance factors. The RF model has the second-highest Shapley

value with a score of 0.34705 and also indicating a high emphasis

on governance factors. The SEM and VEM have close Shapley

values of 0.31991 and 0.31635, showing a lower emphasis on

governance factors.

It is important to note that Shapley values are used to

explain the contribution of individual features to the model’s

predictions. Even when averaging Shapley values across multiple

models, this operation still summarizes the feature impact on

each model’s predictions, rather than necessarily reflecting the

final ensemble model’s explanation. In the VEM, the predictions

from different models are either weighted or simply averaged

to produce the final prediction. In the SEM, we consider the

weights of different models based on different R-squared. The

influence of each model’s prediction on the final result is based

on its overall performance and accuracy, not just from individual

feature contributions.

In summary, the results from the application of Shapley

values confirm what obtained with the application of the RGE

metrics. The detailed Shapley values analysis further helps in

understanding the sensitivity of each model to ESG factor. For

example, if the goal is to increase the model’s focus on governance

factors, choosing the GBT might be the better option. If a

more balanced model is desired, the SEM or VEM could be

considered. Furthermore, by delving into the Shapley values

of different models, we can better explain the decision-making

process of the models, thereby enhancing their transparency

and interpretability.
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6 Discussion

6.1 Theoretical implications

In this paper, we have proposed a methodology to improve

the sustainability of Artificial Intelligence applications, embedding

Environmental, Social, and Governance (ESG) factors into a set of

alternative ensemble machine learning models.

Additionally, we have also shown how alternative models can

be compared not only in terms of accuracy, but also in terms of

explainability, fairness and robustness, thereby further improving

the sustainability of artificial intelligence applications.

6.2 Managerial implications

We have exemplified our method for one of the most important

applications of artificial intelligence in finance: the assessment of

credit ratings for companies that ask for credit.

We have shown how different machine learning models can

identify the relationship between ESG scores and credit ratings,

capturing nonlinear effects. We have also shown that ensemble

machine learning models are capable of providing valuable

estimates.

The application of our methodology to a real use case shows

that it is quite satisfactory and can thus be extended to further data

and problems, in future research.

6.3 Limitations and future research agenda

The main limitation of our work is that the proposed S.A.F.E.

metrics are applicable to artificial intelligence models for univariate

responses that are numerical, ordinal or binary.

Future research should consider the extension to a

multidimensional response and the consideration of non tabular

data, as from the output of large language models.

7 Conclusions

We believe that model proposed in this paper is quite valid:

from a theoretical viewpoint, as based on sound and consistent

mathematical methods; from an empirical viewpoint, as the results

in the previous Section have shown. We believe that both our

research hypotheses have been validated: (i) it is possible to build

machine learning models that measure the relationship between

ESG scores and credit ratings; (ii) it is possible to make suchmodels

sustainable, accurate, fair and explainable (S.A.F.E.).

In the terminology of the existing AI recommendations and

regulations, such as the American NIST AI Risk Management

Framework and the European Artificial Intelligence Act, the model

presented in this paper can be employed by to monitor, manage

and mitigate the risks that derive from the applications of Artificial

Intelligence, such as credit ratings.

The main strengths of our proposal are: (i) the modelisation

of non linear effects of ESG factors on credit ratings, made possible

by the employedmachine learning models; (ii) the evaluation of the

different models by means of a consistent set of metrics, all deriving

from the same concept: the S.A.F.E. Ai metrics.

The main limitation of our proposal is that the metrics,

to date, are designed for a unidimensional tabular response

variable. An extension of the approach is necessary, in future

research, to deal with more complex, multidimensional or non

tabular responses.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

PG: Methodology, Supervision, Writing – review & editing.

LW: Data curation, Formal analysis, Investigation, Software,

Writing – original draft.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by GRINS PE00000018.

Acknowledgments

PG gratefully acknowledge the EU PNRR GRINS project.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no impact

on the peer review process and the final decision.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers in Artificial Intelligence 13 frontiersin.org

https://doi.org/10.3389/frai.2025.1566197
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Giudici and Wu 10.3389/frai.2025.1566197

References

Abhayawansa, S., and Tyagi, S. (2021). Sustainable investing: The black box of
environmental, social, and governance (esg) ratings. J. Wealth Managem. 24, 49–54.
doi: 10.3905/jwm.2021.1.130

Adams, R. B., and Mehran, H. (2012). Bank board structure and performance:
Evidence for large bank holding companies. J. Finan. Intermed. 21, 243–267.
doi: 10.1016/j.jfi.2011.09.002

Agosto, A., Cerchiello, P., and Giudici, P. (2024). Bayesian learning models to
measure the relative impact of esg factors on credit ratings. Int. J. Data Sci. Analyt.
7:1358812. doi: 10.1007/s41060-023-00405-9

Ahmad, T., Zhang, D., Huang, C., Zhang, H., Dai, N., Song, Y., et al. (2021).
Artificial intelligence in sustainable energy industry: Status quo, challenges and
opportunities. J. Clean. Prod. 289:125834. doi: 10.1016/j.jclepro.2021.125834

Ali, Q. (2024). Bayesian model of tilling wheat confronting
climatic and sustainability challenges. Front. Artif. Intellig. 7:1402098.
doi: 10.3389/frai.2024.1402098

Alzoubi, Y. I., and Mishra, A. (2024). Green artificial intelligence
initiatives: potentials and challenges. J. Clean. Prod. 2024:143090.
doi: 10.1016/j.jclepro.2024.143090

Avetisyan, E., and Ferrary, M. (2013). Dynamics of stakeholders’ implications in the
institutionalization of csr field in france and in the united states. J. Busin. Ethics 115,
115–133. doi: 10.1007/s10551-012-1386-3

Babaei, G., Giudici, P., and Raffinetti, E. (2025). A rank graduation box for safe AI.
Expert Syst. Appl. 259:125239. doi: 10.1016/j.eswa.2024.125239

Billio, M., Costola, M., Hristova, I., Latino, C., and Pelizzon, L. (2021). Inside the esg
ratings: (dis)agreement and performance. Corp. Soc. Responsib. Environm. Managem.
28, 1426–1445. doi: 10.1002/csr.2177

Commission, E. (2024).Overview of Sustainable Finance. Technical Report. Brussels:
European Union.

Dimson, E., Marsh, P., and Staunton, M. (2020). Divergent ESG ratings. J. Portfolio
Managem. 47, 75–87. doi: 10.3905/jpm.2020.1.175

Dorfleitner, G., Halbritter, G., and Nguyen, M. (2015). Measuring the level and risk
of corporate responsibility-an empirical comparison of different esg rating approaches.
J. Asset Managem. 16, 450–466. doi: 10.1057/jam.2015.31

Esteban-Sanchez, P., de la Cuesta-Gonzalez, M., and Paredes-Gazquez, J. D. (2017).
Corporate social performance and its relation with corporate financial performance:
international evidence in the banking industry. J. Clean. Prod. 162, 1102–1110.
doi: 10.1016/j.jclepro.2017.06.127

Fafaliou, I., Giaka, M., Konstantios, D., and Polemis, M. (2022). Firms’ esg
reputational risk and market longevity: A firm-level analysis for the united states. J.
Bus. Res. 149, 161–177. doi: 10.1016/j.jbusres.2022.05.010

Giudici, P., and Raffinetti, E. (2023). Safe artificial intelligence in finance. Finan. Res.
Letters 56:104088. doi: 10.1016/j.frl.2023.104088

Giudici, P., and Raffinetti, E. (2024). Rga: a unified measure of predictive accuracy.
Adv. Data Analy. Classif. 2024, 1–27. doi: 10.1007/s11634-023-00574-2

Goralski, M. A., and Tan, T. K. (2020). Artificial intelligence and sustainable
development. Int. J. Managem. Educ. 18:100330. doi: 10.1016/j.ijme.2019.
100330

Habib, A. M. (2023). Do business strategies and environmental, social, and
governance (esg) performance mitigate the likelihood of financial distress? a multiple
mediation model. Heliyon 9:e17847. doi: 10.1016/j.heliyon.2023.e17847

Habib, A. M. (2024). Does real earnings management affect a firm’s
environmental, social, and governance (esg), financial performance, and total
value? A moderated mediation analysis. Environm. Dev. Sustainab. 26, 28239–28268.
doi: 10.1007/s10668-023-03809-6

Habib, A. M., and Mourad, N. (2024). The influence of environmental,
social, and governance (ESG) practices on us firms’ performance: Evidence from
the coronavirus crisis. J. Knowl. Econ. 15, 2549–2570. doi: 10.1007/s13132-023-
01278-w

Hernandez, D., Pasha, L., Yusuf, D. A., Nurfaizi, R., and Julianingsih, D. (2024).
The role of artificial intelligence in sustainable agriculture and waste management:
towards a green future. Int. Trans. Artif. Intellig. 2, 150–157. doi: 10.33050/italic.
v2i2.552

Kumar Roy, P., Shaw, K., and Ishizaka, A. (2023). Developing an integrated fuzzy
credit rating system for smes using fuzzy-bwm and fuzzy-topsis-sort-c. Ann. Operat.
Res. 325, 1197–1229. doi: 10.1007/s10479-022-04704-5

Li, G., and Guo, X. (2024). A framework for extending co-creative
communication models to sustainability research. Front. Artif. Intellig. 7:1236310.
doi: 10.3389/frai.2024.1236310

Lorenz, M. (1905). Methods of measuring the concentration wealth. Public. Am.
Stat. Assoc. 9, 209–219. doi: 10.2307/2276207

Lozano, R. (2012). Towards better embedding sustainability into companies’
systems: an analysis of voluntary corporate initiatives. J. Clean. Prod. 25, 14–26.
doi: 10.1016/j.jclepro.2011.11.060

Lozano, R., Merrill, M. Y., Sammalisto, K., Ceulemans, K., and Lozano, F. J. (2017).
Connecting competences and pedagogical approaches for sustainable development in
higher education: a literature review and framework proposal. Sustainability 9:1889.
doi: 10.3390/su9101889

Moon, M. J. (2023). Searching for inclusive artificial intelligence for social good:
Participatory governance and policy recommendations for making ai more inclusive
and benign for society. Public Adm. Rev. 83, 1496–1505. doi: 10.1111/puar.13648

Muñoz-Torres, M. J., Fernández-Izquierdo, M., Rivera-Lirio, J. M., and Escrig-
Olmedo, E. (2019). Can environmental, social, and governance rating agencies favor
business models that promote a more sustainable development? Corp. Soc. Responsib.
Environm. Managem. 26, 439–452. doi: 10.1002/csr.1695

Nishant, R., Kennedy, M., and Corbett, J. (2020). Artificial intelligence for
sustainability: Challenges, opportunities, and a research agenda. Int. J. Inf. Manage.
53:102104. doi: 10.1016/j.ijinfomgt.2020.102104

Rane, N. L., Desai, P., and Choudhary, S. (2024a). Challenges of implementing
artificial intelligence for smart and sustainable industry: Technological,
economic, and regulatory barriers. Artif. Intellig. Indust. Soc. 5, 2–83.
doi: 10.70593/978-81-981271-1-2_5

Rane, N. L., Desai, P., Rane, J., and Paramesha, M. (2024b). Artificial intelligence,
machine learning, and deep learning for sustainable and resilient supply chain
and logistics management. Trustworthy Artif. Intellig. Industry Soc. 2024, 156–184.
doi: 10.70593/978-81-981367-4-9_5

Rane, N. L., Paramesha, M., Rane, J., and Kaya, O. (2024c). Artificial intelligence,
machine learning, and deep learning for enabling smart and sustainable cities and
infrastructure. Artif. Intellig. Indust. Soc. 5, 2–25. doi: 10.70593/978-81-981271-1-2_2

Robeco (2024). Sustainability Investing Glossary: ESG Definition. Technical Report.
New York: Robeco.

Rohde, F., Wagner, J., Meyer, A., Reinhard, P., Voss, M., Petschow, U., et al. (2024).
Broadening the perspective for sustainable artificial intelligence: sustainability criteria
and indicators for artificial intelligence systems. Curr. Opin. Environm. Sustainab.
66:101411. doi: 10.1016/j.cosust.2023.101411

Rolnick, D., Donti, P., Kaach, L., Kochanski, K., Lacoste, A., Sankaran, K., et al.
(2022). Tackling Climate Change with Machine Learning.

Roy, P. K. (2023). Enriching the green economy through sustainable investments:
An esg-based credit rating model for green financing. J. Clean. Prod. 420:138315.
doi: 10.1016/j.jclepro.2023.138315

Scalet, S., and Kelly, T. F. (2010). CSR rating agencies: What is their global impact?
J. Busin. Ethics 94, 69–88. doi: 10.1007/s10551-009-0250-6

Shin, S., Lee, J., and Bansal, P. (2022). From a shareholder to stakeholder orientation:
Evidence from the analyses of ceo dismissal in large us firms. Strategic Managem. J. 43,
1233–1257. doi: 10.1002/smj.3369

Soltani, B. (2014). The anatomy of corporate fraud: a comparative analysis of
high profile american and european corporate scandals. J. Busin. Ethics 120, 251–274.
doi: 10.1007/s10551-013-1660-z

Times, F. (2024). Definition of ESG. London: Financial Times.

Van Duuren, E., Plantinga, A., and Scholtens, B. (2016). ESG integration and the
investment management process: Fundamental investing reinvented. J. Busin. Ethics
138, 525–533. doi: 10.1007/s10551-015-2610-8

Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., et al.
(2020). The role of artificial intelligence in achieving the sustainable development goals.
Nat. Commun. 11, 1–10. doi: 10.1038/s41467-019-14108-y

Frontiers in Artificial Intelligence 14 frontiersin.org

https://doi.org/10.3389/frai.2025.1566197
https://doi.org/10.3905/jwm.2021.1.130
https://doi.org/10.1016/j.jfi.2011.09.002
https://doi.org/10.1007/s41060-023-00405-9
https://doi.org/10.1016/j.jclepro.2021.125834
https://doi.org/10.3389/frai.2024.1402098
https://doi.org/10.1016/j.jclepro.2024.143090
https://doi.org/10.1007/s10551-012-1386-3
https://doi.org/10.1016/j.eswa.2024.125239
https://doi.org/10.1002/csr.2177
https://doi.org/10.3905/jpm.2020.1.175
https://doi.org/10.1057/jam.2015.31
https://doi.org/10.1016/j.jclepro.2017.06.127
https://doi.org/10.1016/j.jbusres.2022.05.010
https://doi.org/10.1016/j.frl.2023.104088
https://doi.org/10.1007/s11634-023-00574-2
https://doi.org/10.1016/j.ijme.2019.100330
https://doi.org/10.1016/j.heliyon.2023.e17847
https://doi.org/10.1007/s10668-023-03809-6
https://doi.org/10.1007/s13132-023-01278-w
https://doi.org/10.33050/italic.v2i2.552
https://doi.org/10.1007/s10479-022-04704-5
https://doi.org/10.3389/frai.2024.1236310
https://doi.org/10.2307/2276207
https://doi.org/10.1016/j.jclepro.2011.11.060
https://doi.org/10.3390/su9101889
https://doi.org/10.1111/puar.13648
https://doi.org/10.1002/csr.1695
https://doi.org/10.1016/j.ijinfomgt.2020.102104
https://doi.org/10.70593/978-81-981271-1-2_5
https://doi.org/10.70593/978-81-981367-4-9_5
https://doi.org/10.70593/978-81-981271-1-2_2
https://doi.org/10.1016/j.cosust.2023.101411
https://doi.org/10.1016/j.jclepro.2023.138315
https://doi.org/10.1007/s10551-009-0250-6
https://doi.org/10.1002/smj.3369
https://doi.org/10.1007/s10551-013-1660-z
https://doi.org/10.1007/s10551-015-2610-8
https://doi.org/10.1038/s41467-019-14108-y
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	Sustainable artificial intelligence in finance: impact of ESG factors
	1 Introduction
	2 Background 
	3 Literature review and research hypotheses 
	4 Methodology
	4.1 Ensemble models
	4.2 The S.A.F.E. AI framework

	5 Results
	5.1 Data 
	5.2 Exploratory analysis
	5.3 Empirical findings
	5.3.1 Random forest and gradient boosting tree
	5.3.2 Ensemble models

	5.4 SAFE AI metrics
	5.5 Robustness

	6 Discussion
	6.1 Theoretical implications
	6.2 Managerial implications
	6.3 Limitations and future research agenda

	7 Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


