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This research presents an optimized system for predicting energy usage in smart 
grids by integrating the Temporal Fusion Transformer (TFT) with the Aquila Optimizer 
(AO). The study addresses the growing need for accurate energy consumption 
forecasts in smart grids, driven by the increasing adoption of renewable energy 
and real-time data collection through smart meters. The TFT model leverages self-
attention mechanisms to handle complex time-series data, improving forecasting 
accuracy across various time horizons. To enhance predictive performance, the 
Aquila Optimizer, a nature-inspired algorithm, is employed to fine-tune critical 
hyperparameters, ensuring optimal model convergence and performance. The 
proposed AO-TFT model is evaluated against traditional models like LSTM and CNN-
BiLSTM, demonstrating superior accuracy, lower RMSE, and faster computation 
times. The research also analyses the impact of various factors, including building 
types, weather conditions, and load variations on energy prediction. The proposed 
AO-TFT model achieved a significantly lower RMSE of 0.48 and MAE of 0.31, 
demonstrating superior accuracy compared to traditional models. Future work 
is suggested to explore hybrid optimization techniques and real-time adaptive 
models for dynamic grid management.
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1 Introduction

Smart grids have revolutionized how energy is distributed, consumed, and managed, 
providing dynamic and intelligent solutions to enhance grid efficiency. With the increasing 
adoption of renewable energy sources and the growing demand for electrical energy, predicting 
energy usage has become a critical aspect of smart grid operation. Energy consumption 
patterns in residential, industrial, and commercial sectors fluctuate, driven by various factors, 
such as time of day, weather conditions, and economic activity. Precise energy demand 
forecasting is crucial for maintaining the stability and efficiency of power grids, enabling 
operators to make well-informed decisions regarding energy distribution and demand 
response management (Oliveira and Oliveira, 2023). As a result, developing robust models 
that can predict energy consumption accurately over different time horizons has garnered 
significant attention in recent years.

Deep learning models, especially transformer-based architectures, have proven to 
be extremely effective in time-series prediction tasks due to their ability to capture complex 
patterns in large datasets. Unlike traditional machine learning models, transformers use 
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attention mechanisms to identify critical dependencies in input data, 
making them suitable for applications like energy usage prediction, 
where time-based relationships play a vital role. Moreover, by 
integrating nature-inspired optimization algorithms, these models can 
further improve their performance by fine-tuning critical 
hyperparameters, leading to more accurate predictions (Jinglei 
et al., 2021).

Energy usage prediction is vital for the smooth operation of 
modern smart grids. As energy demand fluctuates due to varying user 
behaviors, accurate prediction helps grid operators maintain balance 
between supply and demand. A failure to accurately predict energy 
consumption can result in grid instability, leading to power outages or 
wastage due to over generation. By accurately forecasting energy 
needs, operators can integrate renewable energy sources more 
effectively and implement demand-side management techniques 
(Oliveira and Oliveira, 2023). This not only ensures operational 
efficiency but also reduces costs for both utilities and consumers.

The integration of smart meters and the Internet of Things (IoT) 
within energy infrastructure has led to a substantial increase in the 
availability of real-time energy data. Advanced Metering Infrastructure 
(AMI) generates detailed, high-resolution data that can be utilized to 
forecast future energy consumption trends. However, managing and 
analyzing these extensive datasets necessitates the use of advanced 
machine learning models capable of delivering real-time predictions. 
In this regard, deep learning techniques, especially transformer 
networks, provide an effective solution due to their superior capability 
in processing sequential data efficiently (Jinglei et al., 2021).

The Temporal Fusion Transformer (TFT), a state-of-the-art model 
designed specifically for multi-horizon forecasting, overcomes these 
limitations by incorporating self-attention mechanisms. Unlike 
LSTMs, which rely on sequential processing of data, transformers 
process data in parallel, significantly improving computation time and 
allowing the model to learn long-range dependencies more effectively 
(Oliveira and Oliveira, 2023). This characteristic makes TFT ideal for 
energy usage prediction, where future energy demand can depend on 
multiple factors across different time scales.

Recent studies have demonstrated the superior performance of 
transformers over traditional RNN-based models in energy 
forecasting tasks. For instance, a modified multi-head transformer 
model was found to outperform LSTM-based models in predicting 
building energy consumption, achieving lower mean absolute 
percentage error (MAPE) (Oliveira and Oliveira, 2023). This 
advancement highlights the potential of transformer models to bring 
accuracy improvements in the energy sector.

Rajabi and Estebsari (2019) employ recurrence plots and deep 
learning to forecast residential loads. The strategy yields 92% accuracy. 
Ullah et al. (2019) provide a hybrid CNN-bidirectional LSTM model 
by capturing spatial and temporal patterns for household energy 
prediction. The technique yields a MAPE of 2.7%. Kim and Cho 
(2019) proposes hybrid CNN-LSTM networks by combining spatial 
and temporal patterns and obtains a MAPE of 3.1%. Wang et al. (2019) 
evaluate deep learning models for day-ahead solar power forecasting. 
The study has an RMSE of 5.5%. Madeswaran et al. (2024) propose an 
AI-controlled wind turbine system that combines IoT and machine 
learning. The strategy increases energy efficiency by 12%.

Chen et al. (2020) offer a deep learning-based approach to load 
forecasting in distribution transformers. The technique yields 94% 
accuracy. This increases grid stability and efficiency by providing exact 

load projections. Rao and Zhang (2020) uses a transformer-based 
model for power system energy prediction, leveraging self-attention 
mechanisms to capture temporal dependencies. It achieves a Mean 
Absolute Error (MAE) of 1.8%, outperforming traditional LSTM and 
GRU models. This shows how well transformers work to increase the 
precision of energy predictions. Velasco et al. (2020) present a deep 
learning-based loss model for low-voltage smart grids and it reduces 
energy loss by 10%. Hence this improves grid efficiency and reduce 
operational costs.

Syed et al. (2021) propose a deep learning-based load forecasting 
method using clustering and pattern recognition. The approach 
achieves a MAPE of 3.8%. Lei et al. (2021) present a building energy 
consumption forecast model based on rough set theory and deep 
learning. The strategy efficiently decreases data redundancy while 
increasing prediction accuracy. The results indicate a 20% reduction 
in energy consumption forecasting errors. Selim et al. (2021) uses 
probability models which cut forecasting mistakes by 20%. This 
improves grid dependability and the ability to make energy 
management decisions.

Mohammad et  al. (2021) present a convolutional LSTM 
network for energy management by lowering operational expenses 
in smart grids. The model obtains a MAPE of 3.5%. Qin et al. (2021) 
present a spatiotemporal decomposition approach for smart meter 
services. The approach has 93% accuracy. Zhao et al. (2024) use 
deep learning to predict peak energy use in commercial 
supermarkets. The technique yields a MAPE of 3.0%. Jinglei et al. 
(2021) investigate IoT-enabled smart grid applications in Industry 
4.0, with a focus on real-time monitoring and control. The study 
focuses on the integration of IoT and smart grids to improve 
efficiency and dependability.

The Aquila Optimizer (AO), inspired by the hunting behavior of 
Aquila birds, is one of the latest nature-inspired algorithms. 
Introduced in 2021, it has demonstrated promising results across 
various issues related to optimization, including parameter adaptation 
in machine learning models. AO balances exploration and 
exploitation, ensuring a thorough search of the parameter space while 
avoiding premature convergence. When applied to deep learning 
models, AO can significantly improve prediction accuracy by 
identifying the best-performing hyperparameter combinations 
(Jinglei et al., 2021).

Liu et  al. (2022) use an upgraded deep learning algorithm to 
analyze intelligent power systems. The technique improves fault 
detection and load forecasting accuracy. The results show a 12% 
improvement in prediction accuracy compared to older methods. 
Torres et  al. (2022) created a deep LSTM network for forecasting 
electricity usage in Spain. The model obtains a MAPE of 2.9 percent. 
This displays its ability to identify long-term dependencies in energy 
usage data.

Motwakel et al. (2023) use Wild Horse Optimization and deep 
learning to forecast short-term load. The hybrid technique achieves a 
MAPE of 2.5%, indicating higher accuracy. This solution tackles the 
issues of dynamic load forecasting in smart grids. Choudhary (2023) 
investigates LSTM and GRU models for renewable energy forecasting 
in microgrids. It helps to reduce forecasting mistakes by 15% by 
maximizing renewable energy integration.

El Bourakadi et al. (2022) combine LSTM and fuzzy logic for 
microgrid energy management. This approach got 95% forecasting 
accuracy to improve energy distribution efficiency and grid 
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sustainability. Jogunuri and Josh (2022) propose using deep neural 
networks to anticipate short-term solar PV output by maximizing 
solar energy integration. The model has an RMSE of 4.5%.

Kumar and Picerno (2023) employ Temporal Fusion 
Transformers (TFT) to forecast PV production by capturing time 
dependencies and external factors. The technique has an RMSE of 
4.8%. Saber et al. (2023) employ deep CNNs to accurately anticipate 
load in smart homes. The technique yields a MAPE of 2.8%. It 
improves energy efficiency via precise load predictions. Mazen et al. 
(2023) develop a GRU-Temporal Fusion Transformer model for solar 
power forecasting. The method achieves an RMSE of 5.2%. This 
outperforms traditional models in capturing temporal and 
seasonal patterns.

Nature-inspired algorithms like PSO, GA, and ACO are widely used 
for hyper parameter tuning in machine learning, but AO excels in 
complex optimization tasks. This study integrates AO with TFT to 
enhance energy usage prediction in smart grids, improving efficiency 
in energy management. Accurate forecasting supports the integration 
of intermittent renewable sources, such as solar and wind, enabling 
better grid management. Optimized models aid in reducing energy 
wastage, lowering carbon emissions, and supporting demand-side 
management. Consumers can adjust usage patterns in real time, 
contributing to a sustainable energy ecosystem (Oliveira and 
Oliveira, 2023).

Yang (2024) used a combination of algorithms to predict the 
energy costs and control financial risks in the smart grid. As an 
example, the combined machine learning model will help my 
predictions. The results show that this method leads to a 15% 
reduction in energy costs indicating a financial optimization 
potential in grid management. Asiri et al. (2024) combines CNN and 
LSTM for predicting short-term load in smart grids resulting MAPE 
of 3.2%.

Previous studies using Transformer-based models and nature-
inspired optimization algorithms often lack comprehensive 
hyperparameter tuning, resulting in suboptimal performance; for 
example, the CNN-LSTM model, despite showing promise, struggles 
with high RMSE (0.61) and MAE (0.34), indicating room for 
improvement in predictive accuracy. This research introduces the 
AO-TFT model, which leverages the strengths of the Temporal 
Fusion Transformer and the Aquila Optimizer to address these 
limitations. The key contributions of this research include improved 
predictive accuracy, faster convergence, and enhanced 
model robustness.

The key contributions of this proposed work are as follows:

 • An AO-TFT model is introduced using this way, Temporal 
Fusion Transformer (TFT) with in-built self-attention 
mechanism is used to predict Energy Usage patterns present in 
smart grids.

 • Aquila Optimizer, a nature-inspired algorithm, is employed to 
fine-tune critical hyperparameters, ensuring optimal model 
convergence and performance.

The remaining research work is presented below. Part 2 
demonstrates some of the newest approaches associated with this 
work. Part 3 focuses on the suggested system. Part 4 summarizes the 
outcomes, and Part 5 summarizes this work.

2 Literature survey

Deep learning models are increasingly utilized for energy usage 
prediction in smart grids, driven by the need for precise and efficient 
forecasting. A notable advancement is the use of Transformer 
networks, which leverage self-attention mechanisms to process 
complex time-series data. Research highlights the effectiveness of 
Transformers combined with nature-inspired optimization algorithms 
in enhancing energy forecasting accuracy.

In 2023, Hugo S. Oliveira and Helder P. Oliveira conducted an 
in-depth study introducing a Improved multi-head Transformer 
model for predicting building energy consumption. Their research 
revealed that Transformer models surpassed traditional recurrent 
neural networks (RNNs) in both accuracy and efficiency, achieving a 
lower mean absolute percentage error (MAPE). These findings 
highlight the capability of Transformer models to enhance energy 
forecasting accuracy and optimize building performance in smart 
grid applications.

Similarly, Kuppusamy et  al. (2023) reviewed various machine 
learning techniques used for energy usage prediction and management 
in smart grids. The authors identified algorithms such as decision 
trees, linear regression, and neural networks as effective tools for 
predicting energy balance in grid-connected systems. However, the 
review also acknowledged the growing relevance of deep learning 
techniques like Transformers, which have outperformed traditional 
machine learning algorithms in terms of predictive accuracy and 
scalability. The study emphasized that with the increasing complexity 
of smart grids, advanced deep learning models are necessary to 
provide accurate and efficient energy predictions (Kuppusamy 
et al., 2023).

Cheng et al. (2023) presented, a deep learning architecture that 
combines Convolutional Neural Networks (CNN) and Bidirectional 
Long Short-Term Memory (BiLSTM) networks to improve energy 
usage forecasts. The study emphasized that integrating flexible load 
scheduling with deep learning significantly improves smart grid 
efficiency and accuracy, marking a critical advancement in 
optimization strategies. While not employing deep learning, this 
approach laid the groundwork for predictive modeling in smart grids, 
highlighting its role in enhancing grid stability and efficient 
energy management.

Jinglei et al. (2021) applied nature-inspired algorithms, including 
Cat Swarm Optimization and Honey Bee Mating Optimization, to 
improve energy efficiency in smart grids. These techniques proved 
valuable in integrating IoT devices within Industry 4.0 frameworks, 
optimizing energy use, and improving Sustainability in Smart 
Grid Operations.

The literature highlights the advancements in energy forecasting 
for smart grids using deep learning techniques. Existing models, such 
as CNN-BiLSTM and LSTM-based frameworks, struggle with high 
Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) 
due to the increasing complexity and scale of real-time smart grid 
data. Recently, Transformers have emerged as superior models, 
demonstrating their accuracy and efficiency over RNNs for time series 
data. The Temporal Fusion Transformer (TFT) network utilizes self-
attention to effectively extract both static and temporal features, 
enabling accurate predictions across short-term and long-
term horizons.
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One of the key challenges is selecting hyperparameters to train 
the model while addressing the overfitting issue. The Aquila 
Optimizer, a nature-inspired optimization technique, has been 
effectively utilized to fine-tune hyperparameters, improving both 
accuracy and efficiency.

Integrating the Aquila Optimizer with the Temporal Fusion 
Transformer (TFT) model can create a robust, scalable system for real-
time energy predictions, significantly improving smart grid efficiency 
and sustainable energy management.

3 Proposed methodology

The proposed framework for predicting energy consumption in 
smart grids integrates the advantages of deep learning techniques 
and nature-inspired optimization algorithms. This research 
introduces a Smart Grid Energy Usage Prediction model developed 
based on the TFT and Aquila Optimizer (AO). The system’s 
workflow is illustrated in Figure 1 and structured into three key 
process: (1) pre-processing, (2) feature extraction, and (3) 
hyperparameter tuning.

The initial input is sourced from the UCI Household Dataset. This 
dataset undergoes preprocessing using techniques such as 
interpolation, feature selection, and normalization. Subsequently, the 
processed data is fed into the Temporal Fusion Transformer (TFT) 
model for feature extraction.

Specifically, the architecture integrates the Temporal Fusion 
Transformer (TFT) model with the Aquila Optimizer (AO) to enhance 
the predictive accuracy of energy consumption forecasts across 
various sectors. This architecture is structured to handle large-scale 
time-series data with multiple influencing factors, such as weather 
conditions, load types, and building types. The integration of the 

Aquila Optimizer ensures optimal tuning of hyperparameters, leading 
to improved model performance and convergence speed. The 
proposed model is ultimately evaluated against several prior models 
to demonstrate the efficiency and impact of the newly introduced 
feature extraction algorithm. Below is a diagram representing the flow 
of the proposed system.

3.1 Data preprocessing

The proposed system uses the UCI- Individual Household Electric 
Power Consumption (IHUEPC) Dataset, a repository of 
comprehensive energy usage data recorded over several years. This 
dataset is well-suited for time-series forecasting as it provides hourly 
energy consumption records along with contextual information such 
as date, time, and sub-metering values for various 
household appliances.

After pre-processing, 80% of the dataset is allocated to training, 
10% to validation, and 10% to testing. The dataset is then divided into 
training, validation, and test subsets. The model is trained using the 
training set, its performance is evaluated using the test set, and hyper 
parameter optimization is aided by the validation set.

3.2 Temporal fusion transformer

The TFT [6] is a specialized deep learning model developed to 
address time-series forecasting tasks. Unlike traditional recurrent 
models like LSTM, TFT leverages an attention mechanism to focus 
on relevant time steps, enabling the model to capture long-term 
dependencies and complex interactions between variables. This 
makes it ideal for energy usage prediction, where consumption 
patterns are influenced by multiple temporal and contextual factors 

FIGURE 1

Proposed methodology.
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(Lim et  al., 2019). The TFT model in this architecture shown in 
Figure 2 is responsible for processing the time-series data, predicting 
energy usage across different time horizons, and generating forecasts 
based on past consumption patterns.

The attention mechanism in the TFT can be explained with the 
following Equation 1:

 
( ), ,

TPQAttention P Q R softmax R
dk

 
=   

   
(1)

Key features of the TFT model include:

 • Multi-head attention mechanism: Allows the model to prioritize 
significant time steps, enhancing the precision of forecasting.

 • Dynamic feature embedding: These embedding help capture 
both static and temporal features, such as weather conditions and 
load variations.

 • Multi-horizon forecasting: The model can generate forecasts for 
multiple future time steps, making it versatile for predicting short 
term & long term energy consumption

The Gated Residual Network (GRN) blocks use gating approaches 
and skip connections to enable effective information flow. LSTMs 
manage local sequences for time-based processing, however multi-
head attention facilitates data integration across multiple 
computational steps (Figure 2).

3.3 Aquila optimizer for hyperparameter 
tuning

The Aquila optimizer is a nature-inspired optimization algorithm 
that simulates the hunting strategy of the Aquila eagle. It is designed 
to balance exploration and exploitation, ensuring the algorithm 
efficiently searches the hyperparameter space without getting trapped 
in local optima. This optimizer is applied to the TFT model to fine-
tune hyperparameters such as learning rate, batch size, and dropout 
rate (Abualigah et al., 2021). By optimizing these parameters, AO 
improves the model’s convergence speed and overall 
predictive performance.

The objective of the Aquila Optimizer is to minimize the loss 
function, which in this case can be represented by the Mean Squared 
Error (MSE) between the actual and predicted values. The objective 
function is formulated as shown in Equation 2:

 
( ) 2

1

1 ( , )
n

i
yi f Xi

n
θ

=
−∑

 
(2)

The AO algorithm iteratively adjusts the model parameters to 
minimize this objective function, thereby improving the predictive 
accuracy of the TFT model.

The AO operates in two main phases: exploration and exploitation. 
During the exploration phase, the optimizer explores diverse regions 
of the search space by adjusting candidate solutions based on 
stochastic variations. In the exploitation phase, it focuses on refining 
the best-known solutions to further improve performance. The fitness 

of each candidate solution is evaluated based on the model’s prediction 
error (e.g., Root Mean Squared Error).

To illustrate this process, the pseudo-code below outlines the key 
steps of the Aquila Optimizer Algorithm 1 used in this research:

This pseudo-code outlines the main steps involved in the 
optimization process. Initially, a population of candidate solutions is 
generated randomly, each representing a possible set of 
hyperparameters (such as learning rate, batch size, and number of 
layers). The fitness of each candidate is evaluated using the model’s 
loss function (e.g., Mean Squared Error). The best solution, Xbest, is 
identified, and then the optimizer iterates over multiple generations, 
improving the candidate solutions by alternating between exploration 
and exploitation.

By using the Aquila Optimizer, the proposed model efficiently 
fine-tunes hyperparameters to improve the Temporal Fusion 
Transformer’s performance. The balance between exploration and 
exploitation ensures a comprehensive search of the hyperparameter 
space while converging quickly to an optimal solution. This approach 
outperforms traditional optimization algorithms, such as Particle 
Swarm Optimization and Genetic Algorithms, in terms of both 
convergence speed and prediction accuracy, as demonstrated in our 
experimental results.

3.4 Architecture flow

The flow of the proposed architecture is described as follows:

 1 Input layer: The pre-processed time-series data, consisting of 
historical energy consumption and contextual variables, is fed 
into the TFT model.

 2 Feature embeddings: The TFT model generates dynamic 
feature embeddings to capture both static and time-varying 
features, such as load types, weather conditions, and 
building types.

 3 Attention mechanism: The TFT’s multi-head attention 
mechanism focuses on key time steps and critical features, 
improving the model’s prediction accuracy over various time 
horizons (Lim et al., 2019).

 4 Prediction output: The model outputs multi-horizon forecasts, 
predicting energy consumption for the next 1-h, 6-h, 12-h and 
24-h periods based on the input data.

 5 Optimization process: The Aquila Optimizer is applied to tune 
the hyperparameters of the TFT model. The optimizer iterates 
through different combinations of hyperparameters, balancing 
exploration and exploitation to achieve the best performance.
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 6 Evaluation metrics: The optimized model is assessed using key 
performance measures like RMSE, MAPE and computation time.

4 Results and analysis

This section provides a succinct overview of the experimental 
setup for the proposed approach and a comparative analysis of the 
results obtained.

The effectiveness of the proposed Aquila Optimizer Tuned Temporal 
Fusion Transformer (AO-TFT) was evaluated through various 

experiments to assess its performance. The results depict that the 
proposed method attained the lowest Mean Squared Error (MSE) for 
predicting power consumption when compared to state-of-the-art 
techniques. The experiments were executed on Anaconda Navigator 
using Python 3.10, with a system configured with 16 GB RAM, an 
Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz processor, an NVIDIA RTX 
2080 GPU, and running Windows 10. The PyTorch framework was used 
for model implementation, while Scikit-learn was employed for 
preprocessing and evaluation. Since this is a regression problem, the 
quality of the prediction model was assessed using three standard metrics: 
Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE), 

FIGURE 2

Temporal fusion transformer model architecture [7].

https://doi.org/10.3389/frai.2025.1542320
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Badhe et al. 10.3389/frai.2025.1542320

Frontiers in Artificial Intelligence 07 frontiersin.org

which are commonly utilized to measure prediction accuracy in 
regression models.

Let ˆix  represent the values of variables for n prediction samples of 
power consumption, and let ix  represent the observed values. 
Equations 3, 4 then represent the RMSE and MAE, respectively.

 
( )2

1

1 ˆ
n

i i
i

RMSE x x
n =

= −∑
 

(3)

 1

1 ˆ
n

i i
i

MAE x x
n =

= −∑
 

(4)

4.1 UCI household dataset

UCI household electricity consumption dataset [20] have 
2,075,259 measurements collected for 47 months, i.e., December 

2006 to November 2010. It includes various electrical 
measurements recorded at one-minute intervals. The main 
features are:

 • Date and time: The timestamp for each observation.
 • Global_active_power: Total active power consumption 

(in kilowatts).
 • Global_reactive_power: Reactive power consumption 

(in kilowatts).
 • Voltage: The voltage level (in volts).
 • Global_intensity: Current intensity (in amperes).
 • Sub_metering_1, 2, 3: Energy consumption measured in specific 

household areas (in watt-hours).

The UCI Household Electricity Consumption Dataset is suitable 
for modern smart grid applications due to its comprehensive and 
high-resolution data, which includes various electrical measurements 
recorded at one-minute intervals. This dataset  allows for detailed 
analysis and accurate forecasting of energy consumption patterns, 
making it ideal for evaluating the performance of advanced 
prediction models.

ALGORITHM 1

Aquila optimizer for hyperparameter tuning.
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4.1.1 Comparative analysis of prediction models
Table 1 summarizes the various existing methods applied to the 

UCI household dataset.
The comparative analysis of prediction models, as outlined in 

Table  1, demonstrates the superior performance of the proposed 
TFT-AO model over traditional methods. The table compares various 
models, including SVM, ANN, CNN-1D, CNN-1D-RP, LSTM, 
Bi-LSTM, CNN-LSTM, and Temporal Fusion Transformer (TFT), on 
the basis of RMSE and MAE metrics. The proposed TFT-AO model 
consistently outperforms the other models with the lowest RMSE of 
0.48 and MAE of 0.31, indicating its high accuracy and reliability in 
predicting energy consumption. The Temporal Fusion Transformer, 
without the Aquila Optimizer, also shows commendable performance 
with RMSE of 0.54 and MAE of 0.33, highlighting the effectiveness of 
the TFT model itself.

A closer examination of the tabular results reveals that 
traditional models like SVM and ANN, while effective, lag behind 
more advanced models in terms of predictive accuracy. SVM and 
ANN have RMSE values of 1.25 and 1.15 respectively, and MAE 
values of 1.12 and 1.08. Convolutional Neural Network-based 
models (CNN-1D and CNN-1D-RP) exhibit better performance, 
with RMSE and MAE improving significantly. Notably, the 
CNN-1D-RP model shows RMSE of 0.79 and MAE of 0.59, 
demonstrating the potential of convolutional approaches. 
However, the standout performance is observed in recurrent 
neural network-based models, specifically LSTM, Bi-LSTM, and 
their hybrid counterparts. The LSTM and Bi-LSTM models have 
RMSE values of 0.58 and 0.57, and MAE values of 0.36 and 0.35 
respectively, underscoring their efficacy in handling sequential 
data. The CNN-LSTM model also shows promising results with an 
RMSE of 0.61 and MAE of 0.34. The introduction of the Aquila 
Optimizer with the TFT model has evidently enhanced its 
predictive capabilities, leading to the lowest error metrics in 
the study.

The AO-TFT model achieved a significantly lower RMSE of 0.48 
and MAE of 0.31, outperforming traditional models like LSTM 
(RMSE: 0.58, MAE: 0.36) and CNN-BiLSTM (RMSE: 0.57, MAE: 
0.35). The TFT’s multi-head attention mechanism focuses on key time 
steps and critical features, improving the accuracy of the model’s 
predictions for the next 1-h, 6-h, 12-h, and 24-h periods.

The results shown in Figures 3, 4 indicate that the improvements 
in RMSE and MAE are statistically significant (p < 0.05), reinforcing 
the robustness of the proposed model. Future research could focus on 

further refining these models and testing their applicability in different 
contexts and datasets to validate their robustness and scalability 
(Figures 3, 4).

Based on the results from this study, it is evident that the integration 
of the Temporal Fusion Transformer (TFT) with the Aquila Optimizer 
(AO) significantly improves the predictive accuracy and efficiency for 
energy usage forecasting in smart grids. The AO-TFT model 
outperformed traditional models like LSTM and CNN-BiLSTM in 
terms of key performance metrics such as RMSE, MAPE, and 
computation time, indicating that the model is well-suited for handling 
large-scale, time-series energy data. This improvement can largely 
be  attributed to the TFT’s ability to capture complex temporal 
relationships through its self-attention mechanism, which efficiently 
processes long-term dependencies. The Aquila Optimizer’s role in fine-
tuning hyperparameters is equally crucial, as demonstrated by the faster 
convergence and superior model performance across different 
scenarios, further reinforcing the value of combining deep learning and 
nature-inspired optimization techniques for energy prediction tasks.

The proposed AO-TFT model achieved a significantly lower 
RMSE of 0.48 and MAE of 0.31, demonstrating superior accuracy 
compared to traditional models.

5 Conclusion

In this study, we developed an optimized system for predicting 
energy usage in smart grids by integrating the Temporal Fusion 
Transformer (TFT) model with the Aquila Optimizer (AO). The 
AO-TFT model outperformed traditional models such as LSTM and 
CNN-BiLSTM in key metrics, achieving a significantly lower RMSE of 
0.48 and MAE 0.31 The Aquila Optimizer proved effective in 
hyperparameter tuning, leading to faster convergence and better 
performance across various contexts, including building types, weather 
conditions, and load variations. This combination of deep learning and 
nature-inspired optimization offers a robust solution for enhancing 
predictive accuracy and operational efficiency in smart grids.

The broader implications of this research include improved energy 
efficiency, better integration of renewable energy sources, and more 
informed decision-making for energy distribution and demand 
response. Future research could explore hybrid optimization 
techniques and the integration of additional data sources to further 
enhance model accuracy, particularly for long-term predictions and 
volatile energy scenarios. This study contributes to the advancement 

TABLE 1 Comparison of different methods based on MAE and RMSE (with 95% confidence intervals).

Methods/Parameters RMSE MAE

SVM [21] 1.25 1.12

ANN [21] 1.15 1.08

CNN-1D [21] 0.92 0.68

CNN-1D-RP [21] 0.79 0.59

LSTM [22] 0.58 0.36

Bi-LSTM [22] 0.57 0.35

CNN-LSTM [23] 0.61 0.34

Temporal fusion transformer (TFT) 0.54 0.33

Proposed TFT-AO model 0.48 0.31
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of smart grid technologies, paving the way for more sustainable and 
efficient energy management systems.

6 Future directions

Future research can build upon the advancements of the AO-TFT 
model by exploring hybrid optimization techniques, such as integrating 
AO with Genetic Algorithms (GA) or Particle Swarm Optimization 
(PSO). This hybrid approach could enhance robustness and improve 
hyperparameter tuning, particularly in volatile energy usage scenarios 
like industrial loads or extreme weather conditions. Incorporating 
external data sources, such as real-time market prices, detailed weather 
forecasts, or IoT-based consumer behavior data, could further refine 
forecasting accuracy, especially for energy systems influenced by 
demand response and dynamic pricing. Additionally, incorporating 

external data sources, such as real-time market prices and detailed 
weather forecasts, could further refine forecasting accuracy.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Author contributions

NB: Conceptualization, Investigation, Software, Writing – original 
draft. RN: Software, Writing – review & editing. VY: Data curation, 
Formal analysis, Writing  – review & editing. SA: Methodology, 
Validation, Writing  – review & editing. KD: Formal analysis, 

FIGURE 3

Graph showing root mean square error (RMS) values per methods.

FIGURE 4

Graph showing mean absolute error (MAE) values per methods.

https://doi.org/10.3389/frai.2025.1542320
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Badhe et al. 10.3389/frai.2025.1542320

Frontiers in Artificial Intelligence 10 frontiersin.org

Resources, Validation, Visualization, Writing – review & editing. DM: 
Investigation, Writing – original draft.

Funding

The author(s) declare that no financial support was received for 
the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or claim 
that may be made by its manufacturer, is not guaranteed or endorsed 
by the publisher.

References
Abualigah, L., Yousri, D., Abd Elaziz, M., and Hossain, M. S. (2021). Aquila optimizer: 

a novel metaheuristic optimization algorithm. Comput. Ind. Eng. 157:107250. doi: 
10.1016/j.cie.2021.107250

Asiri, M. M., Aldehim, G., Alotaibi, F., Alnfiai, M. M., Assiri, M., and Mahmud, A. 
(2024). Short-term load forecasting in smart grids using hybrid deep learning. IEEE 
Access 12:3358182. doi: 10.1109/ACCESS.2024.3358182

Bache, K., and Lichman, M. (2012). Individual household electric power consumption 
data set. Data retrieved from UCI machine learning repository. Available at: https://
archive.ics.uci.edu/ml/datasets.html.

Chen, L., Yu, H., Tong, L., Huai, X., Jin, P., Huang, Y., et al. (2020). Research on load 
forecasting method of distribution transformer based on deep learning. IEEE CSCloud 
EdgeCom 2020:49738. doi: 10.1109/CSCloud-EdgeCom49738.2020.00047

Cheng, B., Zhang, H., Deng, B., Shi, J., Zhou, X., Su, H., et al. (2023). Two-layer 
optimization of energy efficiency based on provincial smart energy service platform. J. 
Phys. Conf. Ser. 2465:012025. doi: 10.1088/1742-6596/2465/1/012025

Choudhary, S. (2023). Deep learning based renewable energy forecasting in microgrids. 
IEEE International Conference on Intelligent Computing and Sustainable Systems.

El Bourakadi, D., Yahyaouy, A., and Boumhidi, J. (2022). Intelligent energy management 
for micro-grid based on deep learning LSTM prediction model and fuzzy decision-making. 
Sustain. Comput. Inform. Syst. 36:100709. doi: 10.1016/j.suscom.2022.100709

Jinglei, S., Chu, X.-m., Chen, M., and Kadry, S. (2021). Internet-of-things-assisted 
smart grid applications in industry 4.0. IOP Conf. Ser. Earth Environ. Sci. 621:012056. 
doi: 10.1088/1755-1315/621/1/012056

Jogunuri, S., and Josh, F. T. (2022). Deep neural network based forecasting of short-
term solar photovoltaic power output. IEEE Int. Conf. Emerg. Trends Inform. Technol. 
Eng. 2022:9847769. doi: 10.1109/CONIT55038.2022.9847769

Kim, T.-Y., and Cho, S.-B. (2019). Predicting residential energy consumption using 
CNN–LSTM neural networks. Energy 182, 72–81. doi: 10.1016/j.energy.2019.05.230

Kumar, D. P., and Picerno, S. (2023). TFT-powered PV production forecasting: a 
multivariate approach for long, medium, and short terms. IEEE Conf. Energy Res. Appl. 
2023:743. doi: 10.1109/CERA59325.2023.10455743

Kuppusamy, R., Nikolovski, S., and Teekaraman, Y. (2023). Review of machine 
learning techniques for power quality performance evaluation in grid-connected 
systems. Sustain. For. 15:15055. doi: 10.3390/su152015055

Lei, L., Wei, C., Wu, B., Chen, C., and Liu, W. (2021). A building energy consumption 
prediction model based on rough set theory and deep learning algorithms. Energ. 
Buildings 238:110886. doi: 10.1016/J.ENBUILD.2021.110886

Lim, B., Arik, S. O., Loeff, N., and Pfister, T. (2019). Temporal fusion transformers for 
interpretable multi-horizon time series forecasting. NeurIPS.

Liu, H., Liu, Y., and Xu, C. (2022). Application of improved deep learning method in 
intelligent power system. Int. Trans. Electr. Energy Syst. 2022:6788668. doi: 
10.1155/2022/6788668

Madeswaran, A., Bisht, D., Yuvaraj, S., Reedy, M. U., Al-Attabi, K., and Dhablia, A. 
(2024). AI-controlled wind turbine systems: integrating IoT and machine learning for 
smart grids. E3S Web Conf. 540:03008. doi: 10.1051/e3sconf/202454003008

Mazen, F., Shaker, Y., and Abul Seoud, R. A. (2023). Forecasting of solar power using 
GRU–temporal fusion transformer model and DILATE loss function. Energies 16:8105. 
doi: 10.3390/en16248105

Mohammad, F., Ahmed, M. A., and Kim, Y. C. (2021). Efficient energy management 
based on convolutional long short-term memory network for smart power distribution 
system. Energies 14:6161. doi: 10.3390/en14196161

Motwakel, A., Alabdulkreem, E., Gaddah, A., Marzouk, R., Salem, N. M., 
Zamani, A. S., et al. (2023). Wild horse optimization with deep learning-driven short-
term load forecasting scheme for smart grids. Sustain. For. 15:1524. doi: 
10.3390/su15021524

Oliveira, H. S., and Oliveira, H. P. (2023). Transformers for energy forecast. Sensors 
23:6840. doi: 10.3390/s23156840

Qin, C., Srivastava, A., and Davies, K. L. (2021). Unbundling smart meter services 
through spatiotemporal decomposition agents in DER-rich environments. IEEE Trans. 
Industr. Inform. 17:3060870. doi: 10.1109/TII.2021.3060870

Rajabi, R., and Estebsari, A. (2019). Deep learning based forecasting of individual 
residential loads using recurrence plots. In: 2019 IEEE Milan PowerTech, IEEE, pp. 1–5.

Rao, Z., and Zhang, Y.Transformer-based power system energy prediction model 
(2020). IEEE 5th information technology and mechatronics engineering conference 
(ITOEC), Chongqing, China. 2020, pp. 913–917.

Saber, S. M., Hassan, G. S., Jabbar, M. S., Tawfeq, J. F., Radhi, A. D., and Ng, P. S. J. 
(2023). Enhancing smart home energy efficiency through accurate load prediction using 
deep convolutional neural networks. Period. Eng. Nat. Sci. 11:3606. doi: 
10.21533/pen.v11i3.3606

Selim, M., Zhou, R., Feng, W., and Quinsey, P. (2021). Estimating energy forecasting 
uncertainty for reliable AI autonomous smart grid design. Energies 14:247. doi: 
10.3390/en14010247

Syed, D., Abu-Rub, H., Ghrayeb, A., Refaat, S., Houchati, M., Bouhali, O., et al. (2021). 
Deep learning-based short-term load forecasting approach in smart grid with clustering 
and consumption pattern recognition. IEEE Access 9:9312710. doi: 
10.1109/ACCESS.2021.3071654

Torres, J. F., Martínez-Álvarez, F., and Lora, A. T. (2022). A deep LSTM network for 
the Spanish electricity consumption forecasting. Neural Comput. & Applic. 34, 
6673–6684. doi: 10.1007/s00521-021-06773-2

Ullah, F. U., Min, A. U., Haq, I. U., Rho, S., and Baik, S. W. (2019). Short-term 
prediction of residential power energy consumption via CNN and multi-layer bi-
directional LSTM networks. IEEE Access 8, 123369–123380. doi: 
10.1109/ACCESS.2019.2963045

Velasco, J., Amaris, H., and Alonso, M. (2020). Deep learning loss model for large-
scale low voltage smart grids. Int. J. Electr. Power Energy Syst. 121:106054. doi: 
10.1016/j.ijepes.2020.106054

Wang, K., Qi, X., and Liu, H. (2019). A comparison of day-ahead photovoltaic power 
forecasting models based on deep learning neural network. Appl. Energy 251:113315. 
doi: 10.1016/j.apenergy.2019.113315

Yang, J. (2024). Energy cost forecasting and financial strategy optimization in smart 
grids via ensemble algorithm. Front. Energy Res. 12:1353312. doi: 
10.3389/fenrg.2024.1353312

Zhao, M., Gomez-Rosero, S., Nouraei, H., Zych, C., Capretz, M. A. M., and Sadhu, A. 
(2024). Toward prediction of energy consumption peaks and timestamping in 
commercial supermarkets using deep learning. Energies 17:1672. doi: 
10.3390/en17071672

https://doi.org/10.3389/frai.2025.1542320
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://doi.org/10.1016/j.cie.2021.107250
https://doi.org/10.1109/ACCESS.2024.3358182
https://archive.ics.uci.edu/ml/datasets.html
https://archive.ics.uci.edu/ml/datasets.html
https://doi.org/10.1109/CSCloud-EdgeCom49738.2020.00047
https://doi.org/10.1088/1742-6596/2465/1/012025
https://doi.org/10.1016/j.suscom.2022.100709
https://doi.org/10.1088/1755-1315/621/1/012056
https://doi.org/10.1109/CONIT55038.2022.9847769
https://doi.org/10.1016/j.energy.2019.05.230
https://doi.org/10.1109/CERA59325.2023.10455743
https://doi.org/10.3390/su152015055
https://doi.org/10.1016/J.ENBUILD.2021.110886
https://doi.org/10.1155/2022/6788668
https://doi.org/10.1051/e3sconf/202454003008
https://doi.org/10.3390/en16248105
https://doi.org/10.3390/en14196161
https://doi.org/10.3390/su15021524
https://doi.org/10.3390/s23156840
https://doi.org/10.1109/TII.2021.3060870
https://doi.org/10.21533/pen.v11i3.3606
https://doi.org/10.3390/en14010247
https://doi.org/10.1109/ACCESS.2021.3071654
https://doi.org/10.1007/s00521-021-06773-2
https://doi.org/10.1109/ACCESS.2019.2963045
https://doi.org/10.1016/j.ijepes.2020.106054
https://doi.org/10.1016/j.apenergy.2019.113315
https://doi.org/10.3389/fenrg.2024.1353312
https://doi.org/10.3390/en17071672

	An optimized system for predicting energy usage in smart grids using temporal fusion transformer and Aquila optimizer
	1 Introduction
	2 Literature survey
	3 Proposed methodology
	3.1 Data preprocessing
	3.2 Temporal fusion transformer
	3.3 Aquila optimizer for hyperparameter tuning
	3.4 Architecture flow

	4 Results and analysis
	4.1 UCI household dataset
	4.1.1 Comparative analysis of prediction models

	5 Conclusion
	6 Future directions

	References

