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Optimizing building energy consumption holds significant untapped potential, 
particularly in a developing economy such as India. Existing solutions have yet to 
concentrate on a methodology that is cost-effective, small-scale, precise, and 
open source data-driven. In response, we have implemented an automated, DL-
enabled approach to predict energy consumption with the goal to enable cost 
and schedule optimization. For two years from December 2021 to December 
2023 the energy consumption and twenty seven associated energy parameters 
was monitored by developing an IoT enabled BEMS. The data collected was 
preprocessed, cleaned, transformed and used for training a machine learning 
model. Based on the previous literature, a hybrid DL model was developed using 
artificial neural networks and fuzzy logic by integrating fuzzy layers in the deep 
neural architecture. The collected electrical data was used for training, hyper-
parameter tuning and testing the hybrid DL model. The proposed model when 
tested for out-of-sample dataset had comparable results on error and performance 
metrics as compared to other states of the art models. On deployment in the 
premises of a university, the BEMS achieved a reduction in the electricity bill of 
20% highlighting its effectiveness and efficacy.
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1 Introduction

Buildings account for 33% of the final energy usage and contributing to 40% of both direct 
and indirect CO2 emissions worldwide (Nabavi et al., 2021). This makes monitoring electricity 
consumption and the cost and task optimization, a crucial focus area in energy management 
and conservation (Abu-Shikhah et al., 2011). Cost and task optimization involves organizing 
the high energy consuming activities during off-peak hours. It also involves fixing the voltage, 
current, apparent power and phase parameters to their optimal values to achieve energy 
savings. Numerous studies have investigated the implementation of Arduino Uno for 
monitoring electricity consumption for cost and task optimization (Adepoju et al., 2007). 
There has been a notable increase in interest toward employing data science along with 
machine learning (ML) and DL techniques, including supervised and unsupervised 
methodologies, to optimize consumption patterns of micro, small, and medium enterprises 
(MSME) (Liu et al., 2019). Electricity optimization systems are advantageous because they 
deliver real-time data on energy usage, thereby enhancing energy efficiency and reducing 
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costs. Predominantly, low-cost Arduino-based systems are utilized to 
incorporate energy sensors to measure electrical appliances’ current 
and voltage (Al-Anbuky and Bataineh, 1995). These sensors relay data 
to the Arduino Uno, which then computes power consumption and 
transmits the relevant information to a centralized monitoring unit 
(Moutaib et al., 2022). However, the primary limitations are associated 
with the Arduino Uno’s lifespan, heat tolerance, lack of wireless 
capabilities, and limited memory and processing power. These factors 
constrain its widespread adoption at the MSME level (Amjady, 2002).

Nevertheless, certain impediments obstruct research progress 
in this domain. These include the protracted nature of ground-level 
data collection (sometimes extending up to multiple years), 
restricted access to enterprise infrastructure due to privacy and 
security issues, the initial investment in hardware (routers, 
microcontrollers, modems, gateways and cloud services), the 
unpredictability of research results, and the requirement for 
ongoing monitoring. Consequently, research groups often exhibit 
reluctance to undertake studies in the electricity 
disaggregation field.

Most research in this area focuses on preventing electricity theft, 
with a few significant exceptions targeting energy consumption 
optimization in wireless sensor networks (WSN) (Elashry et al., 2024). 
Various methodologies are deployed for predictive tasks across 
different fields. These methodologies are generally evaluated on the 
basis of two main criteria: implementation ease and result accuracy. 
They can be  broadly categorized into mathematical and artificial 
intelligence-based methods. Mathematical approaches include 
techniques such as regression analysis and exponential smoothing 
[Madhav and Sunil, 2022], while artificial intelligence methods 
encompass ANNs, knowledge-based expert systems, and fuzzy logic 
(Okolobah and Ismail, 2013). One approach to boost predictive 
accuracy is to combine multiple methodologies, leveraging the 
strengths of each to counterbalance any weaknesses (Montgomery 
et al., 1990). The effective application of these predictive methods 
crucially depends on the availability of historical data, which forms 
the foundation for forecasting future trends (Liu et al., 2019).

The following are the primary contributions of this paper: the 
research involves data collection from the Pimpri Chinchwad College 
of Engineering and Research (PCCoER), Pune, India, over a two-year 
surveillance period. The collected data includes various characteristics 
not previously integrated at this scale into predictive analytics. The 
methods’ effectiveness was assessed using statistical metrics (Yildiz 
et al., 2017; Saravanan et al., 2012).

 • Collect and preprocess electricity consumption data from a 
university campus over 2 years. Data was collected continuously 
24/7 at one-minute intervals, recording several parameters 
related to electricity consumption in a cloud database. These 
parameters, identified through existing literature, include energy, 
frequency, power, apparent power, current, and volt-ampere 
hours. To the best of our knowledge, this is the most extensive 
data collection effort in a university setting in India.

 • Analyze the data to discover patterns and trends in electricity 
consumption throughout the day. The intent is to understand 
the relationships between the parameters and validate their 
theoretical connections. Moreover, preprocessing will 
identify data collection anomalies and apply necessary 
data transformations.

 • Develop DL models to predict electricity consumption based on 
the time of day, weather conditions, and other pertinent factors. 
These models aim to determine which independent variables are 
most predictive of the dependent variable, energy consumption. 
The most suitable DL model is selected based on evaluation 
against other state-of-the-art models.

 • Implement cost and load optimization strategies based on the DL 
models with a view to reduce the energy costs of the infrastructure 
by scheduling high energy consuming activities during off-peak 
hours. Assess the effectiveness of optimized strategies in reducing 
energy consumption and costs.

Following an extensive literature review, this work is among the 
first practical studies on electricity consumption using an IoT setup in 
Indian context (Adepoju et al., 2007; Amjady, 2002). The experiments 
and data collection were conducted using open-source tools and 
costeffective hardware, making it feasible for shop floor deployment 
by interested parties. While there have been efforts in Western and 
Southeast Asian countries to map energy consumption and optimize 
cost and load, our work differs from these studies. Further, the ever-
evolving technological landscape, necessitates an updated study in 
this domain.

The paper is organized as follows: Section 2 provides an overview 
of the previous literature and state-of-the-art in IoT-based automated 
electricity consumption monitoring. Section 3 details the data 
collection, mathematical model, data preprocessing, feature 
description, and experimental setup. The experimental results are 
discussed in Section 4, followed by the conclusion and future research 
directions in Section 5.

2 Related works

The review explores the advantages and disadvantages of current 
research in the field of electricity consumption reducing using cost 
and load optimization. The papers covers non-intrusive and intrusive 
consumption monitoring at various levels, including building, grid, 
and cloud environments in this section. Both non-intrusive and 
intrusive approaches offer different benefits and drawbacks. Intrusive 
load monitoring methods require numerous dedicated sensors 
installed on individual appliances to gather their power consumption 
data. In contrast, non-intrusive load monitoring (NILM) necessitates 
a single measurement at the main power service entry, effectively 
allowing for power load monitoring and identification with fewer 
resources (Yang et al., 2020). The key benefit of intrusive systems is 
their device-level measurement precision, whereas NILM boasts lower 
installation and maintenance costs and better consumer acceptance in 
terms of privacy and convenience.

Kim et al. (2019) aimed to detect non-technical losses resulting 
from meter manipulation or malfunctioning by leveraging Arduino 
Uno for monitoring electric consumption in residential buildings. 
They built a smart metering system using Arduino Uno and validated 
it in a residential setting. The system accurately measured and 
monitored different household appliances’ electricity consumption. 
However, implementing the system demands substantial investment 
due to its multi-tier architecture. Ibrahem et al. (2020) made a similar 
attempt at load monitoring to mitigate electricity theft by using 
Arduino Uno in commercial buildings. They developed a system 
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integrating Arduino Uno with energy meters to track and analyze 
electricity use across various devices. This approach also entails a 
multi-tier architecture, making it costly and less suitable for small or 
medium-sized businesses. Both studies (Kim et al., 2019; Ibrahem 
et al., 2020) emphasize the significance of employing data science 
techniques like ML and DL for identifying trends in temporal data.

While not directly related to energy consumption monitoring in 
MSMEs, Bicici (2024) introduced an application called Cloud Monitor 
aimed at reducing cloud environment energy consumption. The 
author proposed a linear programming optimization strategy for 
managing cloud loads to decrease energy use, although the results 
were derived from simulations rather than real-world environments. 
Hannan et al. (2018) conducted a comprehensive review of BEMS and 
discussed challenges like data loss and network issues. They advocated 
for BEMS that are energy-efficient, cost-effective, easy to install, and 
tamper-proof—all critical factors considered in the current 
research architecture.

Researchers have conflicting opinions on the impact of BEMS on 
energy consumption. Previous studies have shown feedback can drive 
short-term energy savings, but Alahmad et al. (2011) found in a US 
survey that BEMS feedback did not significantly translate to energy 
savings. Martınez-Sanchez et al. (2023) demonstrated how energy 
savings can enhance profitability for an MSME and contribute to 
sustainable development goals (SDGs). Given these findings, we chose 
PCCoER as our target institution where energy monitoring was 
previously non-existent. Savings in energy consumption here would 
directly benefit students via reduced tuition fees. Our data-driven 
approach is similar to the work of Kang et al. (2020), with the main 
difference being our focus on BEMS, whereas they focused on specific 
machines. The methodology proposed by Zhuang et al. (2024) for data 
collection, preprocessing, and ML pipeline for electricity consumption 
forecasting was also influential. Additionally, Zhang et  al. (2024) 
proposed a cloud-fog cooperation scheduling algorithm to optimize 
energy use and delay functions in cloud environments.

We reviewed approaches and technologies suggested for energy 
grid monitoring (Atalik et al., 2013; Blair et al., 2016). Although these 
methods are designed for larger infrastructures and not directly 
applicable to BEMS, the power quality parameters highlighted were 
beneficial for our feature engineering. Our work emphasizes BEMS 
exclusively, thus excluding issues of security and malware attacks, 
which are covered in the work of (Jiang et  al., 2018). For those 
interested in case studies on electricity consumption monitoring in 
smart grids, Janthong et al. (2023) provides a relevant case study.

The studies collectively indicate the significant role of DL in data 
analysis and inference. The limitations of existing methods can 
be summarized as follows:

 • High cost and scarce open-source techniques
 • Limited applicability to small-scale buildings
 • Inadequate use of data-driven methodologies

Neuro-fuzzy systems, an evolutionary integration of neural 
networks and fuzzy logic, bring a unique approach to the ML/DL 
landscape. These systems utilize the learning capabilities of neural 
networks and the human-like reasoning style of fuzzy logic. Neuro-
fuzzy models, such as Adaptive Neuro-Fuzzy Inference Systems 
(ANFIS), are advantageous for handling uncertainty and imprecise 
information, offering good interpretability and robustness.

However, neuro-fuzzy systems have their own limitations. They 
can become computationally expensive, especially as the complexity 
of the fuzzy rule base increases. Additionally, creating an optimal 
fuzzy rule set and membership functions often requires expert domain 
knowledge, making them less flexible than purely data-driven 
approaches like deep learning. Despite these drawbacks, neuro-fuzzy 
systems play a crucial role in applications where interpretability and 
dealing with ambiguity are essential, situating themselves effectively 
in the broader ML/DL ecosystem.

3 Proposed hybrid DL-IoT BEMS

The workflow of the procedure is the illustrated in Figure 1 with 
all the steps for implementation of the IoT BEMS. This study presents 
a structured workflow for an IoT-based Building Energy Management 
System (BEMS) with an integrated energy optimization mechanism 
utilizing a Neuro-fuzzy system and L-BFGS optimization. The 
proposed framework encompasses data acquisition, preprocessing, 
modeling, and optimization, leading to enhanced energy efficiency in 
smart buildings. The study aims to improve energy consumption 
patterns through predictive modeling and real-time optimization 
(Figure 2).

3.1 Data collection

To monitor electricity consumption, a comprehensive data 
collection setup was established, which included the installation of a 
multifunction meter, a Raspberry Pi 3B, a USB connector, a GSM 
(WiFi) modem, and a current transformer (Figures 3–10).

FIGURE 1

IoT BEMS workflow.
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The USB connector (Figure 8) consolidates the data from the 
meter and transmits it to the Raspberry Pi via USB. The data collection 
system consistently monitored various parameters related to electricity 
consumption at one-minute intervals. The project commenced on 
December 30, 2021, at 17:38:00 and continued until December 4, 
2023, at 04:49:00.

The Raspberry Pi (Figure 6) serves as a microcontroller that 
manages the storage, retrieval, and uploading of data to Dropbox 
(a cloud storage service) using an internet connection. An internet 
connection is provided to the Raspberry Pi through the Wifi 
modem that operates with a SIM card. The function of the current 
transformer is to lower the current value for a specified voltage, 
which facilitates simpler power calculations. However, the heat 
generated within the main supply line caused the Raspberry Pi’s 
battery to swell, ultimately shortening its lifespan. This resulted in 
three instances during the data collection phase where the battery 

FIGURE 2

System architecture for DL based BEMS.

FIGURE 3

Multifunction meter.

FIGURE 4

Multifunction meter.

FIGURE 5

Wired connection multifunction meter.
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depleted, causing interruptions and resulting in a total loss of 
50 min of data.

3.2 Data analysis and system 
implementation

Data analysis and DL modeling were conducted using Visual 
Studio Code on a laptop equipped with an Intel(R) Core(TM) 
i5-1035G1 CPU operating at 1.00GHz with a maximum frequency 
of 1.19 GHz, featuring a 64-bit operating system, a 64-bit 

processor, 8.00 GB of RAM, and running Windows 11 Home 
Single Language. The electricity parameters recorded during the 
monitoring included:

 • Timestamp: the exact date and time when the data entry 
was made.

 • Slave ID: unique identifier assigned to a device or sensor 
reporting the data.

 • Total Power (Ptot): the comprehensive power consumption 
measured in watts.

 • Power Phase R: the power usage in the Red (R) phase.

FIGURE 6

Raspberry pi.

FIGURE 7

Current transformer to main line.

FIGURE 8

USB connector and Wifi modem.

FIGURE 9

Power Discom main supply line.
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FIGURE 11

Hybrid neuro-fuzzy DL model.

 • Power Phase Y: the energy consumed in the Yellow (Y) phase.
 • Power Phase B: the power usage in the Blue (B) phase.
 • Power Factor Total (PFa): the overall power factor, indicating 

how effectively the power is utilized.
 • Power Factor R: the power factor specific to the R phase.
 • Power Factor Y: the power factor associated with the Y phase.
 • Power Factor B: the power factor corresponding to the B phase, 

where a value close to 1 or 100% indicates an efficient conversion 
of electrical power to usable work.

 • Apparent Power Total (St): the total apparent power across all 
phases, typically measured in volt-amperes (VA).

 • Apparent Power R (Sr): apparent power within the R phase.
 • Apparent Power Y (Sy): apparent power in the Y phase.
 • Apparent Power B (Sb): apparent power measured in the B phase.
 • Line Voltage Average (VLa): average voltage recorded across 

all phases.
 • Voltage R to Y (Vry): voltage recorded between the R and 

Y phases.
 • Voltage Y to B (Vyb): voltage measured between the Y and 

B phases.
 • Voltage B to R (Vbr): voltage recorded between the B and 

R phases.
 • Voltage Average (Va): average voltage calculated for each phase.
 • Voltage R (Vr): voltage specific to the R phase.
 • Voltage Y (Vy): voltage specific to the Y phase.
 • Voltage B (Vb): voltage specific to the B phase.
 • Current Total (It): total current drawn across all phases, reported 

in amperes (A).
 • Current R (Ir): current level recorded in the R phase.
 • Current Y (Iy): current level recorded in the Y phase.
 • Current B (Ib): current level recorded in the B phase.
 • Frequency: the frequency of the alternating current (AC) power 

supply, typically measured in hertz (Hz), usually around 50 
or 60 Hz.

 • Energy: total energy consumption measured in kilowatt-hours 
(kWh), recognizing energy usage over a specified period.

 • Volt-amperes hour (Vah): this measures apparent power usage 
over time, akin to kWh but reflects total apparent power rather 
than merely real power.

Analysis of the collected data revealed a seasonal trend in 
electricity consumption that peaks in January and declines in May, 
followed by another increase from July through November/
December. This fluctuation in consumption is attributed to the 
two academic semesters: July to December and January to June. 
The pattern indicates that energy consumption correspondingly 
rises with academic activities, gradually increasing at the 
beginning of each semester as labs and computer systems come 
into operation. Typically, electricity usage escalates post 9 AM 
when campus facilities open and decreases around 6 PM when 
operations cease. Data collection was conducted up until 
October 2023.

3.3 Hybrid neuro-fuzzy DL model

The Hybrid DL-IoT BEMS backbone was built with a hybrid 
Neuro-fuzzy DL model. The hybrid Neuro-fuzzy DL model includes 
a custom Fuzzy Layer, a hidden layer, and an output layer (Figure 11).

It takes energy parameters as input and predicts energy output as 
follows. Let X ∈ RN × 2 be the input matrix, where N is the number of 
samples, and each sample contains two energy parameters, x1 and x2. 
The model is composed of the following layers:

Fuzzy Layer: This layer performs a fuzzy transformation on the 
input. It can be described by the following equation:

 ( )Z X·W fσ=

Where Wf ∈ R2 × M is the weight matrix of the Fuzzy Layer (with 
M being the number of output neurons in this layer), and σ represents 
the sigmoid activation function applied element-wise.

Hidden Layer(s): The output from the Fuzzy Layer is then 
processed by a fully connected hidden layer(s), where the activation 
function is ReLU (Rectified Linear Unit):

FIGURE 10

Current transformer.
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 ( )H ReLU Z·W bh h= +

Where Wh ∈ RM × P is the weight matrix of the hidden layer, P is 
the number of neurons in this layer, and bh is the bias vector for the 
hidden layer.

Output layer: finally, the output layer produces the 
energy prediction:

 ˆ H·W bo oy = +

Where ˆy ∈ R is the predicted energy output, Wo ∈ RP × 1 is the 
weight matrix for the output layer, and bo is the output bias.

Loss function: the model is trained using the Mean Squared Error 
(MSE) loss function defined as follows:

( )2
1

1 ˆ
N

i i
i

MSE y y
N =

= −∑

Where yi represents the true energy output for sample i and ˆyi 
denotes the predicted output (Algorithm 1).

Further, the Neuro-Fuzzy Model was trained over electrical data 
collected over a period of 2 years through on premise monitoring in 
a university campus.

4 Experimental work

4.1 Statistical feature analysis using t-test

Initially the ordinary least square (OLS) model from python 3 
stats models library was used to understand which feature has a 
statistically significant (p ≤ 0.05). Tables 1, 2 gives the results of 
the model.

From the above table, the OLS regression model for predicting 
“Energy” shows a perfect fit with an R-squared of 1.000, though this 

ALGORITHM 1

Hybrid neuro-fuzzy DL model based BEMS.
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may indicate overfitting given the high F-statistic of 2.232e+08 and 
condition number of 1.09e+16, suggesting multicollinearity. Most 
coefficients are statistically significant (p ≤ 0.05), indicating strong 
relationships with “Energy.” Diagnostic tests show non-normal residuals 
and positive autocorrelation (Durbin-Watson = 0.048). The model 
includes 22 predictors with 658,006 observations. While the high R2 and 
low AIC/BIC suggest a good fit, further validation and addressing 
multicollinearity and residual issues are recommended for robustness.

4.2 Results

The performance of the proposed hybrid Neuro-fuzzy deep 
learning BEMS model is assessed and contrasted using three widely 
recognized metrics. The first metric is the Mean Absolute Error 
(MAE), computed using Equation 1, which offers a simple indication 
of the average absolute deviations.

 1

1 ˆ
n

i i
i

MAE y y
n =

= −∑
 

(1)

The second metric is the Mean Squared Error (MSE), determined 
using Equation 2, which places greater emphasis on larger errors by 
squaring the differences.

 
( )2

1

1 ˆ
n

i i
i

MSE y y
n =

= −∑
 

(2)

Lastly, the Coefficient of Determination (R2) is used, as shown in 
Equation 3, to quantify the amount of variance in the outcome that 
the model accounts for.

 

( )
( )

2
2 1

2
1

ˆ
1

n
i ii

n
ii

y y
R

y y
=

=

−
= −

−

∑
∑  

(3)

In these Equations 1–3, yi denotes the actual values, ˆyi signifies 
the values predicted by the model, and ¯y represents the average of 
the actual values. Analyzing MAE, MSE, and R2 together provides a 
thorough evaluation of the model’s effectiveness.

4.3 Discussion

Figure  12 illustrates the progression of training set loss and 
validation set loss across the specified epochs during the training of 
our deep learning model for Building Energy Management 
Systems (BEMS).

From the initial epoch, we observe a significant decrease in both 
training loss and validation loss, indicating effective learning by the 
model. At epoch one, the training loss began at a substantial 
∼7.38 × 109 and was reduced to approximately 503881.28 by the end 
of epoch 50, showcasing the model’s ability to generalize and learn the 
underlying patterns in the training data. In Figure 13, we observe the 
progression of both the training and validation mean absolute error 
(MAE) over the epochs. Initially, at the first epoch, the training MAE 

is considerably high at approximately 74315.91, indicating that the 
model is not yet well-tuned to the dataset. However, as training 
progresses through multiple epochs, there is a noticeable decline in 
both training and validation MAE, suggesting that the model is 
effectively learning from the data.

By the end of epoch 50, the training MAE reaches approximately 
459.19, while the validation MAE is reported at around 436.42. This 
relatively low error indicates that the model has achieved substantial 
accuracy, maintaining a good balance between training and 
validation error. Such convergence of training and validation MAE 
suggests that the model is not overfitting and can generalize well to 
unseen data. This represents a promising outcome for the 
application of deep learning techniques in optimizing Building 
Energy Management Systems (BEMS). As illustrated in Figure 14, 

TABLE 1 OLS regression results.

Coefficient Std. 
error

t-statistic p ≤ 0.05

const 2.68e+04 369.892 72.446 0.000

Ptot −5.223 0.754 −6.929 0.000

Pr 4.989 0.767 6.504 0.000

Py −34.042 1.106 −30.786 0.000

Pb 23.829 2.356 10.115 0.000

PFa −31.792 1.843 −17.250 0.000

PFr 31.988 1.976 16.192 0.000

PFy 28.112 2.203 12.762 0.000

PFb −91.892 5.538 −16.593 0.000

St 81.890 1.646 49.751 0.000

Sr −81.856 1.647 −49.700 0.000

Sy −360.209 24.784 −75.301 0.000

Sb 523.955 25.157 101.606 0.000

Va 440.008 174.416 2.523 0.012

Vr −208.909 58.139 −3.593 0.000

Vy −228.410 58.140 −3.929 0.000

Vb −274.984 58.143 −4.729 0.000

It −19.649 0.365 −53.846 0.000

Ir 19.673 0.365 53.886 0.000

Iy 100.629 1.200 83.867 0.000

Ib −139.951 1.209 −115.778 0.000

freq −411.549 7.454 −55.214 0.000

VAh 0.951 1.53e-05 6.23e+04 0.000

TABLE 2 Performance metrics for different BEMS and the Hybrid DL-IoT 
BEMS.

Model MAE MSE R2

R. Sanchez et al. 3.86e2 2.2e3 9.6e−1

J. Kim et al. 4e2 2.34e3 9e−1

E. Bicici 4.01e2 2.27e3 8.9e−1

Proposed method 3.85e2 2.21e3 9.9e−1
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the MAPE shows a consistent decline throughout the training 
process, indicating an improvement in the model’s 
predictive accuracy.

Figure  15 presents a scatter plot that depicts the alignment 
between predicted values (on the y-axis) and actual values (on the 
x-axis). A second plot is Predicted values (on the x-axis) vs. Residuals 
(on the y-axis). In predicted vs. residuals plot, it is important to 
ascertain if the residuals are distributed randomly along the red dotted 

line. Absence of patterns indicate that the model is able to learn the 
variability in the data effectively. The predicted values from the 
proposed model are observed to be closely aligned with the red line, 
indicating a strong correlation.

Figure 16 provides a comparison of the fitting and prediction 
times of the proposed model against the BEMS by Martınez-Sanchez 
et al. (2023) evaluated across various training set sizes. When the 
training size is increased exponentially the time needed for training is 

FIGURE 12

Training set loss and validation set loss with epochs for deep learning based BEMS.

FIGURE 13

Training set mean absolute error and validation set mean absolute error with epochs for deep learning based BEMS.
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monitored to growth. If the time needed is also growing exponentially 
then the model is not scalable for large datasets. As seen from the 
image, as the train dataset increases in size the training time is linear 
and so the model is scalable for large datasets too. In terms of fitting 
time, the model developed by Martınez-Sanchez et  al. (2023) for 
Building Energy Management Systems (BEMS) demonstrates faster 
performance for medium-sized training sets (up to a few 
thousand samples).

However, the hybrid Deep Learning-Fuzzy model in our proposed 
approach shows improved scalability for larger datasets. Regarding the 
prediction time, the proposed model generally exhibits faster 
performance compared to Lasso across all training set sizes due to its 
learned sparse solution. Nevertheless, practical outcomes may vary 
due to specific implementation aspects within the Keras-tensor flow 
library, where both models are integrated. Both our proposed model 
and Martınez-Sanchez et al. (2023) method effectively minimize the 
MSE, with our approach achieving this goal using a smaller 
training dataset.

Furthermore, as presented in Table 2, the performance of the 
proposed method against established metrics is superior when 
compared to other BEMS approaches documented in existing 
literature. The MAE, MSE should be as low as possible which would 
indicate the predicted values for energy consumption are as close to 
the actual values. The R2 is close to 1 which proves that the model is 
generalizing to out-of-sample data. Tables 3, 4 gives the qualitative 
analysis of proposed methods with state of the art on AI BEMS 
features and capabilities. A gap exists in studies that integrate both 
hardware-based (Arduino Uno and sensors) and data-driven (ML/DL 
and historical data) approaches, suggesting opportunities for hybrid 
frameworks that combine real-time monitoring with predictive 
analytics. Additionally, cost optimization is addressed across multiple 
studies, particularly in those involving energy sensors or data-driven 
methods, yet there is limited research on optimizing consumption 

through wireless-enabled solutions. These findings underscore the 
need for further exploration into integrated, adaptive, and scalable 
energy monitoring frameworks that leverage both sensor-based real-
time data acquisition and ML-driven predictive analytics for 
comprehensive energy management.

4.4 Cost and schedule optimization

By utilizing the proposed model, one can identify the primary 
areas for potential energy savings by organizing the high energy 
consumption activities of the university such as workshops, lab 
sessions and experimental work. For this purpose, the existing 
activities at the institute were studied for the period January 2024 to 
March 2024 and their energy consumption was noted. Further using 
the hybrid neuro-fuzzy deep learning model a partial dependence plot 
was completed, as shown in Figure 17.

It serves as a helpful technique to illustrate the relationship 
between input features and the output feature, while accounting for 
the influence of other input variables. Once the model is trained, it is 
deployed for model inference, enabling real-time predictions of 
energy demand. To enhance energy efficiency, the system integrates 
the IoT-based BEMS with an L-BFGS-based energy optimizer. The 
Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) 
algorithm is employed to optimize energy usage by minimizing 
wasteful consumption while maintaining operational efficiency. The 
findings indicate that Ptot shows an inverse correlation and PFr shows 
a direct correlation with energy consumption. Therefore, changing 
these parameters beyond their current values could lead to significant 
reduction in energy and cost reductions. An enhancement of one unit 
in Ptot corresponds to a decrease in 5 units in energy consumption, 
while a similar increase in PFr results in a 27 unit increase in 
energy consumption.

FIGURE 14

Training set mean squared error and validation set mean squared error with epochs for deep learning based BEMS.
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FIGURE 15

Proposed model: prediction on test set (residual plots).
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To achieve the reduction in Ptot and PFr to optimum levels, 
the existing activities were studied for the period of January and 
February 2024 and the Hybrid DL-IoT BEMS was deployed as a 
web portal on streamlit cloud platform for daily monitoring. The 
impact was visible from months of March, April and May in form 
of reduction in consumption of electricity bill (Figure 18). In the 
3 months if the consumption of January and February was 

extrapolated by increasing the February electricity bill by the 10, 
20, 30% for the months of March, April and May, respectively, (as 
was seen in the previous year 2023’s electricity bill) and assuming 
no reduction in consumption then the energy costs for March, 
April and May cumulative would have been Indian rupees (INR) 
17.39 lacs and the actual consumption was INR 14 lacs resulting 
in a savings on INR 3.39 lacs.

FIGURE 16

Hybrid DL-IoT BEMS: time vs. train size.

TABLE 3 Qualitative analysis of proposed methods with state of the art on AI BEMS features.

References IoT BEMS DL Techniques Energy Sensors Cost Optimization

Nabavi et al. (2021) ✗ ✗ ✗ ✗

Abu-Shikhah et al. (2011) ✗ ✗ ✗ ✓

Adepoju et al. (2007) ✓ ✗ ✓ ✓

Liu et al. (2019) ✗ ✓ ✗ ✓

Al-Anbuky and Bataineh (1995) ✓ ✗ ✓ ✓

Moutaib et al. (2022) ✓ ✗ ✓ ✓

Amjady (2002) ✗ ✗ ✗ ✗

Elashry et al. (2024) ✗ ✓ ✗ ✓

Madhav and Sunil, 2022 ✗ ✓ ✗ ✗

Okolobah and Ismail (2013) ✗ ✓ ✗ ✗

Montgomery et al. (1990) ✗ ✓ ✗ ✗

Yildiz et al. (2017) ✗ ✓ ✗ ✗

Saravanan et al. (2012) ✗ ✓ ✗ ✗

Proposed model ✓ ✓ ✓ ✓
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5 Concluding remarks and future 
works

In conclusion, the main insights from this study suggest that 
employing specific features such as power factor, apparent power, 
phase-wise voltage, phase-wise current, and frequency can lead 
to a highly precise model for energy consumption predictions. By 
developing a fuzzy layer to the ANN architecture and building a 
hybrid neuro-fuzzy DL model based BEMS the electricity 
consumption data was accurately modeled. The required 

equipment consists of commonly accessible open-source 
hardware such as raspberry pi, multifunction meter, USB 
connectors and WiFi modules. Moreover, the open-source 
software tools such as keras-tensor flow module of python 
programming language and data preparation and preprocessing 
modules of scikit-learn toolbox were found to be  suitable for 
developing data-driven models. Further training the hybrid 
neuro-fuzzy deep learning model does not necessitate extensive 
datasets, provided that the features are both intuitive 
and informative.

TABLE 4 Qualitative analysis of proposed methods with state of the art on AI BEMS capabilities.

References Wireless capability Historical data usage

Nabavi et al. (2021) ✗ ✗

Abu-Shikhah et al. (2011) ✗ ✗

Adepoju et al. (2007) ✗ ✗

Liu et al. (2019) ✗ ✓

Al-Anbuky and Bataineh (1995) ✗ ✗

Moutaib et al. (2022) ✗ ✗

Amjady (2002) ✗ ✗

Elashry et al. (2024) ✗ ✓

Madhav and Sunil, 2022 ✗ ✓

Okolobah and Ismail (2013) ✗ ✗

Montgomery et al. (1990) ✗ ✓

Yildiz et al. (2017) ✗ ✓

Saravanan et al. (2012) ✗ ✓

Proposed model ✓ ✓

FIGURE 17

Hybrid DL-IoT BEMS: partial dependence of Ptot (x0) and PFr (x1) on energy consumption.
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