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Deep learning for steganalysis:
evaluating model robustness
against image transformations

Othman A. Alrusaini*

Department of Engineering and Applied Sciences, Applied College, Umm Al-Qura University, Makkah,

Saudi Arabia

This study investigates the robustness of deep learning-based steganalysis

models against common image transformations because most literature has

not paid enough attention to resilience assessment. Current and future

applications of steganalysis to guarantee digital security are gaining importance

regarding real-world modifications: resizing, compression, cropping, and adding

noise. These included the following five basic models: E�cientNet, SRNet,

ResNet, Xu-Net, and Yedroudj-Net. We evaluated these models’ pre- and

post-transformation performances based on various metrics like accuracy,

precision, recall, F1-score, and AUC with the BOSSBase dataset. Our results

showed that E�cientNet is the most robust among the considered architecture

transformations. Still, it also underlined significant degradations for state-of-the-

art models, Xu-Net and Yedroudj-Net, especially with added noise. These results

indicate the need to develop more robust architectures capable of sustaining

real-world image alterations. In practice, it will assist practitioners in choosing

models that best suit operational environments and lay the necessary platform

for future enhancements in the design of such models. In this regard, in the

future, more transformations should be researched with ensemble and adaptive

approaches to improve robustness further.
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1 Introduction

The word steganography comes from the Greek word for “covered writing.” This

methodology intends to hide messages within other non-suspicious media as images to

mask their very existence. While cryptography works to keep the content of a message

safe, steganography keeps the message undetectable so as not to be intercepted in the

first place (Wu et al., 2018). Most modern steganographic approaches are incomparably

more complicated, either by embedding data in the least significant bits of image pixels or

by more sophisticated transformations that ensure the undetectability of messages. While

steganography techniques are evolving, steganalysis models are also evolving by leveraging

machine learning and deep learning for accurate detection (Alzubi et al., 2023). However,

most of these models still face the challenge of resilience regarding practical conditions in

digital security (De La Croix et al., 2024; Zou et al., 2019).

In practice, images are usually exposed to typical transformations, such as rescaling,

compression, cropping, and adding noise, before being analyzed for steganographic

content. These may include resizing, which distorts the coherency of hidden data in space

and hence masks the detection. It is, however, still possible that compression, especially in

lossy formats such as JPEG, might strip out the embedded information by removing subtle
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variations in pixels carrying the messages (Zeng et al., 2017).

Removal of image segments by cropping may omit regions where

data are stored while adding noise mask signals through random

changes in pixel values that further complicate detection processes.

These transformations daunt these steganalysis models, which

normally would have been trained on unaltered images, resulting

in low accuracy upon the occurrence of any transformed media (Li

et al., 2024).

This work investigates the challenging gap in steganalysis—

the robustness of the steganalysis model against common image

transformations. The following are the key research questions

considered for investigation in this study:

1. Impact of Transformations: How do different transformations

of images, such as resizing, compression, cropping, and

noise addition, affect the accuracy and robustness of

steganalysis models?

2. Model Robustness: Which models are more robust against

different transformations while maintaining detection accuracy?

3. Identification of Transformation-Resilient Models: Is it possible

to pinpoint any models or architecture of models that are more

resilient against image transformations, and what characteristics

give them resilience?

4. Guidelines for Practical Steganalysis: What best practices can be

derived to guide the application of steganalysis in dynamic real-

world environments where images are most likely to transform?

These questions target filling the gap between artificially

controlled experimental conditions and real-world applications

in furthering the area of steganalysis by finding transformation-

robust models.

The paper is organized as follows: in Section 2, we include a

review of the related literature on steganography, steganalysis, and

the impact of transformations; Section 3 includes a description of

methodology, data, and models; Section 4 includes results; Section

5 includes a discussion of implications. In the conclusion section,

we summarize our findings and indicate some promising avenues

for future research.

2 Literature review

2.1 Overview of steganography and
steganalysis

Steganography moved beyond the conventional Least

Significant Bit (LSB) algorithm that inserted hidden data in pixel

value bits to current adaptive techniques that modify image

structures for better cloaking purposes (Hu et al., 2019; Chaumont,

2020). The initial steganographic approach using LSB depended

on basic pixel modification. However, forensic analysis evolution

brought Highly Undetectable Steganography (HUGO) and

Universal Wavelet Relative Distortion (UNIWARD) as adaptive

embedding systems that prevent statistical indicators of message

concealment (Dhawan et al., 2021). The evolution of steganalysis

methods required new developments because it shifted away from

traditional statistical detection toward machine learning tools. The

detection ability of Regular and Singular (RS) statistical methods

proved insufficient to identify modern adaptive steganographic

techniques compared to the results achieved (Chen et al., 2023).

Support vector machines (SVMs) alongside ensemble classifiers

represented machine learning (ML) detection methods, which

improved the process yet depended on manual feature extraction.

Deep learning methods through convolutional neural networks

(CNNs) enable automatic feature extraction, leading to proven

steganographic pattern detection in images without requiring

predefined statistical metrics (Pibre et al., 2020; Zou et al., 2019;

Alzubi, 2022).

2.2 Deep learning in steganalysis

Deep learning models have advanced steganalysis detection by

performing automated feature extraction while eliminating limited

statistical patterns (Pibre et al., 2020). The pixel intensity variation

analysis used by Regular and Singular (RS) steganalysis could

not adapt to contemporary steganographic methods and provided

inadequate detection performance (Chen et al., 2023). CNNs

became instrumental in steganalysis transformation because they

learn spatial frequency features directly from photographs without

requiring prebuilt features. Xu-Net represents an early CNN-

based steganalysis model that analyzes high-frequency artifacts,

yet it shows limitations when working with transformed images,

thus affecting its generalization capability (Wani and Sultan,

2023). The pre-processing layers of Yedroudj-Net boost its feature

learning abilities, although the system suffers from compression

attacks and resizing issues (Vijjapu et al., 2023). SRNet and

ResNet represent advanced architectural models that improve

resistance in steganographic detection because SRNet performs

exceptional multi-scale spatial analyses (Hu et al., 2018) and

ResNet maintains deep feature representations through residual

connections (Kuchumova et al., 2024). The compound scaling

method implemented in EfficientNet enables better generalization

during transformations because it optimizes depth and resolution

parameters (Selvaraj et al., 2021).

2.3 Feature extraction mechanisms in
steganalysis models

Deep learning-based steganalysis models operate through

effective feature extraction because it determines their detection

capabilities toward steganographic content and their resistance

against transformations of images (Alzubi et al., 2022). Steganalysis

models using hierarchical feature extraction methods obtain

enhanced robustness against real-world image distortions because

they detect low-scale pixel changes combined with high-scale

structural analytics (Saxena et al., 2023). The deep hierarchical

extraction used in EfficientNet and SRNet models creates a

strong resistance against common image distortions, including

resizing, compression, and cropping. The compound scaling

method of EfficientNet achieves optimal depth, width, and

resolution adjustments to maintain pixel dependencies and spatial

relationships throughout the model process (Selvaraj et al., 2021).

The high-frequency artifact detection approach used by Xu-

Net and Yedroudj-Net makes them sensitive to compression
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and noise addition because these disturbances damage essential

patterns necessary for accurate steganalysis (Tabares-Soto et al.,

2021). Allocation functions of Swish in EfficientNet and SRNet

help preserve information when gradients flow smoothly. In

contrast, the ReLU activation in Xu-Net and Yedroudj-Net leads

to performance degradation from gradient vanishing (Huang

et al., 2024). The squeeze-and-excitation (SE) layers embedded

in EfficientNet enable dynamic feature importance calibration,

making the model better adapt to critical steganographic signals

even after compression or noise addition transformations (Selvaraj

et al., 2021). The robustness of EfficientNet and SRNet exceeds

that of Xu-Net and Yedroudj-Net since their restricted architectural

complexity fails to match the models’ ability to preserve detection

accuracy under spatial inconsistencies.

2.4 Impact of image transformations on
steganalysis models

Multiple image transformations, including resizing,

compression, cropping, and noise addition negatively impact

steganalysis models due to their ability to change pixel statistics

and break steganographic code sequences. The spatial structure

of pixels gets disrupted after resizing because this process

distorts important embedding artifacts, thus leading to decreased

detection accuracy (Dengpan et al., 2019). Dealing subliminal

data in frequency components occurs through JPEG’s lossy

compression because the process removes unneeded image data

(Zeng et al., 2017). When cropping an image, detection models

become misdirected because the process removes potentially

hidden information within the deleted sections (Liu et al.,

2021). Steganographic data becomes imperceptible when noise

is added to images because such variations make it difficult for

detection models with spatial consistency to identify hidden

content (Tabares-Soto et al., 2021). EfficientNet shows enhanced

robustness because its compound scaling and squeeze-and-

excitation layers ensure accurate adaptive feature recalibration

(Selvaraj et al., 2021). The Xu-Net and Yedroudj-Net demonstrate

maximum vulnerability when facing transformations of their

minimal hierarchical structure and dependence on high-frequency

components (Tabares-Soto et al., 2021). The residual connections

inside ResNet and SRNet protect essential features from damage,

yet noise contamination remains a significant problem for all

examined models (Kuchumova et al., 2024).

2.5 Adversarial machine learning in
steganalysis

Deep learning-based steganalysis encounters an increasing

difficulty from adversarial machine learning because attackers can

modify images, which causes detection models to become

misdirected. Adversarial attacks use tiny, unperceivable

modifications on images, making deep learning models falsely

identify stego and cover images and significantly reduce detection

success (De La Croix et al., 2024; Qin et al., 2020; Alzubi et al.,

2024). Attackers use technological vulnerabilities in CNN-based

architecture to subtly modify learned feature patterns that result

in detection avoidance. The main defense against adversarial

attacks uses adversarial training to expose deep learning systems

to clean and artificially perturbed images, enhancing their ability

to resist such threats (Eid et al., 2022). Through this method,

the model gains improved capabilities to detect modified data

while enhancing its functionality in challenging attack situations.

GANs are a mechanism to develop adversarial perturbations

that mimic steganographic elements that enhance data variety

and model resistance (Kuchumova et al., 2024). One can detect

steganographic content using advanced adaptive methods by

employing GAN-based steganalysis. The stronger robustness

achieved through adversarial learning comes with increased

difficulty during computation and an ongoing need for adapting to

new enemy approaches.

2.6 Machine learning feature selection in
steganalysis

The success of steganalysis models depends heavily on feature

selection because it boosts detection precision through improved

computation performance. Models using semi-supervised

feature selection methods produce better outcomes while using

unannotated data in combination with labeled data (Farooq and

Selwal, 2023). Such techniques extract data’s most useful stego

detection features by eliminating excessive or noisy elements to

improve model predictive abilities. The hypergraph Laplacian-

based feature discrimination technology enables superior feature

relationship detection using pixel value mathematics to depict

high-order dependencies (Mikhail et al., 2023). The improved

feature contrast in this method assists steganalysis models in

detecting stego images from cover images more efficiently when

applied to different transformations. Model efficiency is boosted

through dimensionality reduction techniques such as Principal

Component Analysis (PCA) and autoencoders because these

methods select only relevant features to eliminate unimportant

ones (Li et al., 2024). These methods diminish computational

charges and boost model stability by overfitting limitations,

especially for deep learning-based steganalysis applications.

Choosing optimal features across multiple datasets presents

challenges for researchers who need to explore better automatic

and data-driven feature selection methods.

2.7 Research gaps

The current state of deep learning-based steganalysis

models faces crucial obstacles while handling genuine image

transformations because they generally operate on untampered

datasets yet encounter difficulties when presented with

compression, resizing, and noise impairments (Farooq and

Selwal, 2023). Detected performance remains weak because

adversarial attacks and lack of adversity robustness combine to

create small imperceptible perturbations that lead steganalysis

models into misclassifying content (De La Croix et al., 2024).

Domain adaptation techniques need to be implemented because
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they strengthen networks through training with multiple image

transformations, improving model performance in different

operational conditions. Self-supervised learning has proven to

be a promising solution because it enables models to extract

robust data representations from unlabeled information sources

while omitting the need for extensive manual labeling of datasets

(Mikhail et al., 2023). Ensemble learning techniques utilizing

several steganalysis models enhance generalization by combining

different detection methods (Eid et al., 2022). The development

of steganalysis solutions should prioritize integrating adversarial

training with self-supervised learning and ensemble methodologies

to produce models that deliver reliable detection precision across

different transformations and adversarial attack circumstances in

real-world contexts.

3 Methodology

3.1 Dataset selection

This paper focused on the BOSSBase dataset. It is sourced from

(https://dde.binghamton.edu/download/ImageDB/BOSSbase_

1.01.zip) and is among the most well-known and applied in

works related to steganalysis (Bas et al., 2011). The BOSSBase

was specially designed to properly compare results pertaining to

the steganalysis model performance. This dataset includes 10,000

grayscale images with 512 × 512-pixel dimensions each. Such a

dataset is good for testing model accuracy and robustness (Mo

et al., 2023). According to Eid et al. (2022), all images in BOSSBase

do not contain transformations or compression artifacts, providing

a clear ground to embed steganographic content. Its popularity

among researchers has resulted in many studies concerning

different steganography and steganalysis methods, making it

suitable for benchmarking. According to Shehab and Alhaddad

(2022), BOSSBase has high-resolution images, and transformations

such as resampling and recompression will introduce detectable

variations; thus, these are good test conditions.

3.2 Steganographic techniques

In this study, we adopt the famous LSB embedding and

recent HUGO and UNIWARD as representative steganographic

techniques due to their diverse principles and representativeness

in contemporary studies of steganalysis. The selection of LSB

embedding is due to its simplicity. Though weak against various

statistical detections, its usage provides a way to quantify the

capability of any steganalysis model to detect subtle changes in pixel

values (Ray et al., 2021). HUGO was selected because its adaptive

embedding rule focuses on complex regions (Mikhail et al., 2023).

Hence, it is more befitting for the steganalysis process. UNIWARD

operates in the wavelet domain and represents one of the state-

of-the-art steganographic methods minimizing visible distortions

(Selvaraj et al., 2021). As a result, it is advantageous as it imposes a

tough test of our model’s robustness.

LSB embedding refers to data concealment in the least

significant bits of pixel values by modifying the bits; therefore,

statistical methods make it simple and detectable (Hussain et al.,

2020; Ye et al., 2017). HUGO develops further, embedding data in

high-complexity regions to reduce the detectability over smoother

areas, thus contributing to our work on testing the models under

difficult conditions (Himthani et al., 2022; Tang et al., 2023).

UNIWARD seeks to minimize these embedding distortions by

operating in the wavelet domain, a very important domain when

evaluating the efficiency of given steganalysis models in finding

advanced techniques that effectively obscure changes.

3.3 Applied image transformations

The dataset included four standard image manipulations

representing real-life situations: resizing and compression,

cropping, and noise addition. The process of resizing deforms

picture dimensions, thus affecting data spatial positioning and

concealing patterns that steganalysis software could potentially

identify (Martín et al., 2023). The research adopted 256 × 256

pixels as the appropriate image scale because it represents standard

web display andmobile device compatibility requirements. Bilinear

interpolation is the mathematical framework for resizing, where it

calculates pixel intensity value (x, y) in a resized image by averaging

weighted pixel values in the original image (Zhou et al., 2017).

I
′ (

x, y
)

=

1
∑

i=0

1
∑

j=0

wijI
(

xi, yj
)

The intensity of a resized pixel at point (x, y) equals

I
′

(x, y) and depends on I(xi, yj) from its four surrounding

original pixels multiplied by weights wij. Bilinear interpolation

maintains continuous image transitions in resized pictures but

alters the essential pixel-level connection selection systems used for

steganalysis (Zhou et al., 2017).

Images subjected to compression maintain their visual quality

while removing irrelevant information, which decreases file size.

The Discrete Cosine Transform (DCT) and frequency domain

transformation enable JPEG compression to reach its lossy

compression goals by converting images to frequency coefficients

followed by coefficient quantization (Wang and Mukherjee, 2023).

The transformation is defined as:

F (u, v) =
1

4

N−1
∑

x=0

N−1
∑

y=0

I
(

x, y
)

cos

[

(2x+ 1) uπ

2N

]

cos

[

(

2y+ 1
)

vπ

2N

]

The intensity measurement of pixel position (x, y) in function

I(x, y) falls under block dimensions N (typically 8 × 8 pixels in

JPEG), and F(u, v) represents transformed frequency coefficients.

The image details contained in higher-frequency frequency

coefficients tend to experience more aggressive quantization that

results in steganographic content removal. Researched work

employed JPEG compression at 70% quality levels to represent

standard digital media compression techniques (Haron et al., 2021).

The removal of sectioned image areas through cropping

functions to eliminate possible steganographic material present in

the regions. This transformation is mathematically represented as:
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I
′ (

x, y
)

=

{

I
(

x+ xc, y+ yc
)

, if 0 ≤ x < wc, 0 ≤ y < hc
0, otherwise

The coordinates (xc, yc) represent the starting top left point

of the section, while (wc, hc) stands for its final dimensions. This

research included extraction of 128 × 128 regions from image

central sections because such edits frequently occur in practice

to improve aesthetics or enhance focus. Removing embedded

steganographic signal content becomes possible through image

cropping, which damages the functionality of steganalysis detection

models (Mo et al., 2023).

Random alterations to pixel values through noise addition

generate effects representing sensor noise and environmental

distortions. The image processing industry widely uses Gaussian

noise, and its distribution pattern matches the normal distribution

(Aloraini et al., 2022).

I
′ (

x, y
)

= I
(

x, y
)

+ N
(

0, σ 2
)

The distribution N (0,σ2) represents Gaussian statistics with

zero mean and variance σ
2 that determines noise intensity. The

authors added Gaussian noise at a standard deviation of 10 to

duplicate real-world distortions affecting steganographic signal

detection. Noise irregularities among pixel values make message

detection through steganalysis challenging since these models

require spatial consistency to analyze steganographic content

(Kheddar et al., 2024).

3.4 Steganalysis models used

3.4.1 Model selection
The evaluation of image transformation robustness among

steganalysis models was drawn from five different models,

including Xu-Net, Yedroudj-Net, SRNet, ResNet, and EfficientNet.

The research team used these models because they successfully

detect steganographic data through different steganalysis activities

and represent distinct architectural frameworks (Mo et al., 2023).

These models were selected because researchers previously used

them in published work and because their different feature

extraction methods and architecture variations enabled robustness

comparison while transforming (Liu et al., 2023). The analysis

excluded alternative architectures such as Vision Transformers

(ViTs), Swin Transformers, and hybrid deep learning models since

they showed limited validation in steganalysis-specific applications

and required significant computational resources (Saxena et al.,

2023).

The CNN-based Xu-Net model was specifically created for

steganalysis purposes through a series of multiple convolutional

layers that concentrate on recognizing vital high-frequency

characteristics for detecting hidden data patterns (Wani and Sultan,

2023; Tseng and Leng, 2023). The model faces high sensitivity to

noise and compression effects because it extracts features locally

from a shallow architecture. Yedroudj-Net improves regular CNN

systems through extra pre-processing sections to boost detection

quality for stego signals at low visibility levels when working

with complex and noisy environments (Vijjapu et al., 2023). This

enhancement in adaptability does not solve the problem of major

performance degradation when the model encounters significant

changes because it depends on pixel-level features.

SRNet seems to be one of the most versatile models from

previous research because it uniquely supports spatial domains

and frequency domain steganalysis (Hu et al., 2018). Because of

its complex architectural structure, the model extracts hierarchical

features that lead to better adaptability with various embedding

approaches, including adaptive techniques such as UNIWARD.

Meanwhile, depth brings increased computational overhead to

the system, which might affect real-time detection performance.

ResNet’s deep learning model uses residual connections to prevent

gradient degradation while extending the network training depth

and maintaining feature consistency between layers (Kuchumova

et al., 2024). The resilience of ResNet models to transformations

exists at a moderate level since predefined convolutional kernels

constrain their adaptability when faced with severe changes.

We chose EfficientNet because it combines efficient network

scaling with accuracy preservation through well-balanced depth,

width, and resolution optimization (Selvaraj et al., 2021).

Incorporating squeeze-and-excitation layers in EfficientNet allows

it to automatically rewrite feature weights to become stable against

resizing and compression transformations. Due to its exceptional

capability for generalization and compact design structure, this

system is an efficient tool for precise practical applications where

speed matters (Saxena et al., 2023).

3.4.2 Training paradigm and bias considerations
All models received baseline training from unmodified images

found in BOSSBase before the study to establish a controlled

baseline assessment. The analysis focused on the models’ inherent

generalization abilities since they received no modified image

training, which evaluated their capacity to handle distortions

in real-life applications. The assessment method objectively

evaluatesmodel performance retention after training without direct

transformation exposure (Mo et al., 2023). Model performance

assessments for robustness become biased when training them

exclusively on pristine images because they fail to handle new

distortion patterns they encounter after deployment (Farooq and

Selwal, 2023). Research exploring two enhancement methods,

transfer learning and adversarial fine-tuning, should assess their

effectiveness for better model performance in transformed domains

(Qin et al., 2020). Training models with augmented transformed

data and adversarial methods for perturbation resistance would

effectively lower the bias results shown during this research

investigation. Self-supervised learning methods are promising in

improving model robustness because models learn features that

remain invariant across multiple transformations (Eid et al., 2022).

3.5 Experimental design

All steganalysis models underwent training on the original

BOSSBase images without modifications to develop their capability
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to distinguish between cover and stego images in standardized

tests. The training and validation splits contained 80 and 20%,

respectively, and no image modifications were present during the

training process. The baseline performance was a fair assessment

tool for all models since the training established a standardized

metric before introducing transformation methods. After training,

the models received their final evaluation through testing on

transformed datasets containing images from variousmodifications

such as size alterations, image compression, cropping, and

addition of noise to verify their operational capability in real-

world distortion scenarios (Progonov, 2021). Evaluation of

these untrained models served to assess their capacity for

correctly interpreting unfamiliar modifications since they had not

received transformations during training. Tracing models using

only original images creates biases because they may perform

inadequately when presented with newmodifications they have not

experienced (Farooq and Selwal, 2023).

The evaluation process is fair because the assessment applied

equivalent modifications to cover and stego images. The evaluation

of each model functioned through accuracy, precision, recall, and

F1-score and AUC metrics to deliver complete insights regarding

steganalysis transformation effects (Sultan and El Sayed, 2024).

Every model received Adam optimizer training at a 0.001 learning

rate until convergence after 20 epochs. Stegano analysis was a

two-class challenge for detecting cover and stego images using

cross-entropy loss for performance measurement (Kuznetsov et al.,

2024). The method delivers effective robustness evaluation but

indicates model training should be performed on transformed

datasets with diverse distortions for better adaptability. Future

research about steganalysis models needs to study adversarial

training, transfer learning, and ensemble learning to boost their

capacity for detecting stego content during image modifications

(Eid et al., 2022; Qin et al., 2020).

3.6 Evaluation metrics

The model performance assessment included six vital metrics:

accuracy, precision, recall, F1-score, specificity, and Area Under

the Curve (AUC)/Receiver Operating Characteristics (ROC). The

proportion of proper image classifications defines Accuracy as

a general performance indicator. Precision identifies the correct

stego images concealed within the classifier results tominimize false

and true positive cases (Liu et al., 2022). The model’s detection

capability of stego images appears in Recall, while the F1-score

serves as an important metric for balancing precision and recall,

particularly in imbalanced dataset conditions. The True Positive

Rate (sensitivity) represents the relationship between the False

Positive Rate (1-specificity) across various classification thresholds

depicted in ROC curves, which evaluate detection performance

(Reinel et al., 2019). The discrimination power of a model,

expressed as AUC, ranges from 1.0 to 0.5, respectively, indicating

the perfect classification and random guessing (Reinel et al.,

2019). Such conventional metrics cannot provide proper insights

regarding system resilience when pictures undergo modification.

Further metrics were considered to achieve better robustness

assessment. Perturbation Sensitivity (PS) determines the extent to

which prediction results from a model shift as the model adjusts to

small incremental changes (Na et al., 2021). Mathematically, it is

defined as:

PS =
1

N

N
∑

i=1

|Ai − Ai−1|

Ai represents accuracy levels measured after the ith

transformation, whereas N indicates the total number of

transformations. The PS measure increases when a minimal

perturbation leads to major accuracy loss, which shows poor

performance (Sharma and Garg, 2024).

The model performance decreases amid transformations

became visible through Degradation Curves (Jung et al., 2021). The

assessment measured progressive accuracy changes across various

transformation intensity points. Performance measurements were

collected along the transformation intensity path (for example,

through increasing compression levels, noise variance, and scaling

factors). To determine the degradation rate, this formula applies:

D =
A0 − AT

T

The value A0 represents baseline image accuracy, AT shows

accuracy following severe transformations, and T represents

transformation step count. The model maintains higher

accuracy when it faces fewer degradation steps during the

transformation process.

The Resilience Threshold (RT) measurement is suitable to

determine the acceptable performance deterioration level (Bieniasz

et al., 2022). The measurement point is defined when accuracy

falls beneath an essential threshold established as 50% accuracy

for binary classifiers. The measure aids in determining the

acceptable operational limits of steganalysis systems for practical

usage assessments.

4 Results

4.1 Baseline model performance

Each steganalysis model was tested on untransformed images

in the baseline performance evaluation to reference accuracy,

precision, recall, F1-score, and specificity. EfficientNet yielded the

best scores in all metrics with an accuracy of 80.56% and a recall

of 76.67% (Table 1), which indeed shows its strong capability in

detecting steganographic content, maintaining a balance between

false positives and false negatives as shown by its confusion matrix

in Figure 1 of 700 false positives and 1,050 false negatives. While

performing fairly, SRNet followed closely to yield an accuracy of

78.89% and a precision of 81.68%, supported by moderate false

positive counts of 750 and false negative counts of 1,150; hence, its

effectiveness for the correct classification of stego images.

ResNet achieved midfield scores of 74.44% and a specificity of

78.88%, placing it as a reliable model but with a higher count of false

positives at 950 and false negatives at 1,300, a result of its moderate

robustness. Other lower models include Xu-Net and Yedroudj-

Net, where the former achieved an accuracy of 73.33%, while the
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latter achieved the lowest accuracy of 72.22%. The high number of

misclassifications−1,200 false positives and 1,650 false negatives—

in Yedroudj-Net puts its inefficiency in pinpointing steganographic

content into perspective. These base results, augmented by the

confusion matrices in Figure 1, constitute a basic model robustness

comparison under several transformations.

The ROC curves for each steganalysis model capture each

model’s differing powers in distinguishing between cover and stego

images. EfficientNet has the highest AUC, with 0.51 (outperforming

the random classifier baseline AUC, AUC= 0.50), and is marginally

better than random in distinguishing image types. SRNet follows

this at an AUC of 0.49 and then ResNet at 0.46, though these

models have shown only moderate and limited discriminative

power, respectively. The AUCs of Xu-Net and Yedroudj-Net shown

in Figure 2 are the smallest, at 0.44 and 0.42, respectively, indicating

TABLE 1 Baseline model comparison.

Model Accuracy Precision Recall F1-
Score

Specificity

EfficientNet 80.56% 83.13% 76.67% 79.79% 84.44%

SRNet 78.89% 81.68% 74.42% 77.89% 83.33%

ResNet 74.44% 76.56% 70.48% 73.41% 78.88%

Xu-Net 73.33% 72.50% 65.91% 69.08% 75.56%

Yedroudj-Net 72.22% 69.63% 62.50% 65.85% 73.33%

the least separating capability for true positive vs. false positive

rates. These low AUC values across the board hint at the fact

that the applied transformations in all of these models may have

drastically affected the robustness of the models and brought them

down to near-random classification. The given analysis underlines

the problem of satisfying adequate reliability of steganalysis in cases

of different varieties of image transforms.

4.2 Impact of individual transformations

The impact of transformations underlines significant gaps in

the robustness of all modifications, as evidenced in Table 2. The

EfficientNet model resists changes: the accuracy decreases from

80.56 to 78.10% with resizing, reducing further to 73.50%, the

hardest transformation-noise addition. Its precision and recall

are generally stable in all conditions, efficiently adapting to

various image changes. SRNet follows closely, with the accuracy

dropping from 78.89 to 76.20% under resizing and 71.80%

under noise addition. However, its recall is more affected across

transformations, indicating a tendency for missed detections

under complex conditions such as compression and noise. While

moderately robust, ResNet sees an accuracy drop to 69.20% under

compression and 68.00% under noise, with proportional drops

in precision and recall, evidence of the challenges in adapting

to heavy distortions. Among them, Xu-Net and Yedroudj-Net

are the least robust: compressions yield performances as low as

FIGURE 1

Confusion matrices for steganalysis models.
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FIGURE 2

ROC curves for steganalysis models.

TABLE 2 Individual model performance comparison with transformation.

Model Metric Baseline Resizing Compression Cropping Noise addition

EfficientNet Accuracy 80.56% 78.10% 75.30% 79.20% 73.50%

Precision 83.13% 80.50% 77.90% 82.00% 75.60%

Recall 76.67% 74.20% 72.50% 75.80% 70.30%

F1-Score 79.79% 77.20% 75.10% 78.90% 72.70%

SRNet Accuracy 78.89% 76.20% 73.40% 76.90% 71.80%

Precision 81.68% 78.60% 75.80% 79.80% 74.10%

Recall 74.42% 72.10% 69.80% 73.00% 68.00%

F1-Score 77.89% 75.20% 72.60% 76.30% 70.90%

ResNet Accuracy 74.44% 71.80% 69.20% 72.40% 68.00%

Precision 76.56% 73.50% 71.00% 74.20% 69.10%

Recall 70.48% 68.00% 66.00% 69.30% 64.20%

F1-Score 73.41% 70.60% 68.40% 71.50% 66.50%

Xu-Net Accuracy 73.33% 70.20% 67.80% 71.00% 66.30%

Precision 72.50% 69.10% 66.40% 70.20% 65.50%

Recall 65.91% 63.20% 61.00% 64.70% 59.50%

F1-Score 69.08% 66.10% 63.60% 67.30% 62.20%

Yedroudj-Net Accuracy 72.22% 69.00% 66.30% 69.80% 65.20%

Precision 69.63% 66.40% 64.00% 67.50% 63.00%

Recall 62.50% 60.10% 58.00% 61.30% 56.20%

F1-Score 65.85% 63.10% 61.00% 64.10% 59.20%
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FIGURE 3

Accuracy drops across transformations.

67.80% and 66.30%, while noisy versions yield 66.30 and 65.20%,

respectively. Most specifically, Yedroudj-Net suffers from severe

recall degradation, down to 56.20%, which underlines its limited

detection capability concerning stego content. On all kinds of

transformations, EfficientNet and SRNet are the most adaptable.

At the same time, for Xu-Net and Yedroudj-Net, the performance

decrease is quite significant-especially when noise and compression

are applied.

4.3 Comparative analysis of
transformations

The comparative study evaluated transformations based on

accuracy measurement because this metric effectively determines

model stability (Himthani et al., 2022). The heat map in Figure 3

shows how different transformations affect the resilience levels of

each model. The adaptability of EfficientNet reached its peak when

subjected to cropping since it maintained a loss in accuracy at

only 1.36% while preserving key feature representations following

modifications to spatial dimensions. All models experienced

difficulties with random pixel alterations because they resulted in

a 7.06% accuracy decrease.

The squeeze-and-excitation (SE) layers within EfficientNet

reevaluate feature importance dynamically because they protect

vital steganographic patterns during transformations (Selvaraj

et al., 2021). The compound scaling method employed by this

model uses depth, width, and resolution settings to achieve

balanced feature extraction and reduced sensitivity to image

distortions. The structure of EfficientNet differentiates itself

from standard CNNs due to its proper handling of overall

contextual information, leading to improved robustness against

transformations, including resizing and compression (Tseng and

Leng, 2023). SRNet performs similarly to EfficientNet when it

comes to resistance against transformations. Yet, it demonstrates

a 7.09% accuracy reduction when noise is added to the images,

indicating pixel-level disruptions affect its performance. Under

noise distortions, ResNet demonstrated average resistance through

its residual connections, which caused a 6.44% accuracy drop

(Kuchumova et al., 2024).

The performance metrics of Xu-Net and Yedroudj-Net showed

the sharpest decrease when subjected to the tests. The accuracy

level of Xu-Net was reduced by 5.92% when subjected to

compression and dropped another 7.02% after noise addition to the

images (Wani and Sultan, 2023). Utilizing high-frequency localized

patterns in the approach creates weaknesses that tend to fail when

lossy compression affects these patterns or pixel distortions occur.

The performance of Yedroudj-Net decreased by 7.02% under noise

additions and reached its breaking point when images were resized,

indicating that structural images present a core weakness in their

adaptability (Vijjapu et al., 2023).

The testing demonstrated that EfficientNet and SRNet

presented the highest model resilience toward resizing and

compression while cropping effects decreased, but noise was

difficult to overcome. The limited hierarchical learning capabilities

of Xu-Net and Yedroudj-Net caused a degradation in performance

compared to other transformations that reshaped pixel distribution
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TABLE 3 Robustness-specific metrics.

Model Perturbation
sensitivity (PS)

Degradation
rate (D)

Resilience
threshold (RT)

EfficientNet 3.7150 1.7650 Above 70%

SRNet 3.5225 1.7725 Above 70%

ResNet 3.2100 1.6100 Compression

Xu-Net 3.3575 1.7575 Compression

Yedroudj-Net 3.5050 1.7550 Resizing

patterns. The obtained results highlight why strong feature

selection procedures must exist to secure the reliability of

steganalysis models.

4.4 Robustness-specific metrics

Each robustness-specific standard offers detailed information

about model behavior when changes happen progressively. As

evidenced in Table 3, the highest level of resilience exists in

EfficientNet and SRNet since their accuracy remains above 70%

across all transformations, confirming their strong generalization

capability and architectural adaptability. The degradation of

these networks occurs more gradually because their respective

degradation rates amount to 1.765 and 1.7725. EfficientNet

demonstrates superior functionality during incremental

transformations due to its Perturbation Sensitivity score of

3.715, thus making it more suitable for detecting steganographic

signals in image content that undergo various types of distortions.

ResNet, Xu-Net, and Yedroudj-Net display their performance

decline after reaching their resilience threshold when compressed

or resized because they lack effectiveness with these modifications.

The detection ability of Yedroudj-Net gets severely affected by

minor modifications because it exceeds its 70% accuracy threshold

during resizing operations. Xu-Net and Yedroudj-Net exhibit

unstable behavioral changes based on their high Perturbation

Sensitivity values measuring 3.3575 and 3.505, respectively,

throughout progressive transformations. The results show that

shallower networks maintain poor feature preservation skills when

applied image distortions.

5 Discussion

Model architecture is essential for determining how resistant

steganalysis models are when facing real-world transformation

challenges. The robustness performance of EfficientNet was

superior when tested against multiple image alterations because

of its compound scaling model design (Płachta et al., 2022).

Steganographic signals benefit from adaptive scaling and attention

mechanisms, so models like squeeze-and-excitation layers succeed

at maintaining such signals while they change. Xu-Net and

Yedroudj-Net failed to maintain efficient performance under noise

addition and compression mainly because these models rely on

simple convolutional layers and insufficient hierarchical extraction

of features (Duan et al., 2020). The research data demonstrates

how steganalysis systems should employ more advanced network

architectures and recalibration strategies to enhance their ability to

work in evolving environments.

The evaluation of model prediction alterations reveals

systematic errors that certain image alterations cause during

testing. JPEG compression produces unwanted results by damaging

frequency-based artifacts essential for modern steganalysis

processes (Zeng et al., 2017). Noise addition damages spatial

consistency, which causes an increased number of incorrect

classifications in models that rely on localized feature extraction,

such as Xu-Net and Yedroudj-Net (Ruan et al., 2020). Real-world

image artifacts create performance degradations in steganalysis

models, so adversarial techniques must be developed to improve

their robustness against noise using noise-resistant feature

mapping and self-supervised learning. Research should develop

methods to train models with adversarial techniques that boost

their defense against unintentional disturbances.

By using deep learning concepts, it becomes evident that

the study’s observations match concepts of feature invariance

and adversarial robustness. The robustness of EfficientNet is

achieved through bottleneck layers, which maintain vital feature

representations while eliminating noise, thus making the model

ready for generalized transformation detection (Saxena et al., 2023).

Xu-Net faces degradation when dealing with distortions because

it does not perform hierarchical feature aggregation (Tang et al.,

2023). Steganalysis models of the future must implement multi-

scale feature extraction and adaptive learning methods because

they will enhance their capability to resist transformations (Apau

et al., 2024, 2023). Research should assess the possibilities of adding

self-attention mechanisms to transformer-based architectures

because they improve long-range feature dependency and real-

world performance.

The practical value of these research findings reaches vital

areas, including cybersecurity and digital forensics alongside covert

communications detection. Digital forensic investigations rely on

reliable steganalysis algorithms to find concealed information in

tampered images because adversaries manipulate files to hide

their messages (Eid et al., 2022). Applications in cybersecurity

need defense mechanisms that detect steganographic threats

that attackers embed inside modified multimedia files. Reliable

steganalysis models serve security operations by helping detect

hidden communication networks that usemodified images to evade

detection. Enhanced robust models for digital security require

immediate development because they will aid the counteraction

of advanced steganographic techniques while ensuring stronger

security measures against image modifications.

6 Conclusion

6.1 Summary of the study and findings

The paper studied deep learning steganalysis models’ resistance

levels through tests involving image size modifications, JPEG

compression, spatial distortions, and noise perturbations. The

study shows that EfficientNet and SRNet operate better than Xu-

Net and Yedroudj-Net for preserving feature patterns because

of their adaptive scaling features and hierarchical extraction

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2025.1532895
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Alrusaini 10.3389/frai.2025.1532895

methods. According to research results, noise addition is the

most harmful modification technique, which reduces every

model’s detection precision, especially among those without

adaptive feature adaptation systems. The residual connections

in ResNet minimized performance degradation under adversarial

distortions, yet the model still showed vulnerability in these

conditions. The study demonstrates that detection accuracy

needs robust model architectures to maintain stability during

real-world transformations, which are significant in digital

forensics, cybersecurity, and covert communications detection. A

comparative analysis in this research guides experts and researchers

in choosing models that balance performance and operational

speed within steganalysis systems.

6.2 Contributions to literature

The research adds valuable information to the existing

literature because it presents an organized evaluation of deep

learning steganalysis models within real-world distortion

conditions, which extends beyond the unmodified dataset

evaluations documented in previous studies. The study

advances existing work focused on feature statistics because

it investigates how hierarchical aspects with activation functions

and scaling controls protect against transformations. The research

demonstrates that EfficientNet enhances adaptability through

its squeeze-and-excitation layers, yet Xu-Net and Yedroudj-Net

demonstrate weaknesses because of their simple architectural

structure. Thanks to this study, researchers now understand

better why adversarial robustness is essential because they identify

self-supervised learning and domain adaptation techniques as

future directions. This research aids researchers by offering a

comprehensive architectural assessment to make strategic model

choices, leading them toward more durable steganalysis solutions

for practical applications.

6.3 Practical benefits of the study

The research delivers helpful information that benefits digital

forensic experts, cybersecurity specialists, and media investigators

because these specialists need reliable steganalysis models to find

concealed information. The findings about EfficientNet and SRNet

as leading transformation-resilient architectures enable security

professionals to pick detection models with substantial accuracy

under natural image distortions. The findings from the study teach

steganalysis software developers about activation function and

hierarchical feature extraction’s impact onmodel robustness, which

leads to the creation of more potent algorithm designs. The study

shows how adversarial attacks create safety hazards, motivating

security researchers to use adversarial training methods to oppose

steganographic concealment. The ability of forensic analysts to

understand model transformation susceptibility enables improved

image pre-processing, increasing the effectiveness of detecting

steganographic techniques in practical investigations. The study

contributes to building better resilient steganalysis frameworks that

organizations can use to secure digital environments and observe

hidden communications better.

6.4 Limitations

The research reported essential findings about the robustness

of the steganalysis model, although it included specific restrictions.

The study examined only four image transformations but did not

include real-world image distortions, including blurring, rotational,

or contrast changes. The evaluation focused on only a selection

of CNN-based models, thus making the results unsuitable for

general application toward emerging models, including Vision

Transformers (ViTs) and hybrid deep learning models. Adversarial

robustness testing was not specified, even though it represents

a crucial aspect of deep learning-based steganalysis. The testing

dataset contained sufficient numbers for performance evaluation

but failed to achieve adequate diversity in real-world images, which

could limit general operation effectiveness. Additional research

should tackle these present restrictions to improvemodel scalability

across different operational domains.

6.5 Future research

Future investigation should address model robustness by

applying a broad spectrum of image alterations, such as image

blurring and contrast changes, rotational distortions, and

adversarial perturbations. Self-supervised learning provides value

to model generalization through its ability to extract invariant

features directly from unlabeled data. Using adversarial training

allows the development of steganalysis models that defend against

stealthy perturbations seeking to deceive their analyses. Combining

processing pre-trained models on modified steganographic

datasets through fine-tuning techniques should help combat

accuracy fluctuations from distortions. In contrast, attention-based

mechanism selections help models focus on important image

areas. Combining multiple detection models through ensemble

learning strategies enhances accuracy and reliability by enabling

each model to handle particular transformations’ vulnerabilities.

Research expansion in these areas will help create frameworks

possessing both high adaptation and transformation resilience

for steganalysis.
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