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Introduction: The biomedical literature is the go-to source of information 
regarding relationships between biological entities, including genes, diseases, 
cell types, and drugs, but the rapid pace of publication makes an exhaustive 
manual exploration impossible. In order to efficiently explore an up-to-date 
repository of millions of abstracts, we  constructed an efficient and modular 
natural language processing pipeline and applied it to the entire PubMed 
abstract corpora.

Methods: We developed SciLinker using open-source libraries and pre-trained 
named entity recognition models to identify human genes, diseases, cell types 
and drugs, normalizing these biological entities to the Unified Medical Language 
System (UMLS). We  implemented a scoring schema to quantify the statistical 
significance of entity co-occurrences and applied a fine-tuned PubMedBERT 
model for gene-disease relationship extraction.

Results: We identified and analyzed over 30 million association sentences, 
including more than 11 million gene-disease co-occurrence sentences, revealing 
more than 1.25 million unique gene-disease associations. We  demonstrate 
SciLinker’s ability to extract specific gene-disease relationships using 
osteoporosis as a case study. We  show how such an analysis benefits target 
identification as clinically validated targets are enriched in SciLinker-derived 
disease-associated genes. Moreover, this co-occurrence data can be  used 
to construct disease-specific networks, providing insights into significant 
relationships among biological entities from scientific literature.

Conclusion: SciLinker represents a novel text mining approach that extracts and 
quantifies associations between biomedical entities through co-occurrence 
analysis and relationship extraction from PubMed abstracts. Its modular design 
enables expansion to additional entities and text corpora, making it a versatile 
tool for transforming unstructured biomedical data into actionable insights for 
drug discovery.
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Introduction

Target identification is a critical early step in the pipeline of 
drug discovery and usually involves experts from various 
disciplines. These experts work together to define the disease of 
interest, explore mechanisms of the underlying pathophysiology, 
and evaluate targets based on criteria such as efficacy, safety, tissue 
selectivity, and competitive landscape (Shameer et al., 2017; Morgan 
et al., 2018). Biomedical literature is a key resource for this endeavor. 
For example, gene-disease associations reported in scientific 
publications can guide both therapeutic target identification and 
credentialing. Genes associated with a given disease in large 
numbers of research articles are intuitively more likely to be found 
to be fundamental drivers of disease pathogenesis and, therefore, 
may be  attractive candidates for an efficacious therapeutic 
intervention (Claussnitzer et al., 2020). On the other hand, genes 
seldom found to be associated with a given disease in the literature 
may represent untapped therapeutic opportunities worth 
further investigation.

Furthermore, insights from literature are not limited to simple direct 
disease-target associations. Because many diseases involve dysregulation 
of specific cell types rather than whole tissues or organs, identifying cell 
type-disease associations from the literature is also an essential resource 
for target identification. By focusing on the key pathogenic cell types 
associated with a disease, researchers can gain insight into the underlying 
molecular and cellular mechanisms, which improves the chances of 
identifying efficacious targets (Van de Sande et al., 2023). In addition, 
drug-gene and drug-disease associations from scientific literature provide 
important information on available therapeutic modalities and drug 
repurposing opportunities for a particular disease area (Lee et al., 2022). 
Drugs that have been shown to modulate the activity of genes or pathways 
associated with the disease of interest represent promising candidates for 
further investigation (Musa et  al., 2018). Integration between these 
various association types allow the relationships to be inspected in context 
and can show potential synergies that may otherwise remain invisible 
when each association type is considered individually.

The sheer volume of the biomedical literature makes it increasingly 
challenging for researchers to manually extract and synthesize relevant 
information. By applying natural language processing (NLP)-based 
computational algorithms for the automated extraction and analysis 
of knowledge from this vast literature, researchers can efficiently 
identify trends and connections that might otherwise remain hidden 
(Simmons et al., 2016). This approach enables a more comprehensive 
view of disease mechanisms, exposing promising therapeutic targets 
for further investigation in drug discovery. Such automated methods 
are essential for leveraging the wealth of information available and 
overcoming the limitations of traditional literature review strategies.

In this paper, we present SciLinker, a novel NLP-based framework 
to extract entities and associations, including gene-disease, cell type-
disease, drug-disease, and drug-gene associations, from large text 
compendiums. We have run SciLinker on the entire PubMed abstract 
corpus and present some of the results, demonstrating its utility in 
mining valuable knowledge from this extensive collection of scientific 
text corpora. SciLinker provides a text-derived knowledge analysis 
stream that can be integrated with multi-omics data and AI algorithms 
(Lessard et al., 2024), enabling a powerful, multifaceted approach to 
accelerate target discovery and credentialing by highlighting 
associations among genes, diseases, cell types, and drugs.

Background and related work

Named entity recognition (NER) and 
normalization (NEN)

Recognizing biomedical entities and concepts in text is often the first 
step in biomedical natural language processing (BioNLP) applications 
(Jensen et al., 2006). Named entity recognition (NER) and normalization 
(NEN) are two crucial steps in this process. NER involves identifying and 
classifying specific biomedical entities in text, such as genes, proteins, 
drugs, and diseases. Once identified, the entities are normalized to a 
standardized terminology or ontology such as Gene Ontology or Medical 
Subject Headings (MeSH) through the NEN step. This normalization 
step ensures that different mentions of the same entity are linked to the 
same nomenclature, enabling seamless data integration and downstream 
relation extraction among the entities and other BioNLP tasks.

Methods for NER and NEN in biomedical text mining can 
be  divided into four categories: rule-based (Soomro et  al., 2017), 
dictionary-based (Wei et al., 2012; Eftimov et al., 2017), machine learning 
(ML)-based (including supervised and unsupervised, semi-supervised, 
and deep learning-based) (Zhu et  al., 2017), and hybrid models 
combining rules, dictionaries, and ML methods (Eltyeb and Salim, 
2014). With the recent advances in deep learning and large language 
models, pre-trained language models have been applied to NER and 
NEN, including to process PubMed abstracts and PMC full texts. One 
such text mining tool for annotating biomedical concepts in PubMed 
abstracts and PMC full-text articles is PubTator (Wei et  al., 2019). 
PubTator applies four different ML and dictionary-based hybrid models 
to tag genes, diseases, cell line, and species. BERN is another tool that 
uses high-performance BioBERT NER models which recognize known 
entities and discover new entities. Various NEN models are integrated 
into BERN to assign a distinct identifier to each recognized entity (Kim 
et al., 2019). An updated version BERN2 (Sung et al., 2022) improves 
BERN by employing a multi-task NER model and neural network based 
NEN models to achieve faster and more accurate inference.

Relationship extraction (RE)

Relationship extraction (RE) is the task of identifying relationships 
between entities extracted from the NER and NEN steps. Traditional 
approaches for RE in the biomedical domain can be  broadly 
categorized into three types: co-occurrence, rule-based, and ML 
approaches. Co-occurrence-based models quantify the relationships 
between entities based on co-occurrence statistics in texts, with the 
idea that the entities that frequently appear together are more likely to 
be related (Zhou and Skolnick, 2016; Zhang et al., 2018; Pletscher-
Frankild et al., 2015). Rule-based approaches use predefined patterns 
or rules to identify relationships, often leveraging domain-specific 
knowledge and linguistic structures (Segura-Bedmar et al., 2011). ML 
approaches learn to recognize relationship patterns from annotated 
data. Both rule-based and ML approaches provide a qualitative rather 
than quantitative approach to RE and require extensive efforts to train 
and maintain (Song et al., 2015; Mahmood et al., 2016; Hou and Kuo, 
2016; Bhasuran and Natarajan, 2018). Deep neural network-based 
methods such as convolutional neural networks (CNNs), recurrent 
neural networks (RNNs), and combinations of CNNs and RNNs are 
commonly used for relation extraction and achieve better performance 
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than traditional ML methods (Emmert-Streib et al., 2020). Recent 
advances in RE focus on pretrained language models, as studies have 
shown that these models have achieved state-of-the-art performance 
for biomedical text mining (Fang et al., 2023). Specifically, BERT-based 
models such as BioBERT, SciBERT, and PubMedBERT have been 
successfully used for RE from scientific literature (Bhasuran, 2022).

Materials and methods

Text corpora

We used the PubMed abstracts as the text corpus for the SciLinker 
framework to extract biomedical entities and relationships. This 
corpus included more than 39 million abstracts (as of September 
2024). We downloaded PubMed Baseline 2024 XML files from NCBI’s 
FTP server1, which was released on December 8, 2023. Following this 
initial download, we retrieved the daily update files2 to be processed 
by the SciLinker Pipeline, batched on a monthly basis.

SciLinker NLP framework architecture

We built SciLinker using the open-source NLP libraries spaCy 
(Honnibal et  al., 2020), Stanza (Qi et  al., 2020) and scispaCy 
(Neumann et al., 2019). Stanza is a powerful and efficient Python NLP 
library providing a comprehensive suite of tools for common NLP 
tasks. ScispaCy is a Python framework for processing biomedical, 
scientific, and clinical text. It is built on spaCy, a robust Python library 

1 https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/

2 https://ftp.ncbi.nlm.nih.gov/pubmed/updatefiles/

for general domain natural language processing (Figure  1). The 
preprocessing steps of the pipeline are the following:

 • Tokenization – breaking text into word and punctuation tokens.
 • Part-of-speech (POS) tagging – assigning POS tags like noun, 

verb, adjective.
 • Dependency parsing  – identifying syntactic relationships 

between words.

Named entity recognition (NER)

Stanza’s NER model is based on a BiLSTM-CNN-Char framework. 
This architecture combines bidirectional Long Short-Term Memory 
(BiLSTM) networks with Convolutional Neural Networks (CNNs) and 
character-level embeddings to effectively capture both word-level and 
character-level features for accurate entity recognition (Zhang et al., 
2021). SciLinker uses two pretrained biomedical NER models from 
Stanza for entity recognition tasks. The model trained on the BC5CDR 
dataset is used to identify diseases and drugs (F1 score of 88.08). The 
model trained on the BioNLP13CG dataset, which can identify over 14 
biomedical entities with F1 score of 84.34 (Zhang et al., 2021), is used 
to identify genes or gene products (e.g., proteins) and cell types.

Named entity normalization (NEN)

After the NER step, we normalized entity mentions recognized by 
the NER models, since the same concept could be represented with 
different names in different texts. We  employed the EntityLinker 
module from scispaCy to perform NEN, using the Unified Medical 
Language System (UMLS) knowledge base (Bodenreider, 2004) as the 
common dictionary. UMLS is a comprehensive thesaurus and 
ontology for biomedical and clinical domain with a collection of over 

FIGURE 1

Overview of the SciLinker workflow. SciLinker is a natural language processing (NLP) framework developed using pretrained language models to 
extract gene-disease, cell type-disease, drug-disease, and drug-gene associations from the PubMed abstract corpus.
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200 vocabularies containing 3 million concepts. The NEN step of 
SciLinker uses character-level 3-grams and Approximate Nearest 
Neighbors (ANN) to improve the efficiency and accuracy of linking 
entity mentions to concepts in the UMLS Metathesaurus. Leveraging 
character-level 3-grams and ANN allow for a fast and scalable search, 
reducing the computational complexity of the entity linking process 
so that SciLinker can efficiently compare the character-level 
representations of entity mentions and candidate concepts.

Relation extraction

We built a relationship extraction model by fine-tuning the 
PubMedBERT base uncased version with the balanced training 
dataset from the paper (Milošević and Thielemann, 2023) for gene-
disease associations only. Relation extraction classifies the 
relationships between named entities in the given text (in this case, 
gene-disease associations). We followed the preprocessing method 
used by PubMedBERT (Gu et  al., 2020), where entity names are 
replaced by dummy tokens (e.g., gene and disease names are replaced 
by $gene and $disease respectively). The model was fined-tuned with 
the training dataset for 6 epochs (learning rate = 0.00002). The 
training data contains the following seven gene-disease relationship 
types (Milošević and Thielemann, 2023):

 • No Explicit Relationship  – There is no explicit relationship 
between gene and disease.

 • Plays a role – There is a connection between the gene and disease, 
but the exact relationship is unclear.

 • Target →  General  – The gene can be  considered a target for 
the disease.

 • Target → Cause – The gene causes the disease when activated/
mutated/inhibited.

 • Target → Modulator → Decrease Disease – The gene decreases 
or alleviates the disease.

 • Target → Modulator → Increase Disease – The gene increases or 
worsens the disease.

 • Biomarker  – The presence/absence of the gene/protein is an 
indicator for the diagnosis of disease.

Co-occurrence scoring

SciLinker provides a co-occurrence-based association score: if an 
entity pair co-occurs in the same sentence, we  consider them to 
be associated. SciLinker scores the strength of the association using a 
scoring scheme inspired by the co-occurrence-based text mining 
scores in the STRING database (Mørk et al., 2014). For an entity pair 
( ),x y , x  being an entity of type X (e.g., gene) and y an entity of type Y 
(e.g., disease), we formulate the co-occurrence score ( ),S x y  as:
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where ( ),C x y  denotes the number of times x and y co-occur in the 
same sentence, ( ),C ∗ ∗  the total number of sentences that contain any 
entity pair of types X and Y in the text corpus, ( ),C x ∗  the number of 
sentences that contain both x  and an entity of type Y, ( ),C y∗ the 

number of sentences that contains both y and an entity of type X, and a  
the weighting factor. The scoring function therefore corrects the number 
of co-occurrences by the background distribution of each entity x and 
y, with a being a trade-off parameter adjusting for the strength of this 
correction. We propose 0.6a =  based on the Mørk et al. (2014) paper.

Co-occurrence statistical significance

We used a hypergeometric test to determine the probability of 
observing a certain number of sentences that contain both entities x  
and y by chance. This assessment considers the total number of 
sentences in the corpus and the individual frequency of each entity. 
The hypergeometric test calculates the probability of observing k or 
more successes (sentences containing both x  and y) in a sample of size 
N, drawn without replacement from a population with K  successes 
and n items of interest. In the context, this is formulated as:
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Where N  is the total number of sentences in the corpus that 
contain both an entity of type X and an entity of type Y, K  is the 
number of sentences that contain both x  and an entity of type Y, n is 
the number of sentences that contain both y and an entity of type X, 
k  is the observed number of sentences that contain both x  and y, and 
( )P k  is the probability that this number is greater or equal to k .

By calculating the hypergeometric probability, we can determine 
whether the observed association (k ) between the pair ( ),x y  is 
statistically significant, given the expected distribution of successes 
based on the total number of sentences, the number of sentences 
containing x , and the number of sentences containing y. To correct 
for the multiple comparisons, we  adjusted the p-value with the 
Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995).

Using SciLinker to process PubMed 
abstracts

We used 10 c6i.8xlarge EC2 instances (32 CPU, 64G RAM) on 
AWS to run SciLinker on both the PubMed abstract baseline and the 
daily update XML files. The total running time to process 1,485 XML 
files with about 39 million abstracts is 7 days. Additionally, we update 
the SciLinker results with the new daily update files at the end of each 
month. These monthly updates require less than 2 h of running time 
on a single instance for about 30 K abstracts on average.

Fisher’s exact test

We obtained a list of 112 clinically validated psoriasis targets 
from Citeline3, including targets with an approved drug and targets 

3 https://www.citeline.com/
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with at least one drug under active clinical development. 
We categorized these gene targets into four groups based on their 
clinical development status: phase 1, phase 2, phase 3 and approved. 
We identified 2,531 psoriasis associated genes from SciLinker. To 
assess the enrichment of genes under clinical development in these 
psoriasis-associated genes, we  employed Fisher’s exact test. 
We conducted the Fisher’s exact test using a 2×2 contingency table, 
comparing the frequency of clinically developed genes in the 
psoriasis-associated gene set to their frequency in the full set of 
19,969 human protein-coding genes (Nurk et al., 2022). Our null 
hypothesis assumed that there is no association between a gene’s 
presence in the psoriasis-associated set and its clinical development 
status. The alternative hypothesis was that genes in the psoriasis-
associated set are more likely to be under clinical development for 
psoriasis treatment. We considered results statistically significant at 
adjusted p < 0.05. We also performed the same test with the clinically 
validated targets for six other diseases including asthma, atopic 
dermatitis, COPD, Parkinson’s disease, rheumatoid arthritis (RA), 
and ulcerative colitis (UC).

Gene set enrichment analysis

We performed gene set enrichment analysis using the GSEApy 
package (Fang et al., 2023) in the Python environment. We ran the 
GSEAPreranked module with the results of disease associated 
genes for the seven diseases listed in the above section. We used 
the four clinically validated disease target gene groups described 
above as gene sets. We  compared the GSEA results ranked by 
SciLinker score vs. ranked by the co-occurrence counts. 
Normalized enrichment score (NES), p-value, and false discovery 
rate (FDR) for all variables and signatures were obtained in the 
python environment.

Results

Entities and associations output from 
SciLinker

In this paper, we  present a new natural language processing 
framework named SciLinker to extract four biomedical entities 
(genes, cell types, drugs, and diseases), as well as gene-disease, cell 
type-disease, drug-disease, and drug-gene associations from 
the literature.

The application of the SciLinker framework to the entire 
PubMed abstract corpus (as of 09/04/2024) resulted in over 
11-million gene-disease co-occurrence sentences. These 
co-occurrences represented associations between more than 29 
thousand genes and 16 thousand diseases, giving rise to more than 
1.25 million unique gene-disease associations (Table 1), with about 
500 thousand found significant (adjusted p < 0.05). We also extracted 
co-occurrence sentences for more than one thousand cell types and 
12 thousand diseases. The number of unique cell type and disease 
association is about 179 thousand, with about half of them found 
significant (adjusted p < 0.05). In addition, we extracted about 32 
thousand drugs with about 1 million drug-gene and 839 thousand 
drug-disease associations.

Relationship extraction with PubMedBERT

We performed relationship extraction on gene-disease associations. 
We obtained a balanced training dataset for gene-disease relationships 
from Milošević and Thielemann (2023). In that paper, the authors 
defined seven gene-disease relationship types (Materials and Methods). 
We fine-tuned PubMedBERT with the training dataset over 6 epochs 
and obtained an overall weighted average F1-score of 0.88 (Table 2). 
‘No Explicit Relationship category’ had a lower F1-score due to fewer 
training examples. Overall, we achieved F1-scores comparable to that 
of the Milošević and Thielemann (2023) paper.

We applied the fine-tuned PubMedBERT model to predict gene-
disease relationships from 18,136 sentences where both a gene and 
the disease “osteoporosis” is mentioned. Table 3 shows the percentage 
of sentences predicted into each relationship type for 47 osteoporosis-
associated genes with over 50 co-occurrences. The “Plays a role” has 
the highest overall percentage across most genes, suggesting that 
many sentences describe the genes playing a role in osteoporosis 
without specifying a more detailed relationship. The 
“Target → General” category also has a notable presence for many 
genes, indicating that these genes are mentioned as potential targets 
for treatment or modulation in the context of osteoporosis. The 
category “No Explicit Relationship” generally has lower percentages 
across most genes, suggesting in some sentences gene and disease are 
mentioned together but are not associated with each other. In the 
more informative category of relationships such as 
“Target → Causative,” some genes like WNT1 (53.8%), PLS3 (49.4%), 
and LRP5 (28.9%) have overall high percentages, suggesting that 
genes are frequently mentioned as potential causative factors for 
osteoporosis. In the “Biomarker” category, genes such as POLK 
(24.4%), SLPI (13.7), COL1A2 (13.7%), and SPP1 (12.7%) have a 
higher percentage, indicating that they are often discussed as 
potential biomarkers for osteoporosis. Genes playing various roles in 
bone metabolism, formation, and metabolism such as NFATC1, 
MTOR, PPARA, SIRT1 are in the “Target → Modulator → Decrease 
Disease” category, although there are some conflicting predictions in 
the “Target → Modulator → Increase Disease” category. In summary, 
we showed that the fine-tuned PubMedBERT model can be applied 
to extract gene-disease relationships.

TABLE 1 Number of entitles and associations extracted by SciLinker.

Entity Association

Number of diseases 16,413

Number of genes 29,010

Number of cell types 1,586

Number of drugs 32,171

Number of unique gene disease associations 1,250,646

Number of unique cell disease associations 179,042

Number of unique drug disease associations 839,221

Number of unique drug gene associations 1,030,267

Number of gene disease association evidence sentences 11,745,842

Number of cell disease association evidence sentences 3,082,286

Number of drug disease association evidence sentences 8,260,048

Number of drug gene association evidence sentences 8,902,059
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Application of SciLinker in target 
identification

To illustrate how we can apply the SciLinker results for target 
identification, we will elaborate on two examples. In the first example 
we looked at GBA associated diseases. The GBA gene encodes the 
lysosomal enzyme glucocerebrosidase (GCase), which is responsible 
for maintaining glycosphingolipid homeostasis. Mutations in the GBA 
gene can cause Gaucher disease. Approximately 5–15% of Parkinson’s 
disease (PD) patients have mutations in the GBA gene, making it 
numerically the most important genetic risk factor for PD (Smith and 
Schapira, 2022). As expected, SciLinker identified Gaucher disease 
and PD as the top diseases associated with GBA (Table 4). Interestingly, 
the number of co-occurrences between GBA and PD was more than 
with Gaucher disease (78 sentences vs. 76 sentences). However, the 
association score for Gaucher disease was much higher (284.25 vs. 
94.25), due to the background rate correction that is incorporated into 
the SciLinker association score (see Materials and Methods). Indeed, 
PD is more often studied in the scientific literature than Gaucher 
disease (36,946 vs. 1,701 sentences extracted from PubMed abstracts). 
The same rationale applies for Hemochromatosis and other diseases.

In the second example, we demonstrate that SciLinker scores can 
be  used to identify potential novel disease targets that would not 
be obvious using a simple co-occurrence sentence count. Osteoporosis 
is a condition characterized by weakened bones and an increased risk 
of fractures, often due to decreased bone density and quality. As the 
population ages, the prevalence of osteoporosis rises, highlighting the 
urgent need for new treatments that can effectively prevent bone loss, 
enhance bone strength, and reduce fracture risk (Li et  al., 2021). 
We applied SciLinker to extract the osteoporosis associated genes 
from PubMed abstracts. As expected, SciLinker was able to retrieve 
top osteoporosis associated genes (Supplementary Table 1). Many of 
the genes are involved in influencing bone metabolism, formation, 
and resorption. Key genes like TNFSF11 (RANKL), TNFRSF11B 
(OPG), PLS3, SOST, LRP5, and RUNX2 play crucial roles in bone 
health, with mutations or dysregulation leading to increased bone 
fragility and osteoporosis. To identify potential new therapeutic 
targets, we  focused on genes with few co-occurrences with 
osteoporosis but relatively high association scores. FTCDNL1 ranked 
58th on the list by SciLinker score and co-occurred with osteoporosis 
in only eight sentences. However, this association is highly significant 
(p = 3.82E-07). FTCDNL1 encodes a protein involved in the 
regulation of bone homeostasis, and its activity influences bone 
density and strength. Polymorphisms of the FTCHNL1 gene are 

associated with a reduced risk of having osteoporosis in Asian 
population, suggesting a potential therapeutic target for osteoporosis 
(Lu et al., 2015). FTCDNL1 would rank 519th by sentence counts. This 
example demonstrates that ranking associations by SciLinker score, 
and p-value can identify statistically significant associations with 
limited publications, facilitating the discovery of potential untapped 
therapeutic targets.

Enrichment of clinically validated drug 
targets in disease-associated genes from 
SciLinker results

The goal of target identification is to find potential drug targets 
that will be successful in clinical trials. To statistically evaluate whether 
disease associated genes identified through SciLinker were enriched 
for clinically validated drug targets, we performed Fisher’s exact tests 
for the disease associated genes from SciLinker for seven diseases 
(Materials and Methods), since there are only a small number of 
clinically validated targets available for osteoporosis, we will focus 
psoriasis as an example in this section. We  compared psoriasis 
associated genes from SciLinker against all human protein coding 
genes in terms of their clinical development status for psoriasis drugs. 
We assessed whether the proportion of clinically trialed drug targets 
in the text-mined list was significantly higher than expected by chance 
through a Fisher’s exact test (Materials and Methods). Seventy-one of 
the 2,513 psoriasis associated genes are clinical targets (Odds 
ratio = 12.22, p-value = 3.62E-36). This significant overrepresentation 
highlights that SciLinker prioritized genes with strong evidence of 
therapeutic relevance for psoriasis. The Fisher’s exact tests results for 
the six other diseases also show significant overrepresentation of the 
clinically validated targets (Materials and Methods).

To further determine whether the disease-associated genes 
correlate with specific groups of clinically validated targets, 
we divided the clinical validated targets of each of the seven diseases 
into four groups based on their clinical status: targets with 
FDA-approved drugs, targets with drugs in phase 1, phase 2, or phase 
3 of their clinical development. We then applied Gene Set Enrichment 
Analysis (GSEA) using the GSEAPreranked method (Subramanian 
et al., 2005) to test if any clinical target groups showed statistically 
significant enrichment in each of the disease-associated gene list 
ranked by SciLinker scores. Figure 2 shows the results for psoriasis. 
All four clinical target groups are enriched in the psoriasis-associated 
genes, but to varying degrees. The approved, phase 2, and phase 1 

TABLE 2 Results of the fine-tuned PubMedBERT model for relationship classification (after 6 epochs).

Precision Recall F1-score

Overall (weighted average) 0.88 0.88 0.88

No explicit relationship 0.57 0.25 0.35

Target → Modulator → Increase disease 0.95 0.91 0.93

Target → Causative 0.91 0.97 0.94

Target → Modulator → Decrease disease 0.83 0.94 0.88

Plays a role 0.90 0.83 0.86

Target → General 0.85 0.95 0.89

Biomarker 0.97 0.95 0.96
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TABLE 3 Percent of each gene-disease relationship category assigned by the fine-tuned PubMedBert model for the 50 osteoporosis-associated genes with 50 or more supporting sentences.

Gene No explicit 
relationship

Plays a 
role

Target → general Biomarker Target → causative Target → Modulator 
→ Decrease disease

Target → Modulator 
→ Increase disease

Sentence 
count

TNFSF11 5.5 34.6 30.7 0.5 14.7 12.7 1.4 858

PTH 3.7 31 50.4 2.5 2.2 9.1 1.1 854

TNFRSF11B 5.1 60.2 12.4 2 8.8 9.5 2 693

VDR 0.6 77.1 12.5 1.4 0.9 6.4 1.2 345

SOST 4.3 31.8 50 3.4 0.9 9.3 0.3 324

INS 3.6 63.2 14.6 0 12.6 3.6 2.4 253

IL6 6.1 64.6 10.2 5.3 4.9 5.7 3.3 246

TNFRSF11A 4.9 40.3 37.4 0 8.7 6.8 1.9 206

LRP5 1 60.8 6.9 0 28.9 1.5 1 204

IGF1 4 69.9 16.8 1.2 4 2.9 1.2 173

RUNX2 9.5 37.3 20.1 0 5.3 19.5 8.3 169

EREG 6 35.7 37.5 1.2 3.6 14.9 1.2 168

COL1A2 8.7 58.4 9.3 13.7 6.2 3.7 0 161

CYP19A1 3.8 19.7 40.1 1.3 8.3 20.4 6.4 157

AKT1 10.8 25.7 33.8 0 3.4 25.7 0.7 148

SLPI 18.5 43.8 10.3 13.7 1.4 11.6 0.7 146

TNF 3.3 62.6 13.8 2.4 8.9 8.9 0 123

TGFB1 5.1 63.2 14.5 4.3 4.3 7.7 0.9 117

CTSK 3.6 16.4 69.1 2.7 0.9 7.3 0 110

GH1 0.9 40.9 29.1 0 15.5 10.9 2.7 110

LEP 6.4 66.1 6.4 4.6 1.8 13.8 0.9 109

ESR1 1.9 71.8 16.5 1.9 2.9 4.9 0 103

TNFRSF1A 14.6 44.8 10.4 5.2 6.3 12.5 6.3 96

SIRT1 6.3 20 42.1 1.1 0 26.3 4.2 95

PIK3CA 17.4 23.9 32.6 0 2.2 22.8 1.1 92

EPB42 0 47.2 11.2 6.7 5.6 29.2 0 89

GABPA 5.6 18 29.2 0 3.4 41.6 2.2 89

PLS3 0 48.3 1.1 0 49.4 1.1 0 89

POLK 11.5 29.5 26.9 24.4 1.3 6.4 0 78

COL1A1 1.3 92.2 0 1.3 5.2 0 0 77

(Continued)
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TABLE 3 (Continued)

Gene No explicit 
relationship

Plays a 
role

Target → general Biomarker Target → causative Target → Modulator 
→ Decrease disease

Target → Modulator 
→ Increase disease

Sentence 
count

BGLAP 12.5 55.6 2.8 19.4 1.4 8.3 0 72

PTHLH 1.4 22.5 57.7 2.8 7 7 1.4 71

SPP1 7 56.3 8.5 12.7 4.2 11.3 0 71

CRP 5.8 66.7 2.9 20.3 2.9 1.4 0 69

AR 1.5 30.9 57.4 1.5 1.5 5.9 1.5 68

DKK1 13.2 45.6 27.9 5.9 1.5 2.9 2.9 68

PPARA 6 26.9 34.3 0 1.5 26.9 4.5 67

NFATC1 7.7 10.8 41.5 0 7.7 32.3 0 65

WNT1 0 40 6.2 0 53.8 0 0 65

ALB 9.4 57.8 10.9 7.8 1.6 12.5 0 64

MIR21 3.2 52.4 15.9 7.9 1.6 19 0 63

SHBG 0 76.2 4.8 4.8 0 4.8 9.5 63

VEGFA 3.2 58.1 16.1 0 4.8 16.1 1.6 62

ESR2 1.7 35 50 3.3 0 10 0 60

MTOR 3.4 13.8 37.9 0 15.5 29.3 0 58

ADIPOQ 14.3 67.9 5.4 5.4 1.8 1.8 3.6 56

BMP2 9.1 47.3 23.6 0 0 18.2 1.8 55

KL 1.9 44.4 7.4 1.9 29.6 13 1.9 54

SP1 1.9 90.4 0 1.9 0 3.8 1.9 52

Percentage is calculated from the total sentences count of each gene.
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groups displayed strong enrichment with normalized enrichment 
scores (NES) of 2.40, 1.86, and 1.82, respectively. The phase 3 group 
showed weaker, non-significant enrichment with NES around 1.26 
(adjusted p-value = 0.18). When doing the same analysis with 
uncorrected sentence counts, the results show all four groups are 
weakly enriched (NES 1.46, 1.05, 1.34, and 1.33) while only the 
approved group is significant (adjust p-value = 0.03). This 
demonstrates that the SciLinker scoring approach captures a stronger 
signal for prioritizing drug targets compared to simple 
co-occurrence counts.

In summary, we demonstrated that clinically validated targets from 
all development phases are enriched in the text mining-derived psoriasis 
genes, with the strongest enrichment seen for approved targets and 
phase 1–2 trials. We performed the same test for six other diseases 
(Materials and Methods), with consistent results, showing strong 
enrichment of clinical targets within SciLinker score ranked genes 

(Supplementary Figure 1). The correlated enrichment patterns further 
support the validity of the literature-based disease gene associations.

Construction of robust network graphs

Co-occurrence data extracted from SciLinker can also be used to 
construct robust network graphs that capture the relationships among 
biological entities such as genes, diseases, cell types, and drugs.

We employ the co-occurrence association scores from 
SciLinker to filter and weight the edges connecting nodes in the 
network graphs. We can remove edges representing associations 
that do not meet a specified p-value threshold, and the remaining 
edges have their weights derived from the SciLinker association 
scores. This approach filters out potential noise while prioritizing 
robust associations even when raw co-occurrence counts may 

TABLE 4 Output of top diseases associated with GBA from SciLinker.

Disease Disease CUI Count Association score P-value P-adj

Gaucher disease C0017205 76 284.25 <0.001 <0.001

Parkinson disease C0030567 78 92.25 5.08E-09 1.29E-06

Gaucher disease, type 3 (disorder) C0268251 2 40.94 1.12E-07 2.85E-05

Hemochromatosis C0018995 15 39.89 <0.001 <0.001

Gaucher disease, type 1 C1961835 3 37.47 <0.001 <0.001

Lewy body disease C0018995 11 36.17 <0.001 <0.001

Synucleinopathies C5191670 6 34.78 <0.001 <0.001

Presenile dementia C5191670 12 17.87 <0.001 <0.001

Multiple system atrophy C0393571 2 11.03 9.67E-05 0.025

Spastic paraplegia C0037772 2 10.59 0.00012 0.030

Neurodegenerative disorders C0524851 5 6.83 0.00011 0.028

FIGURE 2

GSEAPreranked results of psoriasis associated genes ranked by SciLinker score vs. ranked by co-occurrence counts. The gene sets are the four 
clinically validated asthma target groups (phase 1, phase 2, phase 3, and approved). The markers are colored by the FDR.
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FIGURE 3

Section of osteoporosis network graph showing the interaction among gene/protein, cell type and drugs. Entities in blue triangle are genes, in green 
rectangle are drugs, and orange oval are cell types.

be  lower, thereby highlighting the most statistically significant 
relationships. Similarly, we  can construct weighted and filtered 
networks for cell type-specific gene expression, drug-target 
interactions, and other entity relationships using the SciLinker 
scores and p-values.

We show an example network center around TNFSF11 for 
osteoporosis in Figure  3, where significant associations were 
displayed with a cut-off on adjusted p-value less or equal than 
0.05. The network illustrates interactions among genes, drugs, 
and cell types associated with osteoporosis. The TNFSF11 
(RANKL) network is central to osteoporosis, involving key 
interactions with genes, cell types, and drugs. RANKL binds to 
RANK (encoded by TNFRSF11A) on osteoclasts, promoting their 

differentiation and bone resorption, while OPG (encoded by 
TNFRSF11B) acts as a decoy receptor to inhibit this process. 
Drugs like Denosumab target RANKL to reduce osteoclast 
activity and bone loss. Other genes such as SOST, LRP5, and 
RUNX2 influence bone formation and remodeling, interacting 
with the RANKL pathway. The balance between osteoclasts, 
osteoblasts, and osteocytes, along with the modulation by drugs, 
is crucial for maintaining bone health and treating osteoporosis.

In summary, the high precision co-occurrence disease-specific 
network, constructed using SciLinker’s robust scoring system and 
significance testing, empowers data-driven exploration and discovery 
of only most statistically significant relationships within the vast 
scientific literature.
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Discussion

SciLinker represents a novel text mining approach for 
extracting biomedical relationships from scientific literature, 
specifically focusing on gene-disease, cell type-disease, drug-
disease, and drug-gene associations. Using a fine-tuned 
PubMedBERT model, we demonstrated successful gene-disease 
relationship extraction across seven relationship types. While 
SciLinker can identify drugs and cell type entities from PubMed 
abstracts, we adopted a modular approach and focused primarily 
on co-occurrence-based relationship extraction due to the 
significant cost of developing machine learning training datasets 
for relationship extraction tasks (Milošević and Thielemann, 2023). 
Our approach effectively identifies significant co-occurring entity 
pairs in PubMed abstracts and quantifies association strength 
using both a numerical score and hypergeometric test-based 
p-value.

Several other methodologies exist for extracting biological 
semantic triples and entity pairs from PubMed abstracts. Milošević 
and Thielemann (2023) developed a knowledge graph framework 
using a rule-based system for named entity recognition and 
normalization (Gerner et al., 2010), achieving an F1-score of 0.92 for 
gene-disease relationships. Bhasuran and Natarajan (2018) employed 
joint ensemble learning for gene-disease relationship classification, 
reaching F1-scores of 0.84–0.87. Our PubMedBERT-based model 
achieved a comparable average F1-score of 0.88. Importantly, 
SciLinker extends beyond previous approaches by utilizing state-of-
the-art pretrained language models to identify and normalize multiple 
entity types (genes, diseases, drugs, and cell types) and their 
co-occurrence associations, enabling the construction of high-
precision disease-specific networks.

While other methods like Grissa et al. (2022) and Kim et al. (2017) 
focused exclusively on gene-disease associations, SciLinker offers 
broader capabilities. Grissa et al. (2022) used Tagger software (Pafilis 
et al., 2013) for entity recognition, while Kim et al. (2017) developed 
DigSee for extracting gene-disease sentences and genetic events. 
SciLinker distinguishes itself through its comprehensive entity 
coverage and robust evaluation metrics, combining both association 
scores and hypergeometric p-values to assess relationship significance.

SciLinker’s effectiveness stems from its ability to analyze 
co-occurrence statistics across large literature corpora, enabling 
reliable extraction of biomedical associations even with limited 
context. The framework effectively identifies links for both common 
and rare diseases, as demonstrated by its successful identification of 
GBA gene associations with both Gaucher disease (rare) and 
Parkinson’s disease (common). Importantly, SciLinker can also 
identify potential novel therapeutic targets, such as FTCDNL1 for 
osteoporosis. Furthermore, SciLinker’s ranked target lists for diseases 
show a significant enrichment of clinically validated targets.

SciLinker’s current capabilities can be  further expanded in 
several ways. First, while the fine-tuned PubMedBERT model 
currently handles gene-disease relationship prediction, the 
framework’s modular design allows for expansion to other entity-
pairs like drug-gene, drug-disease, cell type-gene, and cell type-
disease relationships. This expansion requires careful consideration 
of the computational approach  – while fine-tuning for each 
relationship type is computationally intensive during training, it may 

prove more efficient during inference compared to alternatives like 
in-context learning or advanced prompting methods when processing 
the entire PubMed corpus of 39+ million abstracts. Additionally, 
expanding to new relationships will require developing 
comprehensive annotation schemas and guidelines to ensure 
consistent, high-quality training data. Additionally, our analysis has 
revealed that complex sentence structures with multiple clauses and 
nested relationships are currently underrepresented (~2.5%) in the 
training data we used. To address this, future improvements could 
incorporate targeted data augmentation strategies, including rule-
based transformation of simpler sentences, back-translation for 
paraphrasing, and the use of external resources to generate diverse 
complex sentences. Secondly, the co-occurrence statistics score 
currently considers entities within the same sentence and does not 
account for publication quality, as we postulate that due to the large 
number of abstracts, statistical significance is an appropriate way to 
control for truth. However, especially for scientists applying our 
pipeline to a smaller text corpus, one could increase confidence in the 
quality of the included articles by thresholding or weighing based on 
journal impact factors derived from the journal name, which is 
readily available in the metadata. Another possibility would be to use 
citation counts as a measure of quality, but this data is not contained 
in the PubMed metadata and would require additional development. 
Regarding conference resolution, research from the BioNLP 2018 
conference (Trieu et  al., 2018) suggests that neural conference 
systems (e2e_coref Lee et  al., 2017; NeuralCoref 4.0, 2021) can 
perform reasonably well on biomedical texts even without domain-
specific features or in-domain embeddings. Finally, we used SciLinker 
to process PubMed abstracts, but the same strategy could be applied 
to full-text articles, increasing the number of co-occurrence sentences 
by orders of magnitude. Further refinements of SciLinker through 
expanded entity coverage, enhanced scoring methods, and broader 
text corpus analysis will improve SciLinker’s accuracy, reliability, and 
applicability in target discovery and credentialing.

Conclusion

We have here presented SciLinker, a novel text mining approach 
that combines relationship extraction and co-occurrence-based 
statistical analysis to identify associations between genes, cell types, 
drugs, and diseases in biomedical literature. By analyzing 
co-occurrence patterns across large literature corpora and evaluating 
them with quantitative scores and statistical significance, SciLinker 
reliably extracts meaningful biomedical associations even from 
limited contextual information. While currently focused on PubMed 
abstracts, SciLinker’s modular design allows expansion to other 
entities and text sources, including full-text articles, clinical notes, 
and electronic medical records, making it a versatile tool for 
generating insights that can advance disease understanding and 
therapeutic development.
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