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Stroke volume (SV) is a major indicator of cardiovascular function, providing 
essential information about heart performance and blood flow adequacy. Accurate 
SV measurement is particularly important for assessing patients with heart failure, 
managing patients undergoing major surgeries, and delivering optimal care in 
critical settings. Traditional methods for estimating SV, such as thermodilution, are 
invasive and unsuitable for routine diagnostics. Non-invasive techniques, although 
safer and more accessible, often lack the precision and user-friendliness needed 
for continuous bedside monitoring. We developed a modified method for SV 
estimation that combines a validated 1-D model of the systemic circulation with 
machine learning. Our approach replaces the traditional optimization process 
developed in our previous work, with a regression method, utilizing an in silico-
generated dataset of various hemodynamic profiles to create a gradient boosting 
regression-enabled SV estimator. This dataset accurately mimics the dynamic 
characteristics of the 1-D model, allowing for precise SV predictions without 
resource-intensive parameter adjustments. We evaluated our method against 
SV values derived from the gold standard thermodilution method in 24 patients. 
The results demonstrated that our approach provides a satisfactory agreement 
between the predicted and reference data, with a MAE of 16 mL, a normalized 
RMSE of 21%, a bias of −9.2 mL, and limits of agreement (LoA) of [−47, 28] mL. A 
correlation coefficient of r = 0.7 (p < 0.05) was reported, with the predicted SV 
slightly underestimated (68 ± 23 mL) in comparison to the reference SV (77 ± 26 mL). 
The significant reduction in computational time of our method for SV assessment 
should make it suitable for real-time clinical applications.

KEYWORDS

cardiac output, non-invasive monitoring, hemodynamics, blood pressure, supervised 
learning, gradient boosting

OPEN ACCESS

EDITED BY

Tim Hulsen,  
Rotterdam University of Applied Sciences, 
Netherlands

REVIEWED BY

Vasilios E. Papaioannou,  
Democritus University of Thrace, Greece
Ajey Kumar,  
Symbiosis International (Deemed University), 
India

*CORRESPONDENCE

Vasiliki (Vicky) Bikia  
 bikia@stanford.edu

RECEIVED 18 November 2024
ACCEPTED 28 February 2025
PUBLISHED 18 March 2025

CITATION

Bikia VV, Adamopoulos D, Roffi M, Rovas G, 
Noble S, Mach F and Stergiopulos N (2025) 
Testing an inverse modeling approach with 
gradient boosting regression for stroke 
volume estimation using patient 
thermodilution data.
Front. Artif. Intell. 8:1530453.
doi: 10.3389/frai.2025.1530453

COPYRIGHT

© 2025 Bikia, Adamopoulos, Roffi, Rovas, 
Noble, Mach and Stergiopulos. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Methods
PUBLISHED 18 March 2025
DOI 10.3389/frai.2025.1530453

https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1530453&domain=pdf&date_stamp=2025-03-18
https://www.frontiersin.org/articles/10.3389/frai.2025.1530453/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1530453/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1530453/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1530453/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1530453/full
mailto:bikia@stanford.edu
https://doi.org/10.3389/frai.2025.1530453
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1530453


Bikia et al. 10.3389/frai.2025.1530453

Frontiers in Artificial Intelligence 02 frontiersin.org

1 Introduction

Monitoring stroke volume (SV) is critical in clinical practice as it 
provides essential information about the heart’s performance and 
blood flow adequacy. Accurate SV measurement enables healthcare 
professionals to assess cardiac function efficiency, identify circulation 
abnormalities, and guide treatment decisions. This is particularly 
important for the management of patients with cardiac diseases, heart 
failure, or those undergoing major surgeries or critical care 
(Berkenstadt et al., 2001; McKendry et al., 2004; Lees et al., 2009), in 
order to optimize interventions and prevent complications.

Monitoring biomarkers for vascular and cardiac function plays a 
crucial role in identifying, treating, and evaluating cardiovascular 
diseases (Vincent et al., 2015). SV, a major parameter of cardiovascular 
function, reflects the interdependent performance of the heart and 
major blood vessels. However, the hemodynamic management of 
patients using SV remains limited, with patient care primarily guided 
by simple brachial cuff blood pressure (BP) observations alone 
(Phillips et al., 2017). Such approaches compromise the usefulness and 
effectiveness of hemodynamically-guided interventions (Thiel et al., 
2009; Meng and Heerdt, 2016).

Thermodilution is considered one of the most reliable and 
accurate clinical techniques for estimating cardiac output (CO), 
positioned between the direct Fick method and the indirect Fick 
method. Stroke volume (SV) is then calculated by dividing CO by 
heart rate (HR). However, thermodilution is highly invasive and 
carries a risk of complications, making it unsuitable for routine use. 
To overcome these limitations, several less but still invasive methods 
for assessing CO and SV have been developed (Cholley and Singer, 
2003; Udy et al., 2012; Jansen et al., 2001), including pulse contour 
analysis or esophageal Doppler. Yet, their relative invasiveness 
precludes their use for routine clinical examinations. Alternatively, 
non-invasive techniques such as inert gas rebreathing, doppler 
ultrasound, or magnetic resonance imaging (MRI) have been used 
(Phillips et al., 2017; Guzzetti et al., 2021; Middlemiss et al., 2019). 
While these methods are non-invasive and reasonably accurate, they 
are expensive, and require costly equipment and expert staff (Porter 
et al., 2015). Moreover, none of these methods can be applied for 
continuous bedside monitoring of SV.

In our prior research, we utilized a one-dimensional (1-D) model 
of the systemic circulation (Reymond et  al., 2009), adjusting its 
parameters iteratively through multiple runs to derive a personalized 
profile of an individual’s arterial hemodynamics, and thus estimate 
SV. Specifically, we applied an inverse-problem solving method to 
obtain non-invasive estimates of mean aortic flow using age, weight, 
height, and measurements of brachial BP and carotid-femoral pulse 
wave velocity (cfPWV) (Bikia et al., 2020). CfPWV can be routinely 
measured in clinical practice, by calculating the speed at which the 
blood pressure pulse travels from the carotid artery in the neck to the 
femoral artery in the thigh. The calculation of cfPWV involves two key 
components: the estimation of L, the distance between these two 
arterial sites, and the measurement of the pulse transit time (Δt). The 
approximation of L is typically based on the surface distance between 
the two sites, adjusted to more closely match the path that the pulse 
wave follows through the body’s arterial network. Often, this involves 
subtracting a fixed distance from the direct path to better approximate 
the actual arterial distance, enhancing the accuracy of the cfPWV 
calculation. The pulse transit time, Δt, is measured as the time 

difference between the arrival of the pulse wave at the carotid artery 
and its arrival at the femoral artery, typically using sensors placed at 
both sites. The cfPWV is then calculated using the formula 
cfPWV = L/Δt (Figure 1). CfPWV exhibits satisfactory repeatability, 
and has been identified as an independent predictor of clinical 
outcomes (Laurent et  al., 2006), making it a valuable addition to 
routine BP measurements in risk assessments. Despite the promising 
results we received while comparing the predictions to reference data 
in our previous works (Bikia et  al., 2020; Bikia et  al., 2022), this 
approach proved to be time-consuming, limiting its potential for real-
time monitoring applications.

Machine learning has created tremendous opportunities in the 
field of health monitoring and prognostics by providing higher 
quality data insights, due to advanced models and low inference 
time (Bikia et  al., 2021; Wang et  al., 2022; Panch et  al., 2018). 
Building upon this foundation, we introduce a modified version of 
our original method, by replacing the optimization process for 
tuning the 1-D arterial model with a regression method combined 
with an in silico-generated dataset of different hemodynamic 
profiles, creating a gradient boosting regressor-enabled SV 
estimator. This dataset faithfully mimics the dynamic 
characteristics and analytical mathematical equations inherent to 
the model. In addition, in this study, we  designed a clinical 
protocol and compared the predicted values of this new method 
to SV values derived using the gold standard invasive 
thermodilution method. By leveraging the in silico-generated data, 
we sidestep the need for resource-intensive parameter adjustments 
in real-time scenarios. Instead, the generated content serves as a 
basis for making predictions on actual human data. This innovative 
methodology not only streamlines the computational process but 
also enhances the applicability of our approach, paving the way for 
more efficient and practical implementation in real-world 
monitoring applications.

2 Materials and methods

2.1 Stroke volume estimation approach

The method developed in this research builds upon the original 
inverse problem-solving approach introduced and tested in previous 
reports (Bikia et al., 2020; Bikia et al., 2022). The core component of the 
methods involves a comprehensive numerical model of the arterial tree 
that encompasses all major vessels within the systemic circulation, 
including the cerebral and coronary circulations (Figure  2). The 
foundational equations of this model are derived by integrating the 
longitudinal momentum and continuity equations (Navier–Stokes) 
across the arterial cross-section. The model solves these governing 
equations using appropriate boundary conditions (Figure 3), thereby 
enabling the calculation of flow and pressure across every location within 
the arterial network (Figure 4). Each arterial segment is represented as a 
long, tapered tube with compliance characterized as a nonlinear function 
of pressure and location (Langewouters, 1984) (Figure 3). Terminal 
vessels are integrated with three-element Windkessel models (Westerhof 
et al., 2009) (Figure 3), and intimal shear stress is modeled based on the 
Witzig-Womersley theory proposed (Womersley, 1957). At the proximal 
end, specifically at the root of the aorta, the model is initialized with an 
aortic blood flow wave as a proximal boundary condition (Figure 3). 
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Table 1 in the original publications provides a summary of all inputs and 
outputs of the 1-D cardiovascular model. A detailed description of the 
1-D simulator can be found in the original publications (Reymond et al., 
2009; Reymond et al., 2011). The model has been used in the past in our 
own prior work as well as by external researchers, proving its reliability 
and utility across a wide range of applications (Bikia et  al., 2021; 
Pagoulatou et al., 2019; Reymond et al., 2013; Obeid et al., 2022).

This foundational method, as described before (Bikia et al., 2020; 
Bikia et al., 2022), provides a non-invasive estimation of mean arterial 
blood flow using peripheral cuff-pressure measurements and 
cfPWV. The adjustment of a previously validated 1-D arterial tree model 
(Figure 2) is accomplished through an optimization process. Within this 
optimization loop, the compliance and resistance of the generic arterial 
tree model, as well as aortic flow, are iteratively adjusted to ensure that 
the simulated brachial systolic and diastolic pressures and cfPWV 
converge with the measured values. This iterative process continues 
until full convergence is achieved for both brachial pressures and cfPWV.

Given the computational expense of achieving convergence, 
we sought to enhance efficiency by leveraging a machine learning 
regression framework. Specifically, we replaced the original model 
with a gradient boosting regression method trained on a diverse 
dataset of hemodynamic and demographic profiles generated using 
the same 1-D arterial tree model (Reymond et al., 2009). The method 
was then evaluated using data from a patient cohort recruited at the 

Geneva University Hospitals (HUG). Figure  5 illustrates the 
methodological approach employed for this study.

2.1.1 Generation of synthetic hemodynamics 
states

In silico data were generated to simulate various hemodynamic 
states of the 1-D numerical arterial tree simulation model. The 
simulation model ran using different combinations of physiologically 
relevant input model parameters. The distributions of the input model 
parameters were based on literature data. Given that the literature data 
are only provided in terms of mean and standard deviation or/and 
minimum and maximum values, the exact distribution of each 
parameter was unknown. In addition, varying the parameters while 
accounting for dependencies between parameters was not feasible due 
to the lack of sufficient data to inform inter-dependencies. Therefore, 
the sampling was selected to be  random Gaussian. Arterial 
distensibility, peripheral resistances, and terminal compliances were 
altered to cover the selected parameter value ranges. Furthermore, the 
geometry of the arterial network (namely length, inlet diameter, and 
outlet diameter of the arterial segments) was modified to simulate 
different body types by adapting the length and the diameter of all 
arterial vessels. Age and gender were incorporated as factors to vary 
the model parameters. The literature data drawn from the literature 
are summarized in Table 2.

FIGURE 1

Estimation of cfPWV estimation. The calculation of cfPWV involves two key components: the estimation of L, the distance between these two arterial 
sites, and the measurement of the pulse transit time (Δt). The cfPWV is then calculated using the formula cfPWV = L/Δt.
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2.1.1.1 Proximal boundary condition
Concerning the proximal boundary condition, we engaged in the 

following systematic logical computations: Given a specific 

combination of mean arterial pressure (MAP), total peripheral 
resistance (TPR), and HR, we derive an input value for CO or SV, 
calculated as CO = MAP/TPR or SV = CO/HR. The adjustment of 

FIGURE 3

Main mathematical components describing the numerical modeling approach of the 1-D arterial tree computer solver. Adapted from https://
infoscience.epfl.ch/entities/publication/79637d9b-89a0-4fc0-8649-50e00810a0b6, with permission.

FIGURE 2

Schematic representation of the model of systemic circulation developed by Reymond et al. (2009). (A) Main systemic arterial tree. (B) Detail of the 
aortic arch and the coronary network. (C) Detail of the principal abdominal aorta branches. (D) Blown-up schematic of the detailed cerebral arterial 
tree, which is connected via the carotids (segments 5 and 15) and the vertebrals (segments 6 and 20) to the main arterial tree shown in panel (A).
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left ventricular ejection time (ET) is accomplished through the 
application of the Weissler equation (Weissler et al., 1968) to the 
provided set of SV and HR values: ET = 0.266 + 0.0011*(SV − 82) −  
0.0009*(HR − 73).

2.1.1.2 Anatomical model parameter
The length of each vessel (Len) was adjusted to align with the input 

height in each generated case. The reference state of the arterial tree model 
is standardized for an individual with a height of 180 cm. We postulated 
a uniform alteration across all arteries by applying the same scaling factor 
through multiplication. For instance, when the input height is 170 cm, the 
scaling factor becomes 170 cm/180 cm = 0.94. Consequently, the length 
of all arteries is uniformly scaled by a factor of 0.94.

The adjustment of the ascending aortic diameter (Din, Dout) was 
informed by data already presented in Wolak et al. (2008), which 
delineated the aortic diameter as a function of age, gender, and body 
mass index (BSA). In a concerted manner, all arterial diameters 
underwent uniform adjustments derived from the variation in aortic 

diameter. This was achieved through a consistent multiplication 
process, applying the same scaling factor across all arteries.

2.1.1.3 Arterial distensibility, terminal compliance and 
resistance

The adjustment of arterial distensibility (C), terminal compliance 
(Ct), and terminal resistance (Rt) was performed uniformly. Essentially, 
considering the variation in aortic distensibility as outlined in Table 2, the 
distensibility and compliance of all arteries were systematically modified 
to align with the changes in aortic size. Similarly, the resistance of terminal 
arteries underwent uniform modification, taking into account the 
distribution of total peripheral resistance (TPR) as detailed in Table 2.

We generated 833 hemodynamics states for 12 age and gender 
groups, namely 20 29

MAG − , 20 29
FAG − , 30 39

MAG − , 30 39
FAG − , 40 49

MAG − , 

40 49
FAG − , 50 59

MAG − , 50 59
FAG − , 60 69

MAG − , 60 69
FAG − , 70

MAG> : 10, 70
FAG> .

 

These states simulate the solution space of the 1-D model and mimic 
the deterministic nature of the solver. Thus, a dataset of 9,996 cases 

FIGURE 4

Pressure and flow waveforms are generated at every arterial side of the arterial tree model with every simulation. Adapted from https://infoscience.epfl.
ch/entities/publication/79637d9b-89a0-4fc0-8649-50e00810a0b6, with permission.
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was yielded. From the simulated output blood pressure and flow 
waveforms, we extracted the investigated parameters for our analysis. 
BP parameters, such as systolic BP (SBP), and diastolic BP (DBP) were 
extracted from the simulated waveforms at the left side of the 
arterial tree.

2.1.2 Gradient boosting regression method
A gradient boosting (GB) algorithm was trained and validated 

using the in silico-generated data. Hyperparameter tuning was 
conducted using GridSearch() to find the optimal values for ‘n_
estimators’ (60, 80, 100, 120), ‘learning_rate’ (0.2, 0.4, 0.6), ‘max_
depth’ (3, 5, 8, 10), ‘max_features’ (‘sqrt’), and ‘min_samples_leaf ’ (1, 
3, 5). We  assumed a 5-fold cross validation scheme and scoring 
method the R2 for the hyperparameter tuning. The input vector 
consisted of age, gender, weight, height, SBP, DBP, PP, MAP, and 
cfPWV (independent variables) and the output was set to SV 
(dependent variable). The predicted SV values (SVpred) were then 
compared to the reference SV data obtained from thermodilution 
(SVthermo). No further fine-tuning was performed using the patient 
data to maintain the integrity of the model evaluation and ensure that 
the GB regressor remained blind to the in vivo data content. The 
models were developed in Python (Python Software Foundation, 
Python Language Reference, version 3.10.9)1, utilizing the following 

1 http://www.python.org

libraries: pandas (McKinney, 2010), numpy (Harris et  al., 2020), 
matplotlib (Hunter, 2007), scikit-learn (Pedregosa et al., 2011), and 
scipy (Virtanen et al., 2020).

2.2 Patient recruitment and data collection

The data collection for this study was conducted at the HUG 
and was approved by the Local Ethics Committee of Geneva. The 
study involved the recruitment of 37 participants selected 
according to the inclusion and exclusion criteria listed in 
Supplementary Table S1. Informed consent was obtained from all 
participants prior to their inclusion in the study. The data consists 
of non-invasive hemodynamical measurements including 
conventional sphygmomanometry, applanation tonometry, as well 
as invasive assessment of SV by the thermodilution method. Given 
that the invasive SV measurement involves heart catheterization, the 
study included only patients with a clinical indication for left and/
or right heart catheterization as part of their standard diagnostic 
work up.

2.2.1 Recruitment, screening, and informed 
consent procedure

A designated healthcare worker identified potential patient 
participants and contacted them to ask for their participation in the 
study. The healthcare worker provided detailed information about the 
study, including its purpose, procedures, expected duration, benefits, 
and potential discomforts. Upon a positive response, participants were 
registered in the study and sent an information sheet and consent 
form via email or post. The formal consent was obtained before the 
catheterization procedures.

2.2.2 Study procedures
Participants that agreed to join the study were initially 

interviewed to assess their eligibility based on inclusion and 
exclusion criteria (Supplementary Table S1). Eligible participants 
received the information sheet and consent form. Before or after 
heart catheterization, applanation tonometry was performed to 
acquire the BP waveforms at the right or left carotid, and right 
femoral arteries to derive the cfPWV. In particular, BP waveforms 
were acquired non-invasively by the use of two commercially 
available and validated devices, namely the PulsePen (DiaTecne 
s.r.l., Milan, Italy)2, and the SphygmoCor apparatus (AtCor 
Medical Pty Ltd., West Ryde, Australia). The intersecting tangent 
foot-to-foot method was automatically applied to calculate the 
carotid-to-femoral pulse transit time (PTT) over a minimum of 
10 cardiac cycles. The length of the path traveled by the BP waves 
was estimated approximately as equal to the distance between the 
arterial sites multiplied by a correction factor of 0.8 (Laurent et al., 
2006). As per the guidelines, the measurement was conducted 
twice. Simultaneously with the applanation tonometry, cuff BP 
and HR were measured and recorded using a sphygmomanometer 
of an appropriate cuff size at the right or left brachial artery (three 
repeated measurements) (Figure  6). In the catheterization 

2 www.pulsepen.com

TABLE 1 List of inputs and outputs of the 1-D cardiovascular model.

Corresponding 
variable

Value

Inputs

Cardiac output (L/min) CO 5.5

Heart rate (bpm) HR 75

Ejection time (s) ET 0.23

Arterial distensibility (10−3/

mmHg)

C (no segments) × 1 

vector

Terminal compliances (mL/

mmHg)

Ct (no terminal 

segments) × 1 vector

Peripheral resistances 

(mmHg·s/mL)

Rt (no terminal 

segments) × 1 vector

Arterial inlet diameter (cm) Din (no segments) × 1 

vector

Arterial outlet diameter 

(cm)

Dout (no segments) × 1 

vector

Arterial length (cm) Len (no segments) × 1 

vector

Blood density (kg/m3) ρ 1,050

Blood viscosity (Pa·s) μ 0.004 s

Outputs

Pressure waves (mmHg) pressures (no segments) × (no 

time points) vector

Flow waves (mL/s) flows (no segments) × (no 

time points) vector
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laboratory, the thermodilution technique for CO measurement 
was performed by an experienced professional according to 
standard procedures. SV was derived as CO/HR. Simultaneously, 
cuff BP and HR were measured at the right or left brachial artery 
using conventional sphygmomanometry (three repeated 
measurements). Data were codified and stored electronically, with 
uncodified data stored on the hospital’s servers. The study 
procedures are illustrated in Figure 7.

2.2.3 Data analysis
The collected data was extracted from the designated hospital’s 

system. For each participant, the three repeated measurements of SBP, 
DBP, and HR during cfPWV assessment and SV measurement were 
averaged. The mean value of the two PWV measurements was 
calculated. We then compared the BP and HR data collected during 
PWV assessment with those obtained in the catheterization lab to 
evaluate hemodynamic coherence between the two states. A 

FIGURE 5

Schematic representation of the training (including hyperparameter tuning) and testing methodological approach.

TABLE 2 Variation of the input parameters of the 1-D numerical model for the synthetic cases generation.

Model parameter Gender Age groups

20–29 yrs 30–39 yrs 40–49 yrs 50–59 yrs 60–69 yrs >70 yrs

Height (cm)
M 175 ± 15

F 175 ± 15

Weight (kg) (Rietzschel et al., 2007)
M 77 ± 10 79 ± 10 86 ± 9 77 ± 9 79 ± 5 75 ± 9

F 61 ± 7 66 ± 8 65 ± 11 62 ± 6 69 ± 15 62 ± 9

Heart rate (bpm) 

(McEniery et al., 2005)

M 64 ± 11 63 ± 9 66 ± 11 63 ± 13 65 ± 13 72 ± 13

F 69 ± 13 59 ± 8 67 ± 12 67 ± 9 67 ± 8 67 ± 13

Aortic distensibility (10−3/mmHg) 

(Chen et al., 1998; Pak et al., 1998; 

Feldman et al., 1996)

M 7.8 ± 2.5 5.3 ± 1.8 3.8 ± 1.3 3.3 ± 1.6 1.8 ± 1.3 1.3 ± 0.9

F 8.9 ± 2.5 5.9 ± 2.6 4 ± 1.6 3.1 ± 1.8 1.2 ± 0.8 1.1 ± 0.8

Total peripheral resistance (mmHg·s/

mL) (McEniery et al., 2005)

M 1.15 ± 0.26 1.2 ± 0.27 1.28 ± 0.29 1.34 ± 0.31 1.41 ± 0.33 1.49 ± 0.34

F 1.15 ± 0.26 1.2 ± 0.27 1.28 ± 0.29 1.34 ± 0.31 1.41 ± 0.33 1.49 ± 0.34

Mean arterial pressure (mmHg) 

(McEniery et al., 2005)

M 89 ± 8 92 ± 8 95 ± 7 95 ± 7 94 ± 7 93 ± 7

F 86 ± 8 88 ± 9 90 ± 9 93 ± 8 93 ± 8 92 ± 8
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discrepancy threshold of 25% relative difference was set to assume 
hemodynamic coherence between the two assessment settings. The 
threshold was applied for each patient individually for both MAP and 
HR values. Patients whose MAP and HR profiles differed by more than 
this threshold between PWV measurement and catheterization were 
excluded from the analysis. Given the limited size of our patient cohort, 
we wanted to ensure that we maintain a considerable cohort size after 
filtering. Hence, the value of 25% was an arbitrary moderate threshold 
selection. After filtering, the patient data for BP, HR, and PWV were 
input into our model to predict stroke volume (SVpred). To align with 
the goal of non-invasive clinical assessments using nearly simultaneous 
PWV and cuff BP measurements, we incorporated BP and HR values 
recorded during the PWV assessment into the input vector.

2.3 Statistical analysis

All data is presented as mean and standard deviation (SD). The 
statistical analysis was performed in Python (Python Software 
Foundation, Python Language Reference, version 3.10.9, see text 
footnote 1). The pairs of BP and HR data obtained during 
catheterization and PWV assessment were compared using a paired 
t-test (Student, 1908), while the data from the in silico model was 
compared to the human cohort using Welch’s t-test (Welch, 1947) to 
account for the differing sample sizes. The correlation and precision 
between the estimations (using the linear formula) and the reference 
data were evaluated using the Pearson’s correlation coefficient (r), and 
the normalized root mean square error (RMSE). The computed 
normalized RMSE was based on the difference between the minimum 
and maximum values of the dependent variable (y) and was computed 
as RMSE/(ymax–ymin). Bias and limits of agreement (LoA) (where the 

95% of errors are expected to lie) were calculated using the Bland–
Altman analysis (Bland and Altman, 1986). Due to the relatively small 
sample size (<30) and the difficulty in satisfying the normality 
assumption for the data distribution, we selected the non-parametric 
Wilcoxon Signed-Rank test (Wilcoxon, 1945), considering a p-value 
<0.05 as the threshold for statistical significance.

3 Results

A total of 9,996 hemodynamical profiles were generated, accounting 
for 833 profile per group (age and gender-based). All profiles were kept 
to maximize the solution space of the model simulations. Table 3 reports 
the descriptive characteristics of the generated hemodynamic states.

For the clinical data, out of the 37 patients, 10 were excluded due 
to missing data (N = 8) or erroneous measurements (N = 2). 
Specifically, PWV assessment was not possible for three patients and 
yielded unrealistic PWV values in two patients, while thermodilution 
measurement could not be  performed in five patients. The three 
repeated measurements of BP and HR were averaged in all patients, 
except for one patient, where a single HR measurement was performed 
during PWV assessment. The subgroup sizes were: 20 29

MAG − : 0, 

20 29
FAG − : 1, 30 39

MAG − : 0, 30 39
FAG − : 1, 40 49

MAG − : 2, 40 49
FAG − : 0,

 

50 59
MAG − : 1, 50 59

FAG − : 2, 60 69
MAG − : 1, 60 69

FAG − : 3, 70
MAG> : 8, 70

FAG> : 8. 

The characteristics of the 27 patients, consisting of 12 (44%) males and 
15 (56%) females, are described in Table 4.

For SBP, the brachial SBP in the totality of the model-generated cases 
was 123 ± 27 mmHg. In the patient data, the SBP measured during PWV 
assessment (SBPPWV) was 124 ± 18 mmHg (Welch’s t-test p-value = 0.935), 

FIGURE 6

Schematic representation of the measurement setup for the acquisition the input data (brSBP, brDBP, HR, and cfPWV). The animation was created 
using OpenAI’s GPT-4 model (OpenAI, 2023).
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and the SBP measured during catheterization (SBPCat) was 
128 ± 21 mmHg (Welch’s t-test p-value = 0.284). The brachial DBP in the 
in silico data was 55 ± 16 mmHg. In the clinical data, the DBP measured 
during PWV assessment (DBPPWV) was 70 ± 14 mmHg (Welch’s t-test 
p-value < 0.0001), and the DBP measured during catheterization 
(DBPCat) was 73 ± 11 mmHg (Welch’s t-test p-value < 0.0001). The mean 
arterial pressure was 78 ± 12 mmHg for the in silico data and MAPPWV/
MAPCat 88 ± 14 mmHg (Welch’s t-test p-value < 0.001)/91 ± 13 mmHg 
(Welch’s t-test p-value < 0.0001) for the patient cohort. The heart rate in 
the model-generated cases was 66 ± 10 bpm. In the patient data, the HR 
measured during PWV assessment (HRPWV) was 71 ± 13 bpm (Welch’s 
t-test p-value = 0.041), and the HR measured during catheterization 
(HRCat) was 68 ± 14 bpm (Welch’s t-test p-value = 0.497). Lastly, SV was 

calculated to be 54 ± 18 mL for the model-generated cases, while the 
patient data SV was 74 ± 26 mL (Welch’s t-test p-value < 0.001). CfPWV 
was 9 ± 3 m/s for the model-generated cases and 10 ± 3 m/s for the 
patient data (Welch’s t-test p-value = 0.018).

3.1 Comparison of BP and HR values 
between PWV assessment and 
catheterization in the patient cohort

Comparing the catheterization (Cat) and PWV measurements, 
the SBPCat (128 ± 20 mmHg) was marginally higher than the 
SBPPWV assessment (124 ± 18 mmHg, paired t-test p-value = 0.178). 

FIGURE 7

Schematic representation of the study procedures.
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The mean absolute difference SBPPWV and SBPCat was 
12 ± 10 mmHg, with discrepancies ranging from 0 to 39 mmHg. 
Similarly, the DBP recorded during catheterization 
(73 ± 11 mmHg) exceeded that of the PWV assessment 
(70 ± 14 mmHg, paired t-test p-value = 0.193). Mean differences 
for DBP were 9 ± 6 mmHg, with a range from 0 to 24 mmHg. The 
MAP during catheterization (91 ± 12 mmHg) was also greater than 
the MAP during the PWV assessment (88 ± 14 mmHg, paired 
t-test p-value = 0.145). For MAP, the mean absolute difference was 
9 ± 7  mmHg, with discrepancies between 1 and 24  mmHg. 
Conversely, the HRCat (68 ± 13 bpm) was slightly lower compared 
to the HRPWV assessment (71 ± 12 bpm, paired t-test 
p-value = 0.034), with mean differences of 6 ± 6 bpm and errors in 
the range of 0–19 bpm. In summary, catheterization typically 
yielded higher values for SBP, DBP, and MAP, whereas the HR was 
lower than the corresponding PWV measurements. The scatter and 
Bland Altman plots comparing the measurements under the two 
different assessment states are provided in Supplementary Figure S1.

3.2 Data analysis and predictions

We selected the SBP, DBP, PP, and MAP values formally used that 
were obtained during PWV, as those values are the ones that are used in 
non-invasive clinical assessments. After evaluating the differences in BP 
and HR, we filtered out cases with high discrepancies between the two 
settings. Assuming hemodynamic coherence between PWV assessment 
and catheterization (with an accepted difference of 25%), three patients 

were considered ineligible for subsequent analysis. Therefore, the analysis 
was performed for a refined cohort of 24 patients.

3.3 Stroke volume estimator

The GB model achieved satisfactory performance with a 
correlation coefficient (r) of 0.7, an MAE of 16 mL, and an nRMSE of 
21%. The bias was −9.2 mL with LoA from −47 to 28 mL. The 
reference SV was 77 ± 26 mL, and the predicted SV was 68 ± 23 mL, 
with a p-value of 0.025, indicating a significant difference. In this case, 
the optimal values identified were ‘n_estimators’ (150), ‘learning_rate’ 
(0.6), ‘max_depth’ (8), ‘max_features’ (sqrt), and ‘min_samples_leaf ’ 
(5). The scatter and Bland–Altman plot are presented in Figure 8.

4 Discussion

In this study, we  introduced and tested a regression-enabled 
estimation method for non-invasive stroke volume (SV) estimation. 
The method demonstrated good agreement with the gold standard 
invasive thermodilution technique, underscoring its potential for 
clinical application. Our findings indicate that the proposed machine 
learning framework, trained on synthetic hemodynamic data, can 
effectively predict SV using non-invasive measurements. This method 
enhances our previous inverse problem-solving approach (Bikia et al., 
2020; Bikia et al., 2022) by reducing computational costs, making it 
feasible for real-time clinical applications. The adoption of this 

TABLE 3 Descriptive characteristics of the synthetic cases (n = 9,996).

Parameter Gender Age groups (833 cases per group)

20–29 yrs 30–39 yrs 40–49 yrs 50–59 yrs 60–69 yrs >70 yrs

Height (cm)
M 175 ± 13 175 ± 13 175 ± 13 175 ± 13 175 ± 13 175 ± 13

F 176 ± 13 176 ± 13 175 ± 13 174 ± 13 175 ± 13 174 ± 13

Weight (kg)
M 61 ± 6 66 ± 7 65 ± 10 61 ± 5 69 ± 14 61 ± 8

F 60 ± 6 66 ± 7 65 ± 10 62 ± 5 69 ± 13 62 ± 7

Brachial SBP (mmHg)
M 110 ± 18 114 ± 24 124 ± 24 123 ± 20 139 ± 30 126 ± 27

F 110 ± 18 115 ± 24 124 ± 24 124 ± 21 142 ± 34 131 ± 29

Brachial DBP (mmHg)
M 65 ± 12 53 ± 14 58 ± 14 63 ± 12 45 ± 15 49 ± 17

F 65 ± 12 53 ± 14 59 ± 14 63 ± 12 44 ± 16 47 ± 17

Brachial PP (mmHg)
M 45 ± 15 61 ± 30 65 ± 28 60 ± 23 94 ± 40 78 ± 38

F 45 ± 16 61 ± 30 65 ± 27 61 ± 24 98 ± 45 84 ± 39

MAP (mmHg)
M 80 ± 12 73 ± 11 80 ± 12 83 ± 11 76 ± 9 75 ± 11

F 80 ± 12 74 ± 11 81 ± 12 83 ± 11 77 ± 10 75 ± 11

Stroke volume (mL)
M 57 ± 18 60 ± 19 55 ± 19 54 ± 17 50 ± 15 45 ± 14

F 58 ± 18 60 ± 19 56 ± 18 54 ± 17 50 ± 16 46 ± 13

Cardiac output (L/min)
M 4 ± 1.3 3.5 ± 1.1 3.6 ± 1.2 3.6 ± 1.1 3.3 ± 1 3 ± 1

F 3.9 ± 1.2 3.5 ± 1.1 3.7 ± 1.2 3.6 ± 1.2 3.4 ± 1.1 3 ± 0.9

Heart rate (bpm)
M 70 ± 11 59 ± 7 67 ± 11 68 ± 8 67 ± 7 67 ± 12

F 69 ± 11 59 ± 7 67 ± 10 67 ± 8 67 ± 7 67 ± 11

Carotid-femoral PWV 

(m/s)

M 6.4 ± 1.1 8.4 ± 2.3 8 ± 1.9 7.9 ± 1.6 11.6 ± 2.9 11.5 ± 3.6

F 6.4 ± 1.2 8.4 ± 2.3 7.9 ± 1.8 7.8 ± 1.6 11.5 ± 2.9 11.5 ± 3.4
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method could potentially eliminate the need for complex and costly 
echocardiographic or MRI assessments.

SV is a primary determinant of cardiovascular function and its 
assessment, particularly in conjunction with BP measurements, is 
critical to understand cardiovascular physiology and pathology 
(Nichols et  al., 2011). Continuous SV assessment is essential for 
diagnosing and guiding therapeutic interventions in patients with 
heart failure and other critical conditions. These patients often need 
to undergo multiple invasive procedures and may be exhausted by 
their disease, treatments, and examinations. In addition, the invasive 
SV assessment is associated with high cost, specialized equipment and 

required training of personnel. Hence, it is important to develop 
precise, reliable, and non-invasive SV monitoring techniques.

While significant progress has been made in the field of BP 
monitoring, advancements in SV monitoring have been comparatively 
limited (Jansen et al., 2001; Swamy and Mukkamala, 2008; Fazeli and 
Hahn, 2012; Ganter et  al., 2016; Yazdi et  al., 2021). This gap 
underscores the need to explore new research avenues. Leveraging 
multiple measurement sources, such as cuff systolic and diastolic 
brachial blood pressure, and PWV data, can help develop more 
nuanced and accurate models for SV estimation. These peripheral 
measurements are non-invasive and can be routinely monitored by 

TABLE 4 Descriptive characteristics of the patient cohort (n = 27*).

Parameter Gender Age groups

20–29 yrs 30–39 yrs 40–49 yrs 50–59 yrs 60–69 yrs >70 yrs

Height (cm)
M – – 180 ± 10 171 183 170 ± 7

F 165 167 – 166 ± 11 163 ± 10 161 ± 10

Weight (kg)
M – – 82 ± 14 78 71 79 ± 11

F 52 60 – 85 ± 40 48 ± 9 60 ± 8

Brachial SBPPWV 

(mmHg)

M – – 114 ± 16 127 125 138 ± 19

F 107 107 – 100 ± 4 115 ± 24 125 ± 12

Brachial DBPPWV 

(mmHg)

M – – 80 ± 16 80 68 77 ± 19

F 58 57 – 61 ± 8 68 ± 16 65 ± 7

Brachial PPPWV 

(mmHg)

M – – 34 ± 1 47 57 61 ± 17

F 50 50 – 38 ± 12 47 ± 16 60 ± 13

MAPPWV (mmHg)
M – – 92 ± 16 96 87 97 ± 17

F 74 74 – 74 ± 4 84 ± 18 85 ± 7

Brachial SBPCath 

(mmHg)

M – – 112 ± 19 113 143 145 ± 19

F 107 102 – 118 ± 26 104 ± 18 132 ± 9

Brachial DBPCath 

(mmHg)

M – – 78 ± 16 68 85 77 ± 15

F 65 72 – 70 ± 19 66 ± 6 70 ± 8

Brachial PPCath (mmHg)
M – – 34 ± 4 45 58 68 ± 17

F 42 30 – 48 ± 6 38 ± 12 62 ± 14

MAPCath (mmHg)
M – – 89 ± 17 83 104 100 ± 14

F 79 82 – 86 ± 22 79 ± 10 91 ± 5

Stroke volume (mL)
M – – 68 ± 7 108 81 82 ± 27

F 49 124 – 107 ± 7 41 ± 5 64 ± 12

Cardiac output (L/min)
M – – 4.6 ± 1.2 7.9 6.1 5.2 ± 1

F 3.5 10.2 – 8.1 ± 2 3.2 ± 0.6 4.4 ± 0.7

Heart ratePWV (bpm)
M – – 68 ± 11 73 75 67 ± 16

F 71 82 – 76 ± 13 79 ± 10 71 ± 14

Heart rateCath (bpm)
M – – 62 ± 12 74 76 66 ± 17

F 52 68 – 74 ± 18 80 ± 6 66 ± 14

Carotid-femoral PWV 

(m/s)

M – – 8.1 ± 2.3 5.8 9 12.2 ± 1.7

F 6.1 5.8 – 7.4 ± 0.4 9.7 ± 1.6 11.6 ± 2

–: Indicates that there are no patients in the group. Single values denote that there is only one patient in the group.
SBP, systolic blood pressure; DBP, diastolic blood pressure; PP, pulse pressure; MAP, mean arterial pressure; XPWV, parameter X measured during pulse wave velocity assessment; XCath, 
parameter X measured during catheterization.
*The table contains the data distributions for all patient with and without considering hemodynamical coherence for BP and HR values between catheterization and PWV assessment. The final 
analysis was conducted using a subgroup of 24 eligible patients.
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any clinician, making them a practical alternative for continuous 
cardiovascular assessment. Importantly, the latest advances in 
machine learning for medical applications present an opportunity to 
revolutionize SV monitoring. By incorporating machine learning 
techniques, it is possible to create more accurate and accessible models 
for non-invasive SV estimation. Our study demonstrates the potential 
of such integration, paving the way for improved cardiovascular 
monitoring that may enhance patient outcomes by providing reliable, 
real-time SV assessments without the need for invasive procedures or 
expensive equipment. Ultimately, such a method could be integrated 
into a comprehensive apparatus that includes a conventional cuff BP 
monitor, a tonometric device to acquire PWV measurements, and a 
user profile analysis. This integration would enable a fast, non-invasive 
estimation of SV by combining the advanced capabilities of machine 
learning with routine clinical measurements.

The proposed model demonstrated a moderate correlation with 
the gold standard invasive thermodilution technique, reflecting its 
ability to provide reliable estimates of SV using non-invasive 
measurements in a small human cohort. Despite the promise that 
these results may hold, the model’s performance leaves room for 
improvement, particularly in terms of precision and variability. 
Discrepancies between the estimated SV values and the reference 
measurements highlight the inherent challenges of using synthetic 
data and the variability in physiological states, particularly in critically 
ill patients. To enhance the model’s accuracy, several avenues can 
be explored. Refining the dataset generation process to include a larger 
and more diverse patient data (accounting for disease-specific 
variations in model parameters) would allow the model to learn from 
a broader range of patho-physiological conditions, improving its 
generalizability. Refining the machine learning technique, including 
the exploration of more advanced models, could also help capture the 
complex relationships between input data and SV, reducing errors. 
Additionally, incorporating additional non-invasive biomarkers, such 
as additional measures of arterial stiffness (e.g., carotid-to-radial 

PWV), would provide a more comprehensive understanding of 
cardiovascular health and improve the model’s robustness. While the 
current method demonstrates good potential for clinical application, 
particularly by eliminating the need for costly and invasive procedures, 
further development is required to achieve highly accurate, real-time 
SV estimates across a wider variety of clinical settings.

It should be noted that we observed discrepancies in BP and HR 
values measured during PWV assessment and catheterization. Our 
initial hypothesis was that these discrepancies might be  minimal, 
given the controlled clinical environment. However, the results 
showed that catheterization typically yielded higher SBP, DBP, and 
MAP values, while HR was slightly lower compared to PWV 
measurements. These discrepancies stem from differences in the 
hemodynamical state of the patient under consideration in the 
different settings of examination. When including the entire dataset 
(patients exhibiting hemodynamic discrepancies between PWV 
assessment and catheterization), the prediction model yielded a low 
correlation of 0.46 (p = 0.441), a mean absolute error (MAE) of 21 mL, 
and wider limits of agreement (−3.2 [−55, 49] mL). This outcome is 
expected as the model is trained to handle input–output sets that are 
simultaneous. While simultaneous data is desirable in practical terms, 
it presents challenges for validation. In particular, validating 
non-invasive biomarkers against invasive ground truth remains 
challenging due to the significant variability in the physiological state 
of critically ill patients.

4.1 Limitations

The study has several limitations that need to be acknowledged. This 
study is limited by the small dataset used for model validation. The data 
collection was conducted in an invasive clinical setting, which posed 
several challenges. Recruiting patients for studies involving invasive 
procedures requires careful coordination of hospital resources, and 

FIGURE 8

Comparison of the predicted and the reference stroke volume (SV) data for GB model. The left panel shows the scatter plot of predicted SV against 
reference SV with a line of equality (dashed black line) indicating perfect agreement. The right panel displays the Bland–Altman plot, showing the 
differences between reference and predicted SV against their mean, with dashed lines for mean difference and limits of agreement (mean ± 1.96 SD).
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patient availability. Additionally, the invasive nature of the procedure 
restricts the number of eligible participants, further limiting the dataset 
size. These factors, along with the complexity of working with critically 
ill patients, introduced an inherent difficulty to collect a larger, more 
diverse cohort. Specifically, critically ill patients often experience 
exhaustion from continuous monitoring, limiting the ability to subject 
them to further stress. While these constraints are acknowledged, they 
highlight the need for larger, multi-center studies to improve the model’s 
generalizability and accuracy. Future efforts will aim to expand the 
dataset and address these limitations, enhancing the model’s robustness 
and applicability across a broader range of patient populations. An 
important observation is that the patient cohort demonstrates a 
heterogeneity. This inherent heterogeneity may partly account for the 
modest correlation observed between invasive measurements and in 
silico results. Variations in individual characteristics—such as baseline 
cardiovascular function, age-related changes, and the presence of 
comorbid conditions—can influence hemodynamic responses and the 
parameters measured in the clinical setting. This variability may 
introduce discrepancies when applying a computational model based 
on averaged physiological assumptions, suggesting that different patient 
subgroups could exhibit distinct correlations. Future work may benefit 
from stratifying patients by relevant clinical variables to further elucidate 
the impact of these factors on model performance.

Moreover, the 1-D model used for in silico hemodynamic profiles 
represents a healthy individual, while the cohort consists of patients 
with severe conditions, potentially affecting the mapping relationship 
between input data and target output. Nonetheless, developing and 
validating 1-D numerical models specific to different pathologies and 
clinical conditions, although highly desirable, is challenging. 
Additionally, the variation of the model parameters relies on normal 
distributions of physiological data, which might not fully capture the 
diverse hemodynamic profiles in the patient cohort. However, given 
that data reported in the literature are typically provided as mean and 
standard deviation or minimum and maximum values, this approach 
was reasonable. An additional study limitation is that our model 
represents the arterial tree, effectively operating as an open model 
without accounting for the venous circulation. This approach omits a 
Guytonian perspective of circulation, where the role of venous return 
is critical in influencing cardiac output and SV. Since SV is significantly 
affected by venous dynamics, particularly central venous pressure and 
inferior vena cava measurements, the absence of these parameters in 
our model may affect the model’s accuracy in SV estimation. Future 
work will incorporate venous components to provide a more 
comprehensive representation of the cardiovascular system.

There are also inherent challenges related to data collection, 
particularly in critically ill patients where measurements are difficult to 
perform. Achieving concomitant measurements of blood pressure and 
stroke volume is significantly challenging, and we chose to derive a fair 
compromise by simulating the simultaneity of the measurements (BP, 
PWV, and SV) as accurately as possible. Discrepancies in BP and HR 
values were significant between the PWV and SV assessment settings, 
yet we addressed them by applying filtering to ensure hemodynamic 
coherence. Despite these limitations, we believe that both the study’s 
findings and the dataset provide a unique contribution to the literature. 
Finally, in future studies, it would be beneficial to assess the method’s 
accuracy in estimating the relative evolution of SV for a specific patient. 
This has value in continuous monitoring, where tracking changes over 
time is often more important than the absolute values (Bikia et al., 2020).

5 Conclusion

Our study demonstrated the feasibility of using a machine 
learning-based approach for non-invasive SV estimation in a small 
human cohort. The favorable agreement with the invasive gold 
standard method SV assessment indicates the potential of this 
technique. However, further research and refinement of the technique 
are necessary to overcome current limitations and enhance its accuracy 
and robustness. Integrating machine learning with SV monitoring 
holds significant potential for advancing patient care by providing a 
reliable, real-time hemodynamic assessment. This advancement has the 
potential of improving clinical outcomes by enabling more precise and 
timely therapeutic interventions, ultimately reducing the need for 
invasive procedures and enhancing the overall efficiency of 
healthcare delivery.
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