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Traditional vs. AI-generated
meteorological risks for
emergency predictions

Naoufal Sirri* and Christophe Guyeux

FEMTO-ST Institute, UMR 6174 CNRS, University of Franche-Comté, Belfort, France

This study aims to analyze and examine in-depth the feature selection

process using Large Language Models (LLMs) to optimize firefighter prediction

performance. Although features from reliable sources are known to significantly

aid predictions, their accuracy may be limited in critical situations requiring

rigorous prioritization. Therefore, the focus was placed on meteorological

risks for a comparative diagnosis between their extraction from Météo France

and those generated by LLMs across various dimensions. Given the crucial

role of meteorological risks as key informational sources for decision-making,

this study explores the impact of feature extraction methods related to these

risks on predicting firefighter interventions over nine years, from 2015 to

2024. Annual reports on firefighter activities in France highlight the growing

influence of weather-related risks, underscoring the urgent need for precise and

actionablemeteorological information to support rapid and e�ective emergency

response strategies. The methodology implemented involved comprehensive

data preparation, an in-depth analysis of feature extraction through di�erent

approaches, and their evaluation from multiple perspectives. This required

leveraging machine learning models such as XGBoost, Random Forest, and

Support Vector Machines (SVM) to assess and analyze prediction results based

on two feature spaces: F1 (including general features and meteorological

risks extracted from Météo France) and F2 (including general features and

meteorological risks generated by LLMs). The results revealed thatmodels trained

with the F2 feature space consistently demonstrated superior performance.

Notably, annual improvements were observed, particularly for high and very high

intervention activities. However, the use of the F2 space proved less e�ective

for low intervention activities and underperformed compared to F1 during the

summer season. In conclusion, this work presents a concrete methodology

for forecasting and enhancing resource management, accelerating firefighter

response times, and ultimately contributing to life preservation by reducing the

risk of failure during critical incidents.

KEYWORDS

firefighters intervention, feature selection, prediction, XGBoost, Large Language Model

(LLM)

1 Introduction

The use of artificial intelligence to anticipate the needs of emergency services has

become a crucial tool formanaging urgent situations and accurately forecasting operational

requirements. This is particularly important in sectors like environmental protection

and public safety. Enhancing the predictive performance of firefighter interventions and

optimizing resource allocation relies on extracting features for machine learning models

from reliable and precise data sources. This is particularly relevant for meteorological
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risk features, where inaccurate estimations can lead to serious

consequences, such as insufficient resource deployment and

delayed response times. Assessing features extracted from

reliable sources over a nine-year period (2015-2024) to develop

robust predictions presents significant challenges. Using diverse

approaches to identify meteorological risk features, whether

derived from traditional sources such as Météo France or

generated by Large Language Models (LLMs) (Raiaan et al.,

2024), this study aims to evaluate the outcomes from multiple

perspectives. The objective is to select the most effective feature

set for predictive modeling. The objective is to identify the best

feature set for predictive modeling. These approaches facilitate

a thorough comparative analysis and inform decision-making

regarding the most suitable feature extraction method based on

seasonal variations or firefighter activity levels.

Previous research has made significant strides in feature

extraction and selection for prediction tasks across various

domains, including fire intervention management. Recent studies

have taken this further by employing generative AI to identify

relevant features. For instance, Raweh et al. (2018) proposed

a hybrid approach combining feature selection and extraction

to enhance cancer prediction using DNA methylation data,

effectively addressing challenges related to high dimensionality

and noise. Similarly, Malekipirbazari et al. (2021) demonstrated

that randomly reducing the number of instances before feature

reduction could maintain high classification performance while

minimizing data requirements and computational time. On the

other hand, Kabongo et al. (2024) highlighted the critical role of

context selection in improving the accuracy of Large Language

Models (LLMs) for data extraction, outperforming traditional

methods and reducing errors. Additionally, Lin et al. (2024)

introduced an effective method for selecting representative samples

for few-shot fine-tuning of LLMs, achieving enhanced performance

with only 2% of the data and reducing computational costs by 97%.

However, limited research has focused on predicting firefighter

interventions, and no study to date has specifically explored

the application of generative AI, particularly Large Language

Models (LLMs), in this field. For instance, Cerna et al. (2020)

employed machine learning techniques to enhance resilience and

efficiency through optimized firefighter deployment strategies

in France. Similarly, Cerna et al. (2022) proposed leveraging

natural language processing techniques to extract features from

weather bulletins, achieving high accuracy (80-92%) in predicting

intervention peaks caused by rare events. Finally, in relation to the

topic addressed in this paper, Sirri and Guyeux (2024c) assessed

the reliability of predictions concerning firefighter interventions,

aiming to optimize resource utilization and response times. They

also conducted several separate studies analyzing the impact of

specific factors such as air quality, solar activity, river height, and

weather conditions on fire intervention activities, as detailed in Sirri

and Guyeux (2024a), Sirri and Guyeux (2024e), Sirri and Guyeux

(2024d), and Sirri and Guyeux (2024b), respectively.

Our research team is fully committed to this initiative by

adopting an innovative approach: analyzing and evaluating

meteorological risk features using various methodologies,

including extraction from traditional sources such as Météo-

France and data generated by Large Language Models (LLMs).

This analysis is enriched by comprehensive historical datasets,

offering a wealth of information on various aspects of firefighter

interventions. The primary aim of this study is to assess the

impact of feature extraction methods on improving the accuracy of

firefighter intervention predictions. To achieve this, a hypothesis

and its corresponding prediction are presented as part of this

research effort:

• Hypothesis: Integrating meteorological risks generated by

LLMs into predictive modeling provides a superior alternative

to traditional sources (e.g., Météo-France) for optimizing

firefighter intervention predictions.

• Prediction: Models incorporating features generated by LLMs

will outperform those utilizing meteorological risks from

traditional sources regarding predictive accuracy, especially

for high-intervention activities.

To ensure the precision of this study, a well-structured

methodological framework was established, meticulously

adhering to its nuanced details as outlined below. Section 2

provides a comprehensive overview of the methodologies and

materials utilized across the various experiments. The study’s

progression is detailed in Section 3, which carefully presents the

results obtained through this research. Section 4 delves into a

thorough discussion, analyzing the findings in depth to address

the initial research question. This section offers an extensive

evaluation and diagnosis of the outcomes, emphasizing relevant

implications and interpretations. Finally, Section 5 concludes the

study by summarizing key discoveries, highlighting significant

contributions, and proposing avenues for future research. This

methodological framework facilitated a systematic exploration

of generative AI’s capabilities in extracting meteorological risk

features. Through a comprehensive comparison of two approaches

from multiple perspectives, this analysis remained well-organized,

rigorous, and critically focused throughout the investigation.

2 Materials and methods

2.1 Data handling

2.1.1 Sources and data extraction
In this study, the data collection phase played a crucial role. A

comprehensive dataset was used, provided by the Fire and Rescue

Services of Doubs, France. This dataset encompasses 334,536

intervention records spanning from January 1, 2015, to October 31,

2024. Each entry includes details such as start and end timestamps,

location, duration, and type of intervention. To enrich this dataset

with potentially relevant features, variables were collected from

diverse sources.

• General Features: Basic features included school periods,

holidays, solar activity, air quality data, and epidemiological

information. Notably, epidemiological data were collected

on diseases such as influenza, chickenpox, and acute

diarrhea, sourced from the Sentinel Network (Sentinel, 2024).

Astronomical features, including lunar phases, moonrise,
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TABLE 1 Categorization of meteorological risk by alert levels.

Weather risk Green Yellow Orange Red

Wind 76,544 1,204 2,602 0

Precipitations 75,769 1,560 3,021 0

Thunderstorms 72,863 3,853 2,745 889

Snow-ice 79,885 0 465 0

Heatwave 79,061 324 965 0

Extreme cold 80,248 0 102 0

Green indicates no risk, Yellow indicates low risk, Orange indicates high risk, and Red

indicates very high risk.

and distance between the Earth and the Moon, were added

to evaluate their impact on night visibility (Astral, 2024;

Skyfield, 2024). Satellite data from NASA’s VIIRS and MODIS

missions were also integrated, leveraging different wavelengths

and resolutions to assess wildfire propagation in specific

regions (Nasa Viirs, 2024; Nasa Modis, 2024). Calendar-

related features captured details such as holidays, academic

breaks (Ministry of National Education, 2024), and time-

related attributes like hours, days, weeks, months, and years.

Additionally, solar activity metrics, such as sunspot area,

the 10 cm radio flux, and the sunspot count, were included

(Nasa Solar Activity, 2024). Air quality variables, including

fine particles, ozone, and nitrogen oxides, were obtained from

monitoring stations in the region (ATMO-BFC, 2024).

• Meteorological Features: In a second phase, meteorological

vigilance bulletins from Météo France covering the Doubs

region were included. These reports detailed various weather

risks with assigned color codes and included textual bulletins

to enhance the overall meteorological understanding (refer to

Table 1, Figure 1) (Vigilance-France, 2024).

The complete dataset was systematically enriched, integrating

firefighter intervention data with these diverse features from

multiple sources (refer to Table 2). This comprehensive dictionary

serves as a robust foundation for the analysis conducted in this

study.

2.1.2 Data refinement and processing
To optimize the input data for the machine learning

model, several pre-processing techniques were applied. First, the

“StandardScaler” technique from the Scikit-learn library Pedregosa

et al. (2011) was employed to normalize numerical variables. This

method adjusts the data distribution to achieve a mean of zero

and a unit variance, ensuring consistent scaling across variables.

The normalized features included the year, time of day, and

statistics for diseases such as chickenpox, influenza, acute diarrhea,

and the Earth-Moon distance. In addition, the TargetEncoder

technique (Target-Encoder, 2024) was applied to encode categorical

variables. This approach replaces each category with the mean

of the corresponding target variable. Features such as the day

of the week, year, month, and public holidays were encoded

using this method. Additionally, meteorological risk features were

enriched by employing OpenAI’s large language model (LLM).

The LLM was solicited through a specific prompt designed to

analyze weather vigilance bulletins and extract structured color-

coded risk information. Specifically, the implementation leveraged

the LangChain framework to send prompts such as: “According

to the weather warning bulletin text, what is the risk of firefighter

intervention (very high risk: [3, Red], high: [2, Orange], medium:

[1, Yellow], no risk: [0, Green])?” Based on textual descriptions of

weather warnings (see example in Figure 1), the LLM generated

responses in JSON format, for example: “color code”: 2, “color

label”: “Orange”. These outputs were used to populate the

meteorological risk feature in the dataset. The integration of

these AI-generated features significantly enhanced the dataset by

providing additional, highly relevant variables (refer to Figure 2).

To facilitate effective classification, the original target variable

representing the number of emergency interventions was

transformed into an ordinal qualitative scale ranging from 0 to 3,

based on percentile thresholds:

• 0: Low intervention activity

• 1: Moderate intervention activity

• 2: High intervention activity

• 3: Very high intervention activity

The percentile thresholds were determined to ensure a balanced

distribution of cases across the categories, allowing for better model

discrimination and interpretability. Specifically, these thresholds

were derived from the dataset’s distribution of intervention counts,

ensuring that each category reflects a meaningful and distinct

level of activity. The relevance of these thresholds is rooted in

their alignment with operational needs, where different risk levels

correspond to actionable thresholds for resource allocation in

emergency response scenarios.

2.1.3 Exploratory data insights
A thorough analysis of the dataset, extracted from multiple

sources, is crucial to uncover relevant observations that can provide

insights for this research. On average, 32,000 fire intervention

events are recorded annually, equating to more than four

interventions per hour. It was observed that the number of

interventions has been consistently increasing each year due to

various factors such as demographic aging, significant population

growth, the effects of climate change, and the closure of small

hospitals.

In this study, the analysis of meteorological risks played a

vital role in identifying and optimizing key features for predicting

firefighter interventions. For instance, Figures 3A, B illustrate the

distribution of storm risks from Météo France compared to those

generated by the Large Language Model (LLM). It is evident that

the risk levels from Météo France are largely aligned with those of

the LLM, which shows more dispersed values. This discrepancy is

likely due to the fact that Météo France uses calibrated thresholds

based on meteorological expertise, while the LLM-derived risks

are based on text analysis, leading to a wider variability due to

linguistic nuances and the absence of direct calibration. Also, it is

clear that the dominance of low-risk for both Météo-France and

LLM sources confirms that such scenarios are the most prevalent
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FIGURE 1

Example of a weather alert bulletin (in French).

TABLE 2 Distribution of variables across feature families.

Family of features Number of variables

Calendar 9

Temporal 6

Holidays and academic breaks 8

Epidemiological 4

Astronomical 8

Solar activity 12

Air quality 11

Earth images 2

Meteorological 6

in the dataset. Additionally, a correlation analysis was performed

to evaluate the relationship between meteorological risk features

and firefighter activity levels. The results revealed no significant

correlation between the meteorological risk levels (from either

Météo-France or the LLM) and the intervention activity levels.

This lack of correlation suggests that while meteorological risks

are valuable for understanding context, they may not directly

influence the intensity of firefighting activities without the inclusion

of additional situational variables. Furthermore, Figure 4 visualizes

the average storm risks fromMétéo-France and those derived from

the LLM in relation to firefighter activity. While both sources

exhibit a similar trend, Météo-France’s risks are slightly lower on

average, reflecting its standardized andmore conservative approach

to risk evaluation. In contrast, the LLM’s broader range of values

indicates its sensitivity to the diversity of textual expressions in the

input data.

Feature importance analysis using XGBoost further

substantiated these findings. Features such as storms, wind, snow,

and extreme cold derived from the LLM source were shown to have

higher importance compared to their Météo-France counterparts,

potentially due to the nuanced information encoded in textual

risk descriptions. Conversely, heatwaves and precipitation from

Météo-France were identified as more impactful, likely reflecting

the strength of standardized meteorological assessments in these

specific contexts.

In conclusion, while exploratory data analysis revealed that

low-risk levels dominate the dataset and that meteorological risks

from both sources lack direct correlation with firefighter activity,

their inclusion remains valuable. They provide essential contextual

features that complement other predictors, thereby enhancing the

overall performance of the predictive models.

2.2 Feature engineering and predictive
models

2.2.1 Feature engineering
Traditionally, all features in a dataset are included during

model training, assuming each feature significantly contributes

to building an optimal model. However, including all features

has significant drawbacks. Some may exhibit strong correlations

with others, while some may have limited usefulness. This

can lead to suboptimal generalization or the inclusion of

redundant information. Additionally, using all features can

increase computational time without necessarily improving model

performance (Garreta and Moncecchi, 2013). Therefore, selecting

a limited or optimized set of features can improve model

performance. In this study, the “feature importance” technique

was employed, which assigns a score to each variable based on its
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FIGURE 2

Integration of AI-Driven features for enriching meteorological risk data.

FIGURE 3

Intervention activity distribution across storm risk levels. (A) Storm risk levels from Météo Fr. (B) Storm risk levels from LLM.

FIGURE 4

Average storm risk levels: Météo France vs. LLM by intervention activity.
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FIGURE 5

Top 14 feature importance based on combined methodologies.

relevance to the target variable (Zien et al., 2009). However, this

technique was applied only to the general features. Meteorological

risk features were analyzed separately in two feature spaces:

• F1: General features + Météo-France risk features.

• F2: General features + LLM-generated risk features.

This study used the following feature selection techniques:

1. Pearson and Kendall Correlation Coefficients: features with an

absolute correlation of 0.4 or less with the target variable were

excluded.

2. Chi-Square selector: the Chi-Square test was used to evaluate the

dependency between each feature and the target variable, and

then select the top “K” best variables.

3. Light Gradient Boosting model [LightGBM (Ke et al., 2017)]:

this model was employed with specified hyperparameters

(learning rate = 0.1, objective = regression, metric = RMSE,

number of leaves = 29, maximum depth = 9, and number of

estimators = 120,000). Early stopping was implemented after 10

iterations.

The final feature selection process produced a coherent set of

features, emphasizing those identified as important across most

methodologies and those with high scores. Figure 5 presents the top

14 features with the highest combined importance scores derived

from the three methodologies.

2.2.2 Predictive models
To achieve meaningful results, three models were selected:

Random Forest (RF) (Breiman, 2001), Extreme Gradient Boosting

(XGBoost) model (Chen and Guestrin, 2016), and Support Vector

Machine (SVM) (Cortes, 1995). These models were chosen for

their robustness, ability to handle complex datasets, andwidespread

use in classification problems. The combination of these models

leverages their complementary strengths: XGBoost for capturing

complex relationships, Random Forest for its resistance to noise,

and SVM for its precision on well-separated data.

1. Random Forest (RF): Random Forest is an ensemble learning

method that combines multiple decision trees, each trained

on random samples of the dataset. The final prediction is the

average (for regression) or the majority vote (for classification)

of all trees, reducing the risk of overfitting. Random Forest

is particularly effective for handling categorical variables and

provides reliable estimates of feature importance (Equation 1).

ŷi =
1

K

K
∑

k=1

fk(xi) (1)

ŷi represents the predicted value for observation i.

K is the total number of trees in the ensemble of random

forest.

fk denotes the function of the k-th tree.

Xi is the feature vector for observation i.

2. EXtreme Gradient Boosting (XGBoost): XGBoost is an

optimized implementation of gradient boosting that builds

decision trees sequentially, minimizing a specified loss function

at each step. It incorporates regularization techniques to prevent

overfitting and is particularly effective at capturing non-linear
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TABLE 3 Settings hyperparameters.

Hyperparameter XGBoost Random
forest

Support
vector

machine

max_depth [2, 17] [2, 17] –

min_child_weight [1, 100] – –

n_estimators [100, 10,000] [100, 10,000] –

colsample_bytree [0.3, 1.0] – –

learning_rate [0.001, 0.3] – –

criterion – [“gini”, “entropy”] –

kernel – – [“rbf”, “sigmoid”]

C (regularization) – – [0.01, 10]

gamma (kernel) – – [0.001, 1.0]

class_weight – [“balanced”, None] [“balanced”, None]

relationships and handling imbalanced datasets (Chen and

Guestrin, 2016) (Equation 2).

ŷi =

K
∑

k=1

fk(xi), fk ∈ F (2)

ŷi represents the predicted value for observation i.

K is the total number of trees in the ensemble.

fk denotes the function of the k-th tree.

Xi is the feature vector for observation i.

F is the set of learned decision trees.

3. Support Vector Machine (SVM): SVM aims to find the optimal

hyperplane that separates data points of different classes while

maximizing the margin between them. By employing kernel

functions, SVM can map the data into higher-dimensional

spaces to handle non-linear separability effectively (Equation 3).

ŷi = sign





n
∑

j=1

αjyjK(xi, xj)+ b



 (3)

ŷi represents the predicted value for observation i.

αj are the coefficients associated with the support vectors.

yj is the class label for observation j.

K(xi, xj) is the kernel function evaluated between

observations i and j.

b is the bias term.

n is the total number of support vectors.

2.3 Proposed approach for predictive
modeling and risk assessment

Following the feature selection phase described in the previous

section, the extracted feature sets were used across the selected

machine learning models. The dataset was partitioned into

three subsets: 20% allocated to the test set and 80% to the

training-validation set. Following an adjustment, the training-

validation subset was further split, with 80% used for training

and 20% for validation, ensuring that model performance was

validated on unseen data. To enhance the model results, Bayesian

optimization was employed using the Optuna library (Optuna,

2024), which efficiently explores the hyperparameter space to

identify optimal combinations for each model (see Table 3).

Additionally, an early stopping mechanism with a parameter

“early_stopping_rounds=15” was implemented for all models,

halting training if no improvement was observed after 15 iterations,

thus preventing overfitting. To further evaluate the robustness and

generalization capabilities of the models, a k-fold cross-validation

approach was implemented. Specifically, a 5-fold cross-validation

was employed, dividing the dataset into five subsets of equal size.

Eachmodel was trained on four subsets and tested on the remaining

one, with the process repeated five times. The results from each fold

were averaged to provide a comprehensive assessment of model

stability and performance across different data splits. This approach

mitigates the risk of overfitting and ensures that the findings

are not biased by a particular train-test split. Cross-validation

metrics, including precision (Equation 4), recall (Equation 5), F1-

score (Equation 6), and the area under the ROC curve (AUC)

(Equation 7), were calculated for each fold, further strengthening

the reliability of the results.

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1− score =
2× Precision× Recall

Precision+ Recall
(6)

AUC =

∫ 1

0
TPR(fpr)dfpr (7)

To assess the impact of meteorological risk features from

Météo-France and those derived from the large language model

(LLM), the methodology was executed in two distinct stages.

Initially, the analysis included F1 Space: General features combined

with risk levels from Météo-France, followed by F2 Space: General

features combined with risk levels derived from the LLM. This

two-step approach facilitated a comprehensive comparison of the

predictive capabilities of the different feature sets in forecasting

firefighter intervention activity. By incorporating cross-validation

into the evaluation pipeline, this study ensures a more robust and

reliable assessment of themodels, enhancing the confidence in their

generalizability and the conclusions drawn from the comparative

analysis.

3 Results

In this study, the collection, processing, and compilation of

a comprehensive dataset from various past intervention sources

was time-consuming and required substantial effort. Particular
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attention was focused on meteorological risks, which were either

derived from data provided by Météo-France or generated using

the LLM, to ensure realistic and reliable results.

Following the training of the selected models and evaluation

of their results, the outcomes were presented from various

perspectives, ready for in-depth analysis in subsequent sections.

Table 4 highlights the predictive performances of each model,

focusing on the metrics described in the previous section, for

the classification of firefighting activities based on the two feature

spaces under study [F1, F2].

All models trained with F2 feature space showed reduced

prediction errors and overall better performance compared to

those trained with F1. The incorporation of cross-validation

further reinforced these findings, confirming the stability of the

performance improvement associated with the F2 feature space.

Figures 6, 7 respectively illustrate the monthly mean prediction

errors and the annual F1-score performance for the various models

trained with either F1 or F2 feature spaces. Additionally, Figure 8

provides clear evidence on the AUC performance that model

XGBoost trained on F2 feature space outperformed those trained

on F1 in predicting high and very high firefighter activity levels.

TABLE 4 Prediction results for all models based on feature spaces F1 and

F2.

Model Input Precision Recall F1-score AUC

XGBoost F1 0.74 0.76 0.72 0.85

F2 0.74 0.75 0.79 0.91

Random forest F1 0.73 0.72 0.69 0.82

F2 0.75 0.73 0.76 0.89

Support vector

machine

F1 0.70 0.71 0.67 0.80

F2 0.71 0.71 0.74 0.86

Bold indicates best score by metric.

However, for medium activity levels, the performance showed no

significant differences, and both feature spaces produced similar

results for low activity levels.

Finally, Table 5 presents the optimized hyperparameters for

each model, obtained through the Optuna framework. These

parameters, combined with cross-validation, were crucial in

enabling each model to achieve its best predictive performance

while ensuring the stability and reliability of the results.

4 Discussion

This study aimed to evaluate meteorological risk features

derived either from Météo-France or generated using a Large

Language Model (LLM) to improve predictions of firefighting

interventions over the nine-year period (2015–2024). To achieve

this, a detailed methodology was used, involving thorough

data preparation, advanced analysis for informed decision-

making, and feature selection. Initially, a general set of features

was identified using various statistical and machine learning

techniques. Subsequently, a second subset of features, focused

on meteorological risks either derived from Météo-France or

generated by LLM, was extracted, resulting in two feature spaces: F1

and F2. To ensure meaningful and valuable results, three machine

learning models [XGBoost, Random Forest, and Support Vector

Machine (SVM)] were implemented to evaluate the predictive value

of meteorological risk features.

The results demonstrated that models trained on feature space

F2, which includes general features combined with meteorological

risk features generated by LLM, outperformed others in terms

of accuracy and reliability. In particular, XGBoost achieved

the highest performance, with an F1-score of 0.79 and an

AUC of 0.91 (see Table 4). Furthermore, the performance of

this model showed consistent improvement year over year (see

Figure 6). This trend suggests that meteorological risks generated

by LLM may capture nuanced patterns, likely due to the

FIGURE 6

F1-score performance by year for all models (F1 vs. F2).
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FIGURE 7

Average prediction errors by month for all models (F1 vs. F2).

FIGURE 8

AUC performance by activity over the years.

model’s text-based analysis, which is capable of interpreting

alarmist or descriptive information. However, this advantage

could also reflect greater variability stemming from linguistic

subtleties and the absence of direct calibration. A deeper

analysis of monthly prediction errors revealed that, although

models trained on feature space F2 generally performed better,

they underperformed during the summer months compared

to those using F1 (see Figure 7). This finding suggests that
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TABLE 5 Best hyperparameters.

Hyperparameter XGBoost
[F1,F2]

Random
forest
[F1,F2]

Support
vector

machine
[F1,F2]

max_depth [5, 2] [17, 15] –

min_child_weight [10, 9] – –

n_estimators 1,000 [500, 490] –

colsample_bytree [0.8, 0.7] – –

learning_rate 0.1 – –

criterion – “gini” –

kernel – – “rbf”

C (regularization) – – [1, 2]

gamma (kernel) – – [0.01, 0.03]

class_weight – “balanced” “balanced”

operational teams should focus on season-specific feature analysis

in future studies. This discrepancy could arise due to limitations

in the LLM’s training data, which may not comprehensively

capture seasonal dynamics or low-activity scenarios. Furthermore,

the reliance on descriptive prompts may amplify this gap,

emphasizing the need for seasonal calibration and prompt

refinement. Additionally, F2 inclusion significantly improved

predictions for high and very high activity levels. However, for

low activity levels, there was little difference between the two

feature spaces (see Figure 8). This observation indicates that

the detailed textual nature of LLM-generated risk scores might

provide reliable insights, particularly for higher-risk scenarios.

In contrast, further exploration of weak activity scenarios

is warranted.

It is essential to highlight that the LLM’s effectiveness depends

on the quality of its training data and prompt design. While

the study leveraged robust datasets, the validation mechanisms

for LLM-generated features remain an area requiring further

exploration. Ensuring reliability in critical contexts demands

rigorous evaluation protocols, which were not exhaustively

discussed in this work. Addressing these aspects would enhance

the credibility and operational applicability of such models.

From a practical perspective, incorporating cost analysis

reveals additional benefits. LLM-based models, despite their

computational demands, offer relatively low operational costs

when compared to alternative high-resolution meteorological

data sources. Moreover, their deployment could lead to more

efficient resource allocation, ensuring faster response times

and mitigating severe consequences, such as property damage

or loss of life, especially in high-risk scenarios. This cost-

effectiveness, coupled with improved urgency identification,

makes them a valuable tool for firefighting operations. To

make the study’s findings more tangible, examples of practical

impact could include scenarios such as the faster containment

of wildfires due to earlier resource deployment or the improved

management of simultaneous incidents during peak seasons.

These cases underscore the operational significance of integrating

LLM-generated features.

Feature analysis is crucial for enhancing operational efficiency

in fire intervention planning. A reliable predictive model would

enable fire services to better anticipate resource needs, optimize

operational logistics, and reduce response times, ultimately

improving emergency management, safeguarding lives, and

minimizing property damage. However, this study acknowledges

certain limitations of applying LLMs in meteorological contexts.

These include a reliance on textual data, which can introduce

inconsistencies depending on the dataset quality and lack of

standardized calibration across different contexts. Furthermore,

while LLM-generated features provide valuable insights, their

integration into predictive models requires additional validation

to ensure robustness. Future research should address these

challenges and explore avenues formore comprehensive calibration

methods tailored to diverse meteorological datasets. As suggested,

incorporating neural networks into the predictive modeling

framework, such as multi-layer perceptrons (MLPs) or radial

basis function networks (RBFNs), could provide more advanced

capabilities. These methods would enable the integration of

structured and unstructured data, enhancing the overall accuracy

and flexibility of predictions. However, such neural network-

based implementations are outside the scope of this study

and remain a promising direction for future work. These

advanced techniques would complement the existing findings

and provide a deeper understanding of the synergy between

LLMs and deep learning methods in fire risk assessment and

operational planning.

In conclusion, the findings highlight the added

value of integrating LLM-generated features into feature

analysis, emphasizing the need to tailor approaches to

specific scenarios to minimize losses. However, to achieve

greater precision and optimization, further research

is required. This includes exploring other LLM-based

solutions, such as integrating media data for comparative

analysis and leveraging deep learning techniques to

enhance outcomes.

5 Conclusion

This study provides an in-depth analysis to enhance feature

selection with a novel approach, optimizing the prediction

performance of firefighter intervention activities. It leverages

generative AI to extract relevant and optimal meteorological

risk information. Using a comprehensive nine-year dataset

from SDIS 25 in the Doubs region, France, this research

tackles the integration of LLMs into feature generation and

evaluates their strengths from multiple perspectives. The

findings indicate that models trained on the F2 feature space,

which combines general features with meteorological risk

scores generated by LLMs, showed superior performance,

especially for high and very high intervention activities.

However, these models were less effective during the summer

season and for low-activity scenarios. This insight could help

operational personnel adopt this approach selectively under

specific conditions.
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As part of ongoing research efforts, a deeper exploration

of media-based data is planned to enhance LLM-extracted

feature sets. This will involve investigating alternative prediction

perspectives and solutions. The primary objective remains

to enhance predictive capabilities and optimize resource

allocation by extracting the most relevant features for efficient

firefighting interventions.
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