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Background: Two years after the COVID-19 pandemic, it became known that 
one of the complications of this disease is myocardial injury. Electrocardiography 
(ECG) and cardiac biomarkers play a vital role in the early detection of 
cardiovascular complications and risk stratification. The study aimed to 
investigate the value of a new electrocardiographic metric for detecting minor 
myocardial injury in patients during COVID-19 treatment.

Methods: The study was conducted in 2021. A group of 26 patients with verified 
COVID-19 diagnosis admitted to the intensive care unit for infectious diseases 
was examined. The severity of a patient’s condition was calculated using the 
NEWS score. The digital ECGs were repeatedly recorded (at the beginning and 
2–4 times during the treatment). A total of 240 primary and composite ECG 
parameters were analyzed for each electrocardiogram. Among these patients, 6 
patients died during treatment. Cluster analysis was used to identify subgroups 
of patients that differed significantly in terms of disease severity (NEWS), SрО2 
and integral ECG index (an indicator of the state of the cardiovascular system).

Results: Using analysis of variance (ANOVA repeated measures), a statistical 
assessment of changes of indicators in subgroups at the end of treatment was 
given. These subgroup differences persisted at the end of the treatment. To 
identify potential predictors of mortality, critical clinical and ECG parameters 
of surviving (S) and non-surviving patients (D) were compared using parametric 
and non-parametric statistical tests. A decision tree model to classify survival in 
patients with COVID-19 was constructed based on partial ECG parameters and 
NEWS score.

Conclusion: A comparison of potential mortality predictors showed no 
significant differences in vital signs between survivors and non-survivors at 
the beginning of treatment. A set of ECG parameters was identified that were 
significantly associated with treatment outcomes and may be  predictors of 
COVID-19 mortality: T-wave morphology (SVD), Q-wave amplitude, and R-wave 
amplitude (lead I).
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1 Introduction

Experience with the pandemic has shown that the disease can 
pose a severe threat to the lives of patients. The main danger of the 
disease is acute respiratory syndrome and lung injury. However, 
patients may experience damage to other organs and systems: the 
cardiovascular system, the immune system, the liver and the kidneys. 
Myocardial injury occurred in at least 10% of unselected COVID-19 
cases and up to 41% in critically ill patients or those with comorbidities 
(Cameli et al., 2020).

In the survivors, the majority showed long-term symptoms, now 
often referred to as long COVID-19 (Garg et al., 2021; Crook et al., 
2021). One of the critical long-term clinical consequences of 
COVID-19 seems to be myocardial injury (Guzik et al., 2020; Italia 
et al., 2021; Akhmerov and Marbán, 2020).

Signs and symptoms of possible myocardial injury after 
COVID-19 may include severe fatigue, palpitations, chest pain, 
shortness of breath, postural orthostatic tachycardia syndrome 
(POTS) due to neurologic disturbances, post-exertional fatigue, and 
higher troponin levels (Lovell et al., 2022; Bandyopadhyay et al., 2020; 
Xie et al., 2022; Matsumori et al., 2022).

In addition, COVID-19 appears to cause severe myocarditis. It can 
affect the myocardium and pericardium, causing severe fatigue 
without other apparent symptoms (Lovell et al., 2022). Diagnosis of 
myocarditis is relatively inaccurate because both tests and diagnostic 
protocols lack accuracy. Some reports showed that symptoms 
persisted for an average of 47 days before being diagnosed by cardiac 
magnetic resonance (CMR) imaging (Ojha et al., 2021).

Therefore, it is extremely important to identify critical factors for 
assessing COVID-19 severity, predicting treatment outcomes, and 
optimizing individual treatment strategies (Izcovich et al., 2020; Fathi 
et  al., 2021). It is known that 49 variables can provide valuable 
prognostic information about mortality and disease severity in 
patients with COVID-19 (Izcovich et al., 2020).

Numerous studies have confirmed that cardiac (Mueller et al., 
2021) and other biomarkers may reflect cardiovascular injury and 
inflammation in COVID-19 and are strongly associated with poor 
prognosis and mortality (Battaglini et al., 2022; Wang et al., 2020). In 
addition, some electrocardiographic (Bergamaschi et al., 2021) and 
echocardiographic alterations (Long et  al., 2021) appear to have 
prognostic implications for patients with COVID-19.

Several prognostic models have been developed to assess disease 
severity in patients with COVID-19 and predict mortality (Bertsimas 
et al., 2020; Pourhomayoun and Shakibi, 2021; Liang et al., 2020; Zhou 
et al., 2021; Yan et al., 2020; Kang et al., 2021).

Such classification models have usually been developed using 
various machine learning (ML) algorithms. For example, one neural 
network model has demonstrated 93% accuracy in predicting 
mortality based on patients’ physiological status, symptoms, and 
demographic information (Pourhomayoun and Shakibi, 2021).

A multivariable logistic regression model and an online risk 
calculator based on 10 clinical indicators were proposed to predict 
critical illness development among hospitalized patients with 

COVID-19 (Liang et al., 2020). A support vector machine (SVM) 
model based on 11 routine clinical parameters was developed to assess 
the severity of COVID-19 patients (Zhou et al., 2021).

An interpretable mortality prediction model for COVID-19 
patients was proposed by Yan et al. (2020) where the XGBoost ML 
algorithm was used to select predictors. The interpretable decision tree 
and the decision rule for 3 biomarkers that predict the survival of 
individual patients with more than 90% accuracy were obtained.

It should be noted that in one of the ML models for predicting the 
severity of COVID disease, among the 33 analyzed signs and 
indicators, there was the cardiac functional grading (according to 
New York Heart Association functional classification) (Kang et al., 
2021). However, this cardiac indicator was excluded from the model 
because of its weak positive correlation with the severity of COVID-19.

In this context, the advanced analysis of ECG is highly demanded. 
This is especially true for patients with a normal or slightly changed 
electrocardiogram, i.e., if the analysis did not reveal any “major” 
category according to the, for example, Minnesota coding system. The 
only way to increase the diagnostic value of ECG examination is to 
develop proper information technology (IT)—a combination of 
up-to-date methods and equipment bound into a chain that provides 
collection, storage, pre-processing, interpretation, conclusion and 
dissemination of information (Chaikovsky, 2020).

At the same time, the advancement of diagnostic methods, 
especially instrumental ones (i.e., methods of functional diagnostics), 
primarily entails a constant increase of their “distributive capacity”—
the ability to detect more and more and subtler changes in the 
function examined by one method or another. Such opportunities 
emerge due to progress in technical measurement tools of a specific 
function and even more due to the development of informational 
technologies. In other words, due to the creation of new metrics—
numerical parameters using which one can assess the aspects of the 
functioning of various human organs and systems that were 
inaccessible before.

As a result, new ways of improving the diagnostic accuracy of a 
particular method within its traditional application scenarios are 
discovered. Additionally, familiar methods find unconventional uses 
in new areas.

Everything mentioned above fully applies to the new informational 
technologies for cardiac electrical activity assessment developed at 
V.M. Glushkov Institute of Cybernetics of the National Academy of 
Sciences of Ukraine.

The main goal set by the developers in this context was to make 
any electrocardiography informative. Routine ECG analysis is based 
on specific ECG syndromes or phenomena defined within one of the 
existing visual ECG analysis algorithms. However, in most cases, no 
ECG syndrome can be identified during the analysis of an individual 
electrocardiogram, at least not one that reflects cardiac pathology, i.e., 
belongs to the “major” category according to the Minnesota coding 
system, for example. During the routine analysis, one is forced to 
assign a single class to all these electrocardiograms—
electrocardiograms with no primary ECG syndrome identified. 
However, the question arises: are all these electrocardiograms the 
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same in terms of their relative “distance” to the “ideal” 
electrocardiogram of a healthy human? They are not. Depending on 
the myocardial condition, this “distance” can be  further or closer. 
Moreover, there is a reasonable hypothesis that this “distance” reflects 
the likelihood of serious cardiovascular events. This is where routine 
analysis of an electrocardiogram is uninformative.

That is why the Universal Scoring system method and software for 
ECG scaling that can provide the quantitative evaluation of the 
slightest changes in ECG signal were developed (Chaikovsky, 2020; 
Chaykovskyy et  al., 2019). This approach is based on, first of all, 
measuring the maximum number of ECG parameters and heart rate 
variability and, secondly, on positioning each parameter value on a 
scale between the absolute norm and extreme pathology. The 
suggested approach follows a popular Z-scoring ideology, where 
quantitative, usually point-based assessment of test results is 
determined using a unique scale containing data about intra-group 
test results variation. To calculate the Z-score mean, the test value of 
the group and its standard deviation are needed (Colan, 2013).

This study aimed to investigate the value of a new 
electrocardiographic metric for detecting subtle myocardial injury in 
patients during COVID-19 treatment. And also, to test the hypothesis 
about the prognostic value of myocardial injury on the 
treatment outcome.

2 Materials and methods

2.1 Study design and patient characteristics

The study was conducted in 2021. A total of 26 patients with 
confirmed COVID-19 were monitored while on treatment in the 
intensive care unit (ICU) of the Kyiv Clinical Hospital #4. The 
hospitalization duration ranged from 5 to 27 days. All the patients 
were initially in a severe condition.

The vital signs were documented to evaluate the course of the 
illness: heart rate, blood oxygen saturation, blood pressure, body 
temperature, and respiration rate. Based on them, the severity of a 
patient’s condition was calculated using a widely accepted NEWS 
score (Wang et al., 2020). Severe COVID-19 condition was defined as 
meeting NEWS aggregate score of 7 or over.

The process of patients’ enrollment is presented on Figure 1.
Most patients had a history of chronic diseases, first of all CVD, 

but these diseases were in remission. Thus, only patients with no signs 
of instability in relation to heart disease and no gross changes in the 
electrocardiogram in accordance with Minnesota coding were 
included in the study. Based on this logic, as shown in Figure 1, four 
patients were excluded due to instability of their conditions in the 
context of comorbid heart diseases, and eight other patients were 
excluded because they had major pathological changes on the ECG 
according to Minnesota coding.

In 26 patients, an ECG in 12 leads by serial digital ECG device 
(Solvaig Ltd., Ukraine) was repeatedly recorded (at the beginning 
and several times during the treatment—from 2 to 4 times). Among 
these patients, six patients died during the treatment. The main 
characteristics of the patient’s condition were recorded several 
times. The integral indicators were used to calculate the patient’s 
severity according to the NEWS scale (National Early Warning 
Score) (Baker et  al., 2021) and SAPS II (The Simplified Acute 

Physiology II Scale) (Allyn et  al., 2016). А demographic and 
anthropometric values, clinical parameters and ICU characteristics 
are presented in Table 1.

2.2 Statistical analysis

Data are presented as means ± standard deviation (SD) or 
median (interquartile range, IQR) for continuous variables, based on 
normality and as percentages for categorical variables. A two-sample 
t-test compared the baseline characteristics of subjects within each 
group with unequal variances for continuous variables. Mann–
Whitney U test was performed for variables that were not normally 
distributed. Two-tailed p < 0.05 was considered 
statistically significant.

The expectation–maximization (EM) clustering algorithm with 
10-fold cross-validation was used to identify homogeneous groups. 
Homogenous groups were formed based on disease severity and 
integral index of patients at the beginning of treatment. As a result, 
two subgroups were identified that were significantly different in the 
severity of the disease and the integral indicator of the state of the 
cardiovascular system of patients at the start of treatment. Repeated 
measures ANOVA was used to evaluate statistical differences in the 
main clinical parameters in these subgroups at the beginning and the 
end of treatment.

We used machine learning algorithms (CART) such as Decision 
Trees to construct a model for classifying patient mortality. Statistical 
analysis was performed using Statistica 12.0 software.

FIGURE 1

Flow-chart of the enrollment of COVID-19 patients with serial ECG 
evaluations.
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TABLE 2 Mean values and Spearman’s correlation coefficients for vital signs and U-score composite ECG index.

Variables Mean ± SD HR SрО2 t NEWS SAPS II U-score

HR (heart rate) 80.05 ± 11.98 1.00 −0.24* −0.10 0.10 0.06 −0.11

SрО2 (blood oxygen saturation) 86.46 ± 4.76 −0.24* 1.00 −0.24* −0.64* −0.12 0.28*

Body temperature (t°C) 37.17 ± 0.66 −0.10 −0.24* 1.00 0.46* −0.52 −0.22*

NEWS score 6.14 ± 2.24 0.10 −0.64* 0.46* 1.00 −0.25 −0.25*

SAPS II 23.5 ± 6.14 0.06 −0.12 −0.52* −0.25 1.00 −0.17

U-score 59.49 ± 10.66 −0.11 0.28* −0.22* −0.25* −0.17 1.00

SD, standard deviation, *p < 0.05.

3 Results

3.1 Correlation and cluster analysis, 
changes of integral parameters in the 
course of treatment

Previous studies have shown heterogeneity in clinical 
manifestations, severity and outcomes in COVID-19 patients. Our 
task was to study the heterogeneity of patients, taking into account the 
vital signs, the severity of the disease, and the state of the cardiovascular 
system (CVS). In addition, it was necessary to determine the influence 
of these factors on the treatment outcome.

We calculated correlation coefficients for all monitoring data to 
study the relationship between the CVS state’s integral index and 
patients’ vital signs during treatment. Mean values and Spearman 

correlation coefficients for the vital signs and the composite index of 
ECG U-score are shown in Table 2.

As one can see, a weak but statistically significant correlation 
exists between U-score composite ECG index and blood oxygen 
saturation, body temperature and NEWS score (in the last two cases - 
negative correlation).

Table 3 shows the distribution of patients according to the NEWS 
score, indicating the heterogeneity group of patients at the beginning 
of treatment.

To identify homogeneous subgroups (clusters), the sample of 26 
patients was analyzed using EM cluster analysis with 10-fold 
cross-validation.

Hence, the problem of choosing the best parameters for 
clustering arises. In the general case, the task of selecting features for 
clustering consists of choosing the “best” set of features that helps to 
identify natural clusters according to the criterion. In our case, the 
criterion is the treatment outcome. Preliminary, feature 
dimensionality reduction methods were used to collapse features, in 
other words, to form composite features. Based on this logic, the 
electrocardiographic composite score called U-score, as well as 
composite scores NEWS and SAPS II for assessing the patient’s 
condition in the intensive care unit, were primarily selected as 
features for clustering. Then, SAPS II was rejected due to its minimal 
variations during treatment. In addition, the SpO2 value was chosen 
as a clustering parameter, since this independent feature is the most 
important vital sign in assessing the condition of patients with 
respiratory distress. Other vital signs such as HR, body temperature, 
as well age was also preliminarily investigated as potential parameters 
for clustering, but were rejected because the clusters resulting from 
the use of these parameters were clearly unrelated to the 
target criterion.

As a result, the NEWS score (as a categorial variable), SрО2 and 
U-score composite ECG index at the beginning of treatment have 
been taken for clusterization. NEWS and U-score were taken for 
clustering as the most integral indexes, and SpO2 - since this is the vital 
sign for patients in the ISU for COVID-19.

As a result, two subgroups significantly differing from each other 
in SpO2, NEWS score and U-score values were identified among 
these patients:

Cluster 1 included 19 patients with mean NEWS = 7.1, 
SрО2 = 84.3, U-score = 60.5.

Cluster 2 included 7 patients with mean NEWS = 8.3, SрО2 = 78.0, 
U-score = 49.8.

A diagram of standardized values of SpO2 and U-score is shown 
in Figure 2. As we can see, at the beginning of treatment, patients from 

TABLE 1 Patient characteristics at ICU admission.

Parameter Value

Age (years) 63 ± 14.1

Sex (female) 10 (38.47%)

Sex (male) 16 (61.53%)

Weight (kg) 80.4 ± 16.65

Length (cm) 166.5 ± 9.09

BMI (kg/m2) 28.48 ± 6.5

Hypertension 22 (84%)

Diabetes mellitus 9 (34%)

Ischemic heart disease 18 (69%)

Heart failure 11 (42%)

Pulmonary embolism 11 (42%)

Pulmonary hypertension 26 (100%)

Malignant disease 3 (11.5%)

Liver failure 2 (7.6%)

Vascular disease 4 (15.3%)

Days with symptoms at ICU admission 11.5 (5–27)

SAPS II 25 (9–35)

NEWS 7.34 (3–10)

Data are presented as (mean ± standard deviation), median (interquartile range) and 
numbers (percentages). ICU: Intensive care unit. BMI, body mass index; SAPS II, Simplified 
Acute Physiology Score II; NEWS, National Early Warning Score.
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cluster 1 have higher levels of oxygen and an integral ECG index 
compared to cluster 2. Сluster 2 (subgroup 2) is characterized by a 
combination of greater severity with low oxygen level and lower 
U-score (integral ECG index level).

The average values of vital signs in the identified subgroups are 
shown in Table 4.

In addition, the subgroup with a more severe course of the disease 
(cluster 2) significantly differs in the age of patients. In subgroup 2, 
patients are older but do not differ in physiological severity. They do 
not have a significant difference in the indicator of physiological 
severity SAPS II.

We studied the dynamics of the abovementioned main parameters 
(SpO2, NEWS, U-score) in two clusters throughout treatment using a 

repeated measures analysis of variance (RepANOVA). The changes of 
these parameters at the beginning (1) and by the end (2) of treatment 
are shown in Figures 3–5.

As shown from the figures above, both subgroups show a decrease 
in NEWS severity score and an increase in SpO2 as a result of 
treatment, and these changes are statistically significant. The impact 
of therapy on main parameters in subgroups can be assessed by partial 
effect sizes (partial eta-squared, 2

pη ). The effect of increasing oxygen 
in each cluster is significant: cluster 1 R1 SpO2 2

pη  = 0.73, p = 0.00001; 
cluster 2 2

pη  = 0.72, p = 0.007.
In addition, the dynamics of severity reduction in the 1st subgroup 

is more pronounced. Sub NEWS partial eta-squared = 2
pη  = 0.7, 

p = 0.0001. Note that a decrease in the mean NEWS is not statistically 
significant in subgroup 2 (cluster 2 with severe baseline).

In addition, the dynamics of severity reduction in the 1st subgroup 
is more pronounced. Sub NEWS partial eta-squared = 2

pη  = 0.7, 
p = 0.0001. Note that a decrease in the mean NEWS is not statistically 
significant in subgroup 2 (cluster 2 with severe baseline).

The U-score composite index has a positive tendency to increase. 
However, the wide dispersion observed indicates a heterogeneity of 
U-score changes. Note that in subgroup 2, with low initial levels of 
integral indicator and oxygen, the part of unfavorable outcomes (ratio 
deceased/survivors) is 3 out of 7, >3 out of 19 in subgroup 1.

3.2 Comparison of vital signs and ECG 
indicators in two groups by the outcome of 
treatment

Next, we studied the differences between patient groups formed 
according to treatment outcomes. The study group of 26 patients 
consisted of two classes according to the treatment outcome: 20 
survivors and 6 non-survivors. Clinical data and ECG parameters at 
the beginning and end of treatment were compared between survivors 
(S) and non-survivors (D).

At the beginning of treatment, there were no significant 
differences between groups S and D in the vital signs (SAPS II, SpO2, 
NEWS score and U-score), except for the patient’s age and body 
temperature (Table 5).

Then, an analysis was performed to identify any statistically 
significant differences among all partial ECG indicators constituting 
the U-score. The results of comparisons of ECG indicators in these 

TABLE 3 The distribution of patient severity score at the beginning of 
treatment.

NEWS score Number of cases %

3 2 6.25

5 2 6.25

6 2 6.25

7 8 25.00

8 13 40.63

9 3 9.38

10 2 6.25

FIGURE 2

Normalized means SpO2 and U-score in cluster 1 and cluster 2.

TABLE 4 Comparison of vital signs in cluster 1 and cluster 2 (t-test).

Vital signs Cluster 1 (n = 19)
Mean ± SD

Cluster 2 (n = 7)
Mean ± SD

p-value

Age 59.63 ± 10.23 71.43 ± 18.48 0.047

BR (breathing rate) 23.84 ± 3.20 24.86 ± 2.91 0.470

HR 82.05 ± 15.06 88.29 ± 11.35 0.331

SpO2 84.37 ± 2.48 78.00 ± 4.47 0.0001

Body temperature 37.46 ± 0.81 37.79 ± 0.73 0.358

NEWS 7.16 ± 1.77 8.29 ± 1.25 0.136

SAPS II 23.19 ± 5.75 25.67 ± 7.37 0.413

U-score 60.05 ± 11.87 49.86 ± 7.90 0.046

SD, standard deviation; n, number of patients.
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groups at the beginning of treatment according to the t-test are shown 
in Table 6 and according to the Mann–Whitney U test in Table 7.

At the beginning of the treatment, statistically significant 
differences were observed among the following parameter values:

 1 T-wave morphology (SVD);
 2 P/QRS integrals ratio;
 3 U-score based composite index of cardiovascular events risk;
 4 R-wave amplitude (μV) (lead I);
 5 Integral of QRS complex (lead I).

By the end of the treatment, statistically significant differences 
were observed, in addition to the severity of the disease, among the 
same ECG parameters and also in one of the fundamental heart rate 
variability indicators, RMSSD, which represents parasympathetic 
nervous system activity.

3.3 Vital signs and ECG indicators as 
treatment outcome predictors

In the last step of statistical treatment, we  explored which 
parameters had the highest correlation with treatment outcomes using 
vital signs and the entire ECG and HRV dataset. We used univariate 
feature selection for classification based on the Chi-square statistical 
test (Tables 7, 8). Variables with higher Chi-square statistical values 
are then selected as predictors for classification.

As follows from Table 8, vital signs at the beginning of treatment 
cannot be selected as treatment outcome predictors.

ECG indicators that significantly correlate with the treatment 
outcome class attribute and previously identified features 
(independent-group t-test) listed in Table 9 ranged p-value.

After testing the features with several statistics, we applied the 
wrapping method to the extracted features. With this approach, 
we evaluate the effectiveness of a subset of features, considering the 
final result of the applied learning algorithm (increase in accuracy 
when solving the classification problem).

We used the CART machine learning algorithm (decision tree 
method) with 10-fold cross-validation to divide patients into two 
classes (S, D) according to the tested feature sets. As a result, a set of 
features with the highest classification accuracy (one classification 
error) was obtained. Figure 6 shows the optimal classification tree 
built based on three features.

Contribution of 3 ECG parameters to the resulting rules listed in 
Table 9. Classification accuracy—96%. One of the recovered patients 
was erroneously classified as deceased.

If one builds a tree using both parameters above and an additional 
attribute, NEWS score value, the result will be as shown in Figure 7. 
This tree has the same structure as the previous one. Still, it is right 
branch has an additional split determined by the NEWS score 
condition. In this case, the classification accuracy on the training set 
was 100%.

4 Discussion

This study and our previous works showed that the combination 
of ECG and HRV parameters has the best diagnostic value 

FIGURE 5

U-score integral ECG index changes due to treatment in clusters 1 
and 2.

FIGURE 3

NEWS severity score changes due to treatment in clusters 1 and 2.

FIGURE 4

SpO2 changes due to treatment in clusters 1 and 2.
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TABLE 8 ECG indicators—treatment outcome predictors.

Treatment outcome predictors (at the 
beginning of treatment)

Chi-square p-value

R-wave amplitude (mV) (lead II) 18.01 0.011

Т-wave morphology (SVD) 9.56 0.043

Q-wave amplitude (μV) (lead I) 12.26 0.052

Shift of the ST segment after 0.08 s after point J (mV) (lead I) 13.23 0.104

R-wave amplitude (μV) (lead I) 11.17 0.135

U-score based composite index of cardiovascular events risk 8.29 0.141

TABLE 9 The contribution (rank) of parameters to the survival classification model.

Parameters Variable rank Importance

Т-wave morphology (SVD) 100 1.000

R-wave amplitude (μV) (lead II) 98 0.977

Q-wave amplitude (μV) (lead I) 28 0.278

TABLE 5 Comparison of mean vital signs between survivors and non-survivors (t-test).

ECG indicators Survivors (n = 20)
Mean ± SD

Non-survivors (n = 6)
Mean ± SD

p-value

SAPS II 23.61 ± 5.91 25.00 ± 0.693

Age 59.30 ± 11.06 74.50 ± 0.013

SpO2 82.95 ± 4.16 81.67 ± 0.521

Body temperature 37.47 ± 0.83 37.80 ± 0.63 0.023

NEWS 7.30 ± 1.89 8.00 ± 0.63 0.388

HR 77.25 ± 20.67 78.50 ± 13.91 0.891

U-score 58.10 ± 10.83 54.67 ± 15.23 0.541

TABLE 6 Mean ECG indicators for survivors and non-survivors at the beginning of treatment (t-test).

ECG indicators Survivors (n = 20)
Mean ± SD

Non-survivors (n = 6)
Mean ± SD

p-value

Т-wave morphology (SVD) 28.95 ± 49.16 98.67 ± 84.44 0.017

P/QRS integrals ratio 0.151 ± 0.09 0.062 ± 0.05 0.039

Integral of QRS complex (I) 0.023 ± 0.01 0.037 ± 0.02 0.025

U-score based composite index of 

cardiovascular events risk assessment
60.4 ± 21.30 38.3 ± 22.40 0.037

R-wave amplitude (μV) (lead I) 593.1 ± 231.00 861.8 ± 356.08 0.036

Q-wave amplitude (μV) (lead I) −18.40 ± 29.19 −32.67 ± 43.83 0.358

R-wave amplitude (μV) (lead II) 412.85 ± 210.75 313.00 ± 263.49 0.345

n, number of patients.

TABLE 7 Chi-square statistics: outcomes—vital signs.

Vital signs (at the beginning of treatment) Chi-square p-value

Age 13.09 0.109

SAPS II 11.02 0.201

Body temperature 5.95 0.428

HR 5.15 0.741

BR 2.90 0.714

SpO2 5.11 0.647

NEWS 3.211 0.782

https://doi.org/10.3389/frai.2025.1561079
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Chaikovsky et al. 10.3389/frai.2025.1561079

Frontiers in Artificial Intelligence 08 frontiersin.org

(Chaikovsky et al., 2019; Chaikovsky et al., 2020; Apykhtin et al., 2018; 
Patrick Neary et al., 2014; Clarke et al., 2020; Chaikovsky et al., 2020).

Changes in individual ECG and HRV parameters demonstrate 
only certain aspects of the examined phenomenon. Moreover, they 
can occur in opposite directions. Therefore, to reach a particular 
conclusion, in our case concerning the degree of subtle myocardial 
injury, a specific summarizing index that would synthesize the effects 

of individual components is necessary. The calculation method of such 
an index can be  implemented in different ways. However, it must 
always include such sequential steps as theoretical justification of the 
composite index for the particular task selection of data adequate to 
the problem at hand analysis of this data, including its normalization, 
using methods of multivariate statistics selection of the informative 
private indicators (including the exclusion of correlated parameters) 

FIGURE 6

The optimal decision tree for the treatment outcome prognosis.

FIGURE 7

Full tree for the survival classification according to ECG parameters and NEWS score.
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and finally an actual construction of the composite index through the 
aggregation of private indicators. As was shown above, we  have 
fulfilled all those steps. At the same time, it is crucial to consider that 
in addition to the composite index, various partial indicators are the 
most informative for detecting subtle changes in various 
clinical scenarios.

Usually, those are modern electrocardiographic indexes with a 
common pathophysiological basis. All of them assess the electrical 
homogeneity of the myocardium through different means, as the 
more heterogeneous the myocardium is from an electrical point of 
view (the higher the dispersion of the generated transmembrane 
action potentials in amplitude and length), the higher the 
likelihood of serious cardiovascular events. In our study, such a 
highly informative modern electrocardiographic index was the 
T-wave SVD.

The SVD of T-wave represents the complexity of ventricular 
repolarization. One major spatial component (eigenvector) can 
be  identified when repolarization is uniform, as in normal 
individuals. Conversely, when the repolarization pattern becomes 
fragmented, the relative value of the smaller vectors increases 
proportionally. Such an approach allows a comparison between the 
morphology of the T-wave across the 12 leads and the 
quantification of T-wave abnormalities in an observer-independent 
way (Clarke et al., 2020).

A key element in conducting our original research was the 
integration of an advanced Hybrid Cloud Environment for 
Telerehabilitation (HCET) (Malakhov, 2024; Malakhov and 
Semykopna, 2024), developed at the Glushkov Institute of 
Cybernetics of the National Academy of Sciences of Ukraine. 
Building on the concept of Research and Development Workstation 
Environments (RDWEs) (Palagin et al., 2018), HCET provides a 
robust, ontology-driven, service-oriented architecture that 
supports each stage of clinical research: from data collection and 
secure storage to real-time analysis and interpretation of results.

The HCET infrastructure (Malakhov, 2024) merges distributed 
hardware resources, specialized software platforms, and dedicated 
telemedicine modules, enabling seamless collaboration among 
multidisciplinary teams. Its three-layer model – Infrastructure-as-
a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-
Service (SaaS) – ensures the flexible allocation and on-demand 
scaling of computational resources. At the core of the infrastructure 
is a high-performance server (HP ProLiant DL380p Gen8) running 
Ubuntu 22.04.3 LTS, configured with virtualization tools (KVM, 
LibVirt) to host multiple virtualized operating systems. This setup 
supports data-intensive applications and fosters reliable data 
processing pipelines.

Specifically, HCET facilitated several key steps in this study of 
ECG changes in severe COVID-19 patients:

Secure Data Acquisition and Management. Patient ECG data, 
along with relevant clinical parameters (e.g., NEWS scores), were 
collected in the ICU setting and securely transmitted to the HCET 
server. The platform’s integrated Electronic Health Record (EHR) 
managing module ensured proper storage, encryption, and retrieval 
of sensitive information, adhering to ethical and legal requirements 
for patient confidentiality.

Advanced Analytical Tool Integration. The HCET environment 
included support for Statistica 12.0 software, which was pivotal for our 
repeated-measures ANOVA, cluster analysis, and decision tree 

modeling. By leveraging the platform’s PaaS capabilities, researchers 
could seamlessly install, configure, and run Statistica within multiple 
virtual operating systems, optimizing both performance and 
collaborative workflows.

Interactive remote collaboration. Telemedicine components 
within HCET, such as the “Physician’s Digital Workplace” and 
“Patient’s Digital Cabinet,” enabled continuous interaction between 
clinicians, biomedical engineers, data scientists, and other 
stakeholders. This not only streamlined the process of updating 
patient records but also allowed real-time discussion of ECG findings, 
NEWS scores, and relevant biomarkers across geographically 
dispersed locations.

Machine Learning and Decision Support. Building on the RDWE 
principles, the cognitive subsystem of HCET (referred to as the 
information-analytical subsystem) supported iterative model 
development. Automated interactive systems—such as OntoChatGPT 
(Palagin et al., 2023)—facilitated the semantic and contextual analysis 
of text documents. Researchers also used the specialized MedRehabBot 
(Palagin et al., 2024) services to manage domain-specific ontologies, 
aiding in the consistent labeling and categorization of ECG 
parameters. This approach improved the accuracy of clustering 
methods (Kaverinskiy et al., 2024a; Kaverinskiy et al., 2024b) used to 
pinpoint subtle myocardial injury and strengthened the decision-tree 
models predicting COVID-19 mortality.

Scalability and future directions. As additional clinical evidence 
accumulates, HCET’s hybrid cloud setup ensures that resources can 
be  dynamically scaled to accommodate larger patient cohorts, 
additional ECG recordings, and refined machine learning algorithms. 
Such scalability supports ongoing research into minor ECG changes, 
fostering deeper insights into myocardial injury, especially in post-
COVID-19 care.

In essence, integrating the HCET platform into our experimental 
design bolstered every phase of this original research, from data 
stewardship to advanced statistical analyses. By uniting telemedicine, 
digital health, and cloud-based data processing services, HCET 
exemplifies how innovative hybrid cloud solutions can effectively 
support cutting-edge studies in physical medicine, rehabilitation, 
and beyond.

This work is the first study to assess minor electrocardiogram 
changes using the original scaling method in patients with 
COVID-19.

We reiterate that patients with unstable comorbid conditions and/
or significant resting ECG abnormalities, as defined by Minnesota 
coding, were excluded from the study. This step was taken to ensure 
that any dynamic ECG changes observed would be  attributed to 
COVID-19 rather than other underlying diseases. These findings 
underscore that our results may not be  fully generalizable to 
individuals entirely free of comorbidities. Future research should 
expand recruitment to patients without these comorbidities to verify 
whether U-score based ECG changes exhibit similar predictive value.

Limitations of the study are the following: Firstly, the number of 
patients is relatively small. Secondly, no comparison of minor ECG 
changes with the levels of biomarkers of myocardial damage and 
inflammation was performed. Finally, the prognostic value of detected 
ECG changes regarding long-term COVID complications has yet to 
be analyzed.

Further larger-scale studies are planned to confirm and clarify 
the results.
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5 Conclusion

The suggested ECG and HRV scaling method allow for registering 
and analyzing minor electrocardiogram changes during treatment. 
Modern ECG parameters used for advanced ECG analysis were the 
most informative. Contrary to this outline, the ECG analysis must 
be more informative for this task.

Two subgroups were identified that differed significantly in the 
severity of COVID-19 and the integral indicator of the cardiovascular 
system at the beginning of treatment. At the end of treatment, 
differences between subgroups remained. In the severe subgroup, 
there were 50 percent of deaths.

A comparison of potential predictors of mortality showed that at 
the beginning of treatment, there were no significant differences in 
vital signs between those who survived and those who died. In our 
study, the average age in the group of deceased patients was slightly 
higher, and the SAPS II score was not associated with the treatment 
outcome. A set of ECG parameters significantly associated with 
treatment outcome and may be  predictors of treatment outcome 
were identified.

In addition to the U-score based composite index, partial 
indicators are the most informative for detecting subtle changes 
in various clinical scenarios, such as treatment outcome 
prediction. A decision tree for the survival classification of 
patients with COVID-19 was built based on the partial ECG 
parameters and NEWS score.

The obtained results allow us to create a combined decision 
rule that includes both the well-known NEWS-score and 
AI-based analysis of subtle ECG changes. Such a combined 
decision rule should have the highest possible predictive accuracy 
for COVID-19 Treatment Outcome. Further large-scale studies 
are needed to confirm these findings.

An important future direction involves utilizing innovative 
informatics infrastructures, such as the Hybrid Cloud 
Environment for Telerehabilitation (Malakhov, 2024; Malakhov 
and Semykopna, 2024), to manage and analyze large ECG datasets 
alongside clinical metrics. By delivering on-demand 
computational resources within an integrated platform, HCET 
enhances the scalability of machine learning pipelines for real-
time ECG data processing.
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