
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
BRIEF RESEARCH REPORT article
Front. Artif. Intell.
Sec. Language and Computation
Volume 8 - 2025 | doi: 10.3389/frai.2025.1558696
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
This study evaluates the biases in Gemini 2.0 Flash Experimental, a state-of-the-art large language model (LLM) developed by Google, focusing on content moderation and gender disparities. By comparing its performance to ChatGPT-4o, examined in a previous work of the author, the analysis highlights some differences in ethical moderation practices. Gemini 2.0 demonstrates reduced gender bias, notably with female-specific prompts achieving a substantial rise in acceptance rates compared to results obtained by ChatGPT-4o. It adopts a more permissive stance toward sexual content and maintains relatively high acceptance rates for violent prompts (including gender-specific cases). Despite these changes, whether they constitute an improvement is debatable. While gender bias has been reduced, this reduction comes at the cost of permitting more violent content toward both males and females, potentially normalizing violence rather than mitigating harm. Male-specific prompts still generally receive higher acceptance rates than female-specific ones. These findings underscore the complexities of aligning AI systems with ethical standards, highlighting progress in reducing certain biases while raising concerns about the broader implications of the model's permissiveness. Ongoing refinements are essential to achieve moderation practices that ensure transparency, fairness, and inclusivity without amplifying harmful content.
Keywords: Generative AI, Gemini 2.0, ChatGPT-4o, AI ethics, Bias reduction, Content moderation, gender bias, ethical AI development
Received: 10 Jan 2025; Accepted: 24 Feb 2025.
Copyright: © 2025 BALESTRI. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
ROBERTO BALESTRI, University of Bologna, Bologna, Italy
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.