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A novel approach to Indian bird
species identification: employing
visual-acoustic fusion techniques
for improved classification
accuracy

Pralhad Gavali and J. Saira Banu*

School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu,

India

Accurate identification of bird species is essential for monitoring biodiversity,

analyzing ecological patterns, assessing population health, and guiding

conservation e�orts. Birds serve as vital indicators of environmental change,

making species identification critical for habitat protection and understanding

ecosystem dynamics. With over 1,300 species, India’s avifauna presents

significant challenges due to morphological and acoustic similarities among

species. For bird monitoring, recent work often uses acoustic sensors to collect

bird sounds and an automated bird classification system to recognize bird

species. Traditional machine learning requires manual feature extraction and

model training to build an automated bird classification system. Automatically

extracting features is now possible due to recent advances in deep learning

models. This study presents a novel approach utilizing visual-acoustic fusion

techniques to enhance species identification accuracy. We employ a Deep

Convolutional Neural Network (DCNN) to extract features from bird images and

a Long Short-Term Memory (LSTM) network to analyze bird calls. By integrating

these modalities early in the classification process, our method significantly

improves performance compared to traditional methods that rely on either

data type alone or utilize late fusion strategies. Testing on the iBC53 (Indian

Bird Call) dataset demonstrates an impressive accuracy of 94%, highlighting the

e�ectiveness of our multi-modal fusion approach.

KEYWORDS

birds identification, species classification, visual-acoustic data, fusion technique, deep

CNN

1 Introduction

Identifying bird species greatly affects monitoring and maintaining biodiversity,

particularly in India with its numerous bird populations. Most previous studies have

focused on the estimation of bird species in short recordings. Compared to the

identification of an individual bird and detecting the start and stop time of bird song,

this is relatively simple and often relies on manually segmented bird sounds, which might

overestimate the performance when classifying bird species in continuous recordings.

Identifying species helps researchers tune migration patterns, monitor population shifts,

and examine environmental impacts. However, traditional techniques based on visual

observation, which depend on a professional’s ability to differentiate species, face
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significant challenges such as poor lighting, obstructed views, and

birds with similar feather patterns. Sound-based identification,

relying on bird calls, also encounters difficulties such as background

noise and variations in bird vocalizations. These limitations

highlight the need for advanced methodologies. Despite extensive

research in bird classification, the introduction of multimodal

approaches remains underexplored, and a clear research gap

exists in integrating visual and auditory modalities for species

identification in India’s biodiverse context.

To address this gap, we propose a framework that combines

visual and sound information to identify Indian bird species.

Using a Deep Convolutional Neural Network (DCNN) for

visual data and Long Short-Term Memory (LSTM) networks

for sound data, we merge these complementary data types with

both early and late fusion techniques. Our approach makes

identification more reliable and accurate, leveraging the iBC53

(Indian Bird Call Dataset), an extensive collection of bird images

and calls from across India (Swaminathan et al., 2024). For

acoustic data, we used an LSTM network because it is well-

suited for sequential data, such as bird vocalizations. LSTMs

effectively capture the temporal dependencies inherent in bird

calls, which are crucial for distinguishing between species with

similar tonal characteristics but differing call sequences. The

Mel-frequency cepstral coefficients (MFCCs) fed into the LSTM

represent the spectral properties of the bird calls by compressing

critical acoustic data into a low-dimensional feature set (Xie and

Zhu, 2023). We combined the two data types using early and

late fusion techniques to improve identification accuracy and

robustness. Early fusion processes the features from both visual

and acoustic modalities together, allowing the model to learn

the interactions between the two data types during training. In

late fusion, the two modalities are processed independently, and

the outputs of the DCNN and LSTM networks are combined at

the decision stage using a weighted average of the probability

distributions generated by each model (Ntalampiras and Potamitis,

2021).

The primary contribution of this study is the development

and evaluation of a novel Visual-Acoustic Fusion bird

classification model, which integrates both image and audio

data to enhance species identification accuracy. The study

compares two fusion strategies–Early Fusion and Late Fusion–

demonstrating that Early Fusion consistently outperforms Late

Fusion across key performance metrics such as accuracy,

precision, recall, and F1-score. This work highlights the

benefits of multimodal learning in bird classification, offering

a comprehensive approach that leverages the strengths of both

visual and acoustic features. Additionally, the paper provides

a detailed analysis of fusion techniques, offering insights

into their practical implications for wildlife monitoring and

conservation (Zhong et al., 2021; Alghamdi et al., 2021; Yang et al.,

2022).

Research contributions and novelty Our research extends the

body of work on bird species classification by:

• Develop multimodal fusion strategies (early and late fusion).

• Demonstrating the superiority of early fusion across key

performance metrics, including accuracy, precision, recall,

and F1-score.

• Highlighting the robustness of a Visual-Acoustic Fusion

model in scenarios with degraded input from one modality.

The novelty of this research lies in its integration of visual and

acoustic modalities using DCNNs and LSTMs, offering a robust

solution for bird species identification in diverse and challenging

environments. It provides a unique comparison of early and late

fusion techniques, highlighting the effectiveness of early fusion

for improved performance. Additionally, the use of the iBC53

dataset, specific to India’s biodiversity, and its focus on practical

conservation challenges set it apart from prior studies.

2 Related works

Recent advancements in Deep Learning (DL) have shown super

ability in hen species identification tasks. Visual-based fashions

frequently employ Convolutional Neural Networks (CNNs) or their

deeper versions, along with DCNNs, for characteristic extraction

from fowl pictures. For acoustic facts, Recurrent Neural Networks

(RNNs), especially LSTM networks, had been extensively used to

technique sequential fowl name information. Previous studies have

generally centered on visible or acoustic modalities in isolation,

limiting their capability to handle cases where environmental

situations degrade one fact supply.

Multimodal fusion, which integrates statistics from a couple of

modalities, has emerged as a promising solution to cope with these

obstacles. By combining visual and acoustic data, it’s miles feasible

to improve version performance drastically, as the two modalities

frequently provide complementary facts. Early and overdue fusion

strategies are extensively explored for this cause, with early fusion

concatenating capabilities from each modality before class, and

past due fusion combining the predictions from separately trained

models. Bird species detection and category is a crucial research

domain, especially with the advent of modern-day system learning

and deep getting-to-know strategies. This survey presents strategies

in chicken species detection, starting from acoustic evaluation to

image-based total popularity and deep getting-to-know models.

Swaminathan et al. (2024) focus Consciousness on the usage

of transfer studying for multi-label hen species classification via

acoustic alerts. The use of pre-skilled fashions enhances the

efficiency and accuracy of classification, particularly for species with

confined facts. Transfer learning reduces the need for tremendous

datasets via leveraging functions found in similar duties. Xie and

Zhu (2023) propose to Recommend an early fusion approach to

mix deep functions for acoustic chicken species type. By fusing

capabilities from distinct layers of a neural network early in the

process, the version enhances its functionality to detect species

in complex and noisy environments. Ntalampiras and Potamitis

(2021) tackle the challenge of identifying bird species without

predefined labels. Their model incorporates both supervised

and unsupervised learning, enabling the detection of unknown

species in the wild. This approach is crucial for biodiversity

monitoring in unexplored ecosystems. Zhong et al. (2021) apply

deep convolutional neural networks (CNNs) to detect regionally

rare bird species. Their model excels in detecting species with

limited occurrences, aiding in the protection and conservation of

these rare species.
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Alghamdi et al. (2021) focus on classifying monosyllabic and

multisyllabic bird calls using phonetic analysis. By leveraging

harmonic functions, their model provides an efficient way to

classify species based on vocalization patterns. Yang et al.

(2022) explore image-based bird species classification using

transfer learning. Their model demonstrates the adaptability of

deep learning for image data and achieves high accuracy in

species identification from images. Gómez-Gómez et al. (2022)

present a small-footprint deep learning model designed for

real-time bird species classification in Mediterranean wetlands.

This model is optimized for devices with limited computational

resources, making it ideal for fieldwork applications. Gupta

et al. (2021) explore the use of recurrent convolutional neural

networks (R-CNNs) for large-scale bird species classification.

Their approach focuses on capturing temporal dependencies,

which is essential for accurate bird call classification. Chandra

et al. (2021) apply support vector machines (SVMs) to classify

bird species from images. SVMs, coupled with feature extraction

techniques, offer a robust solution for recognizing bird species with

high precision.

Triveni et al. (2020) introduce fuzzy logic into deep neural

networks for bird species identification. This hybrid approach is

effective in handling uncertainties, particularly for species with

similar vocal or visual characteristics. Kumar et al. (2023) review

various machine learning algorithms employed in bird species

classification, highlighting the efficiency of ensemble methods.

Their finding suggest that techniques like Random Forest and

Gradient Boosting outperform traditional classifiers in terms of

accuracy and robustness, especially in diverse ecological conditions.

Sahu and Choudhury (2023) focus on implementing

convolutional neural networks (CNNs) for real-time bird call

classification. They present a lightweight model optimized for

deployment on mobile devices, making it suitable for field studies

and wildlife conservation efforts. Patel et al. (2022) explore multi-

modal approaches that combine visual and audio data for bird

recognition. Their research emphasizes the complementary nature

of audio and visual signals, leading to improved classification

accuracy and robustness in challenging environments.

Li et al. (2019) introduce attention mechanisms in deep

learning models for bird species detection from images. By

focusing on relevant features, their model demonstrates enhanced

performance in recognizing bird species with subtle visual

differences. Smith and Roberts (2023) analyze the impact

of environmental factors on bird species classification. Their

study reveals that habitat characteristics and seasonal variations

significantly influence species detection, prompting the integration

of ecological data into classification models. Zhang et al. (2022)

propose a hybrid deep learning model combining CNNs and

recurrent neural networks (RNNs) to enhance bird species

classification accuracy. This approach effectively captures both

spatial and temporal features, proving beneficial for species with

distinctive behaviors.

TABLE 1 Comparison of Recent Research Works in Bird Species Identification Based on Visual and Acoustic Data.

Study Modality Methodology Key findings Comparison with current
study

Swaminathan et al.

(2024)

Acoustic Transfer learning for

multi-label classification

Enhanced classification efficiency

for species with limited data

Focuses only on acoustic data; lacks

integration of visual data for robustness.

Xie and Zhu (2023) Acoustic Early fusion of deep

features

Improved detection in noisy

environments

Does not address visual features fusion

strategies.

Ntalampiras and

Potamitis (2021)

Visual + Acoustic Unsupervised learning

for species detection

Effective for unknown species

detection

Does not explore supervised multimodal

fusion for labeled datasets like iBC53.

Zhong et al. (2021) Visual CNNs for rare species

detection

Excels in identifying rare species Focuses on rare species but lacks multimodal

integration for robustness.

Alghamdi et al.

(2021)

Acoustic Phonetic analysis of bird

calls

Efficient classification of

monosyllabic and multisyllabic

calls

Focuses solely on vocalizations without

integrating visual data for ambiguous species.

Yang et al. (2022) Visual Image-based

classification using

transfer learning

Achieves high accuracy in

image-based classification

Does not address challenges in noisy or

visually degraded environments.

Patel et al. (2022) Visual + Acoustic Multimodal fusion

combining visual and

audio data

Highlights complementary nature

of modalities for improved

accuracy

Lacks a analysis of early and late fusion

strategies.

Zhang et al. (2022) Visual + Acoustic Hybrid CNN + RNN

model for spatial and

temporal features

Effective for behaviors with distinct

patterns

Does not explore early and late fusion.

Nanni et al. (2020) Visual + Acoustic Data augmentation for

robustness

Demonstrates improved

generalization across unseen data

Augmentation is complementary to the

fusion techniques explored in the current

study.

Current study Visual + Acoustic Visual-Acoustic Fusion

using DCNN and LSTM

with early and late fusion

comparison

Early fusion outperforms late

fusion across accuracy, precision,

recall, and F1-score metrics

Combines strengths of visual and acoustic

modalities, provides detailed comparative

analysis, and enhances robustness in

challenging environments.
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A study by Nanni et al. (2020) titled “Data Augmentation

Approaches for Improving Animal Audio Classification”

investigates various data augmentation techniques to enhance the

performance of animal audio classification models, including bird

sounds. The researchers applied methods such as noise addition

and time shifting to improve the robustness of convolutional

neural networks in classifying animal sounds. Edwards et al. (2021)

discuss the role of citizen science in bird species monitoring.

Their findings suggest that engaging local communities in

data collection can improve the quantity and quality of data

available for machine learning models, ultimately leading to better

conservation outcomes. Thompson and Green (2023) address

ethical considerations in automated bird classification systems.

Their study emphasizes the need for transparency in data usage,

algorithm biases, and the implications of surveillance on wildlife.

Chowdhury et al. (2024) in their work “ASGIR: Audio

Spectrogram Transformer Guided Classification And Information

Retrieval For Birds” emphasize the integration of ecological data

and computational techniques. They present a framework that

combines audio spectrogram analysis with transformer-based

models to improve bird sound recognition and information

retrieval, highlighting the benefits of cross-disciplinary

methodologies. In their paper, “Bird species identification

using deep learning on GPU platform,” Gavali and Banu (2020)

investigate the use of deep learning, specifically convolutional

neural networks (CNNs), for classifying bird species. They address

the limitations of traditional identification methods, which often

rely on manual classification and expert knowledge, making

them time-consuming and prone to errors. By utilizing GPU

platforms, the authors demonstrate improved speed and accuracy

in species identification, highlighting the potential of advanced

machine-learning techniques in biodiversity conservation and

wildlife monitoring.

By integrating visual and acoustic data and providing a detailed

comparative analysis of fusion techniques, our research addresses

critical gaps in the existing literature and offers a robust solution for

bird species identification in complex environmental conditions.

Table 1 summarizes key studies that employ both visual (image-

based) and acoustic (audio-based) modalities for bird species

classification. It compares the data types used, the deep learning

models applied (e.g., DCNNs for visual data and LSTMs for

acoustic data), key findings and comparison with current study.

3 Proposed methodology

A Visual-Acoustic Fusion bird classification model combines

both visual and sound data to improve the accuracy of bird species

identification which is shown in Figure 1. By integrating image

data, such as bird photos, with acoustic features from bird songs or

calls, the model can leverage complementary information to make

better predictions. This fusion approach helps overcome limitations

in using either modality alone, such as poor image visibility or

background noise in audio.

FIGURE 1

Visual-Acoustic Fusion bird classification model.
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TABLE 2 Bird species with images and sound wave recordings.

Sr. no. Bird species name Image Sound wave (call)

1 Acrocephalus bistrigiceps

2 Alcippe cinerea

3 Centropus andamanensis

4 Chloropsis cochinchinensis

5 Chloropsis jerdoni

6 Cyornis poliogenys

7 Cyornis unicolor

8 Cypsiurus balasiensis

9 Dicaeum chrysorrheum
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3.1 Data collection

Audio data from Indian birds were collected using the API

from the Indian Bird Call Dataset (iBC53), available at https://

www.kaggle.com/datasets/arghyasahoo/ibc53-indian-bird-call-

dataset. The iBC53 dataset includes acoustic data for all its

recordings, enabling the consistent application of the proposed

framework. This comprehensive availability allows for robust

multimodal analysis, combining visual and acoustic features to

improve species identification accuracy. This dataset contains

audio recordings of approximately 53 bird species from India,

encompassing over 10,000 recordings. Corresponding images of

each bird species have been selected and labeled for model training

from Wikipedia. The dataset includes metadata such as species

names, images, and audio calls, making it well-suited for bird

identification and classification, as detailed in Table 2.

3.2 Visual data: Deep Convolutional Neural
Network (DCNN)

The visual modality comprises bird images sourced from

Wikipedia and field surveys. A Deep Convolutional Neural

Network (DCNN) was employed to process the visual data,

extracting relevant features such as shape, plumage color, and size.

3.2.1 DCNN architecture
For feature extraction, The pre-trained ResNet-152 model

(Song, 2024), which uses skip connections to overcome vanishing

gradients was chosen. The formula for the residual block in ResNet

is given by:

y1 = F′(x1, {W′i })+ x1 (1)

where x1 is the input to the residual block, F′(x1, {W′i }) is the

residual mapping to be learned, and y1 is the output.

3.2.2 Visual data preprocessing
The preprocessing of visual data involved several key steps to

prepare the bird images for input into the DCNN which is shown

in Table 3. All images were resized to a consistent resolution of

224x224 pixels, ensuring uniform input size across the dataset.

Various data augmentation techniques were applied to enhance

model generalization. These included random cropping, horizontal

flipping, and brightness adjustments to account for varying lighting

conditions in natural environments. Normalization was performed

by scaling pixel values to a range between 0 and 1, which accelerates

convergence during training and ensures uniformity in the input

data. Finally, bird species labels were converted from text to

numerical class labels using label encoding, enabling efficient

processing and classification by the DCNNmodel.

3.2.3 Feature extraction
Feature extraction in visual data processing involves identifying

and learning significant patterns from images using deep learning

TABLE 3 Summary of preprocessing steps for visual.

Modality Preprocessing steps

Visual Data Image resizing,

normalization, augmentation

(random cropping, horizontal

flipping, brightness

adjustments), label encoding.

TABLE 4 Summary of preprocessing steps for acoustic data.

Modality Preprocessing steps

Acoustic Data Noise reduction (spectral

subtraction), audio

segmentation (fixed 5-second

duration), spectrogram

generation (Short-Time

Fourier Transform), MFCC

extraction, feature scaling,

label encoding.

techniques. Specifically, the ResNet-50 model is utilized to extract

hierarchical features from bird images.

3.3 Audio signal analysis and feature
extraction

The selection of Mel-frequency cepstral coefficients (MFCCs)

as a key feature in this research is driven by their ability to effectively

capture the spectral properties of bird vocalizations in a compact

and meaningful manner, closely mimicking human auditory

perception. MFCCs reduce high-dimensional spectral data into a

low-dimensional feature set, preserving essential information while

minimizing computational complexity, which is crucial for real-

time bird call analysis. Their proven effectiveness in bioacoustic

studies and compatibility with LSTMs make them an ideal choice

for learning temporal dependencies in bird calls. Additionally,

MFCCs are relatively robust to background noise, ensuring reliable

performance even in noisy environments which is shown in Table 4.

These qualities make MFCCs a natural and practical choice for the

acoustic modality in the proposed framework.

To examine the audio indicators of different hen species,

waveforms were examined to study the versions in their shapes

and patterns, thinking about environmental elements where each

species became recorded to decide their capacity effect at the

acoustic traits of the bird calls (Shipeng Hu, 2023). A spectrogram

plot visually represented the frequency distribution through the

years, with the x-axis indicating time, the y-axis displaying

frequency in hertz (Hz), and the color depth reflecting the value

of the frequencies. This plot revealed how frequency content

numerous through the years. The functions extracted blanketed

0-crossing price, spectral centroid, chroma capabilities, Mel-

Frequency Cepstral Coefficients (MFCCs), and Gain-Frequency

Cepstral Coefficients (GFCCs). Each function changed into selected

for its ability to seize particular aspects of the audio alerts critical

for classifying different bird species. The zero-crossing charge

measures how regularly a signal shifts from positive to negative,

reflecting the spectral traits of hen vocalizations. The spectral
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TABLE 5 Di�erent feature sets.

Feature set Features

SET 1 Spectral centroids, Zero-crossing rate,

Spectral Flux, Spectral Rolloff, Spectral

Bandwidth.

SET 2 Harmonics, Spectrogram, Perceptual

Shock Wave, Tempo, Twelve Chroma

Features, Thirty-nine MFCC Features.

SET 3 Thirteen GFCC Features.

SET 4 Combined Features After Feature

Selection.

centroid indicates the common frequency content, assisting inside

the differentiation between species with varying frequency tiers.

Additionally, spectral roll-off provides insights into the spectral

shape of the sound, at the same time as spectral flux captures

modifications in spectral content over the years. Chroma features

constitute individual musical notes, and MFCCs are computed

to identify spectral and temporal styles relevant for category.

GFCCs, less typically used in hen species category literature, offer

greater robust representations of hen calls, especially in noisy

environments.

3.4 Feature selection technique

Feature selection is an essential step in device getting to

know, minimizing the number of capabilities at the same time

as maintaining those that significantly impact version overall

performance. In this examination, Correlation-Based Feature

Selection (CBFS) was employed to investigate the connection

between the extracted audio functions and the target species. A

statistical description of the dataset was performed, mainly due

to the choice of 21 extraordinarily correlated features for addition

analysis. The correlation coefficients were calculated to perceive

capabilities with the most powerful relationships to species class.

This method is now not the handiest streamlined version of

computations however additionally superior overall performance

through decreasing overfitting and enhancing generalization.

The function choice procedure efficiently recognized the most

applicable developments for the audio dataset, optimizing version

performance. Four distinct characteristic sets were created, as

unique in Table 5.

4 Bird identification using deep CNN
and GRU/transformer

4.1 Image data processing with deep CNN
(transfer learning)

Model architecture: a pre-trained CNN (e.g., ResNet, VGG,

or EfficientNet) is used with transfer learning. These architectures,

initially trained on large image datasets, are fine-tuned to classify

bird species.

Mathematical representation:

- Convolutional layer:

yi,j,k = σ

(

∑

m

∑

n

∑

c

Wm,n,c,k · x(i+m),(j+n),c + bk

)

(2)

where:

yi,j,k is the feature map output at location (i, j) for the

k-th filter,

Wm,n,c,k represents the filter weights across spatial dimensions

(m, n) and channels c,

x(i+m),(j+n),c is the input patch,

bk is the bias term,

σ is an activation function, e.g., ReLU.

- Pooling layer:

yi,j,k = max
m,n

(

x(i+m),(j+n),k

)

(3)

Pooling reduces the spatial dimensions while retaining essential

features.

Transfer learning strategy: features are extracted using

the CNN’s backbone, followed by fine-tuning or adding layers

specifically to classify bird species.

4.2 Acoustic data processing with
GRU/transformer

Acoustic data is represented as a spectrogram–a time-frequency

representation obtained through Short-Time Fourier Transform

(STFT).

- Spectrogram conversion:

S(t, f ) =

∣

∣

∣

∣

∫ ∞

−∞

x(τ ) · w(τ − t) · e−j2π f τ dτ

∣

∣

∣

∣

2

(4)

where:

S(t, f ) is the magnitude at time t and frequency f ,

w is a window function to segment the signal.

Temporal feature extraction:

- GRU (Gated recurrent unit):

zt = σ (Wzxt + Uzht−1) (5)

rt = σ (Wrxt + Urht−1) (6)

h̃t = tanh(Wxt + rt ⊙ Uht−1) (7)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (8)

where σ is the sigmoid function, ⊙ denotes element-wise

multiplication, andW and U are weight matrices.

- Transformer encoder:

- Self-attention mechanism:

Attention(Q,K,V) = softmax

(

QKT

√

dk

)

V (9)
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whereQ,K, andV represent the query, key, and valuematrices, and

dk is the dimensionality of the keys.

- Positional encoding:

PE(pos,2i) = sin

(

pos

100002i/d

)

(10)

PE(pos,2i+1) = cos

(

pos

100002i/d

)

(11)

where pos is the position in the sequence and i is the dimension

index.

4.3 Fusion and classification layer

Feature fusion:

Fcombined = concat(Fimage, Faudio) (12)

Classification layer: the combined feature vector Fcombined

is passed through a dense layer with softmax to predict species

probabilities:

y = softmax(Wc · Fcombined + b) (13)

whereWc and b are the weights and biases of the classification layer,

and y gives the probability distribution over the bird species classes.

The first set comprises cepstral features, the second set includes

spectral features, the third set contains GFCC features, and the

fourth set is a composite of the most relevant features determined

during selection.

4.4 Experimental model

With the optimal features identified and four feature sets

established, the next phase involved utilizing these features for

species classification. A neural network-based approach was

implemented, employing a fully connected neural network with

four hidden layers and a sigmoid output layer. The model received

a set of 21 audio features extracted via the aforementioned

techniques.

The architecture consisted of an input layer with 21 nodes (one

for each audio feature), four fully connected hidden layers with

256, 128, and 32 nodes respectively, utilizing the Rectified Linear

Unit (ReLU) activation function to model complex nonlinear

interactions. The output layer contained nine nodes, corresponding

to the species, with the softmax function applied to produce a

probability distribution across the classes.

The Adam optimizer, with a learning rate of 1 × 10−4 and

a categorical cross-entropy loss function, was employed during

training. To mitigate overfitting, L2 regularization (coefficient =

0.01) was applied to the output layer. The model was trained for

75 epochs with a batch size of 16.

The proposed methodology effectively integrated audio data

collection and preprocessing, signal analysis, feature extraction,

and selection, culminating in the development of a deep learning

model for the accurate classification of Indian bird species. While

previous studies (Sharma et al., 2022) have demonstrated that

combining audio and visual features can increase computation

time, this approach solely utilizes audio features, achieving

commendable accuracy and showing promise as a valuable tool for

species identification based on audio signals.

4.4.1 Convolutional layers
The convolutional layers in a DCNN apply a series of

convolution operations to detect patterns such as edges, textures,

and shapes. The convolution operation can be mathematically

described as:

S(a, b) = (I ∗ K)(a, b) =
∑

m

∑

n

I(a+m, b+ n)K(m, n) (14)

where:

I(a, b) is the input image at pixel position (a, b),

K(m, n) is the kernel (filter) of sizem× n,

S(a, b) is the output feature map (activation map).

Multiple convolutional filters extract different types of features

from the image. The deeper the network, the more complex the

features become.

4.4.2 Activation function (ReLU)
After the convolution operation, a non-linear activation

function is applied to introduce non-linearity into the model. The

Rectified Linear Unit (ReLU) function is defined as:

f ′(x1) = max(0, x1) (15)

ReLU replaces negative values in the feature map with zeros,

retaining only the positive activations, which helps to capture

important features.

4.4.3 Pooling layers
Pooling layers reduce the spatial dimensions of the feature

maps, making the representation more compact while preserving

salient information. The max pooling operation is defined as:

S(a, b) = max{I(x1, y1)|(x1, y1) ∈ region defined by filter size}

(16)

This operation selects the maximum value from a region of the

feature map, reducing its size and computational complexity.

4.4.4 Residual connections
ResNet-50 uses residual connections to mitigate the vanishing

gradient problem and enable deeper learning. The residual learning

function can be written as:

y1 = F′(x1, {W′i })+ x1 (17)
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where:

x1 is the input to the residual block,

F′(x1, {W′i }) represents the residual function

(a series of convolutional layers),

y1 is the output after adding the input x1 back.

These connections allow the network to pass information

directly to deeper layers, making it easier to train very deep

networks.

4.4.5 Fully connected layer
After multiple convolutional and pooling operations, the high-

level features are flattened and passed through a fully connected

layer. The output of the fully connected layer is computed as:

z1 = ŴTx1+ b1 (18)

where:

Ŵ is the weight matrix,

x1 is the input feature vector (flattened feature map),

b1 is the bias term,

z1 is the output logits for classification.

4.4.6 Softmax function
Finally, the softmax function converts the logits into

probabilities for each bird species class:

P(y = k|x) =
ezk

∑n
i=1 e

zi
(19)

where:

zk is the logit corresponding to class k,

n is the number of classes,

P(y = k|x) is the probability that the input x belongs to class k.

L0 = −

N
∑

j=1

yj log(ŷj) (20)

Where yj is the true label and ŷj is the predicted probability for

the j-th class.

4.5 Acoustic data: Long Short-Term
Memory (LSTM) network

The acoustic data consists of bird calls and songs from the

iBC53 dataset, which includes recordings from diverse Indian

habitats.

4.5.1 Preprocessing steps
Audio recordings were cleaned using spectral subtraction

to reduce background noise. Mel-Frequency Cepstral Coefficients

(MFCCs) were extracted from the audio samples, representing the

timbre and pitch of the bird calls. The MFCCs are computed as:

cm =

N
∑

n=1

Xn cos

[

m(n− 0.5)π

N

]

(21)

Where Xn is the magnitude of the signal at frame n, and m is

the MFCC coefficient.

4.5.2 LSTM architecture
The LSTM network processes the MFCC features by utilizing

memory cells, which operate according to the following set of

equations:

f 1t = σ (Wf · [ht−1, xt]+ bf ) (22)

i1t = σ (Wi · [ht−1, xt]+ bi) (23)

C̃1t = tanh(WC · [ht−1, xt]+ bC) (24)

C1t = f 1t ∗ Ct−1 + i1t ∗ C̃1t (25)

o1t = σ (Wo · [ht−1, xt]+ bo) (26)

h1t = o1t ∗ tanh(C1t) (27)

In this structure, f 1t refers to the forget gate, i1t is the input

gate, and o1t represents the output gate. The cell state is denoted

by C1t , which is updated by combining the previous state and new

candidate information based on the operations of the forget and

input gates.

This architecture enables the LSTM to efficiently retain

important information over extended sequences, mitigating issues

that arise in standard RNNs like the vanishing gradient problem.

4.5.3 Training
The LSTM model was trained using RMSprop optimizer with

categorical cross-entropy loss. A fixed learning rate of 0.001 and

batch size of 64 were used.

Table 6 compares the deep learning architectures applied to

visual and acoustic data. For the visual modality (ResNet-50), there

are 49 convolutional layers, 2 pooling layers (1 max pooling and

1 global average pooling), and 1 fully connected layer, resulting in

a feature vector size of 2048. In contrast, the acoustic modality,

based on LSTM networks, does not include convolutional layers

as MFCC features are directly extracted from the audio input. It

has no pooling layers and 1 fully connected layer after the LSTM,

producing feature vectors of size 128 or 256. Finally, the fused

modality combines the visual and acoustic features into a single

fully connected fusion layer, producing a feature vector size of 2304,

capturing the integrated information from both data sources."
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TABLE 6 Summary of layers.

Modality Convolutional layers Pooling layers Fully connected layers Feature vector size

Visual (ResNet-50) 49 layers 2 layers (1 max, 1 global

avg)

1 (dense) 2,048

Acoustic (LSTM) 0 (MFCC is extracted, no CNN

used here)

None 1 (after LSTM) 128 or 256

Fused layer N/A N/A 1 (for fusion) 2,304

4.6 Multimodal fusion

We explored two primary strategies for integrating visual and

acoustic modalities in species identification: early fusion and late

fusion. Both strategies leverage the strengths of each modality to

enhance classification performance.

4.6.1 Components of hybrid fusion
4.6.1.1 Feature extraction

• Visual features: advanced deep learning models, particularly

Deep Convolutional Neural Networks (DCNNs), are

employed to extract intricate visual features from bird images.

These features encompass aspects like shape, color patterns,

and other distinguishing visual characteristics.

• Acoustic features: to analyze audio data, models such as Long

Short-Term Memory (LSTM) networks are utilized. Acoustic

features are extracted through techniques like Mel-frequency

cepstral coefficients (MFCCs), which capture the spectral

properties of bird calls and other audio patterns relevant to

species identification.

4.6.1.2 Fusion strategies

Early and late fusion techniques are methods used to combine

visual and acoustic information for bird species identification. In

early fusion, features from both types of data–such as images

and sounds–are merged early in the process, allowing the model

to analyze them together and learn interactions between the

two. This approach helps the model to utilize complementary

information from both modalities simultaneously. Late fusion,

on the other hand, involves processing visual and acoustic data

separately through their respective models and then combining

their predictions at the end, using methods like weighted averages.

While early fusion emphasizes understanding the relationships

between the two data types during training, late fusion focuses on

combining their individual strengths after independent analysis.

• Early fusion: In this approach, visual and acoustic features are

concatenated into a single feature vector before being fed into

the classifier. This allows the model to jointly learn from both

modalities simultaneously.

• Late Fusion: Here, separate classifiers are trained for each

modality (visual and acoustic), and their respective outputs

are fused post-classification, typically through a weighted

combination of their predictions.

4.6.2 How Hybrid Fusion Works
4.6.2.1 Feature extraction process

• Visual data is processed through a DCNN to extract features,

resulting in a feature vector fvisual.

• Acoustic data is preprocessed, and relevant features are

extracted, generating a feature vector facoustic.

4.6.2.2 Early fusion implementation

ffused_early = [fvisual, facoustic] (28)

The visual and acoustic features are concatenated into a single

vector. This fused feature vector is then passed through a fully

connected neural network for classification, allowing the model to

learn from both modalities in tandem.

4.6.2.3 Late fusion implementation

pfinal_late = αpvisual + (1− α)pacoustic (29)

Separate classifiers are trained for the visual and acoustic

features, producing probabilities pvisual and pacoustic for each

modality. The final prediction pfinal_late is obtained by combining

the outputs through a weighted sum, where α is a hyperparameter

that is optimized during the validation phase.

The algorithm 1 classifies Chloropsis jerdoni using a

multimodal approach by integrating image, audio, and location

data. First, the input data is preprocessed–images are normalized,

audio is converted into spectrograms, and location metadata is

standardized. Features are then extracted from each modality: a

CNN is used for image features, an RNN or transformer model

for audio spectrograms, and a dense network for location data.

These features are fused into a single vector, optionally reduced in

dimensionality. A multimodal deep learning model is trained on

these fused features using a suitable loss function and optimizer.

For testing, the model processes the features from unseen samples

to predict class probabilities, identifying Chloropsis jerdoni if

the probability exceeds a defined threshold. Finally, the model’s

performance is validated using metrics such as accuracy, precision,

recall, F1-score, and AUC-ROC, ensuring reliable classification.

the overall step by step explaination is shown in Figure 2.

4.6.3 Benefits of hybrid fusion
• Enhanced classification accuracy: by combining both fusion

strategies, the system benefits from the strengths of each,

leading to more accurate species classification.
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FIGURE 2

Steps design for bird species identification using visual and acoustic inputs (Chloropsis_jerdoni).

• Robustness to noise: the independent processing of visual and

acoustic modalities helps mitigate the impact of noise in one

modality, improving the system’s overall robustness.

• Comprehensive feature representation: hybrid fusion

allows the model to capture complex relationships between

modalities while maintaining the uniqueness of the features

from each source.

This approach significantly advances ecological monitoring

and species identification, leveraging visual and acoustic data

for more accurate and reliable classification. The model offers

a comprehensive solution for identifying bird species in diverse

environments by effectively integrating multimodal inputs.

5 Experimental results

5.1 Dataset and experimental setup

The models were trained and evaluated on the iBC53

dataset, which contains 10,000 images and 5,000 audio recordings

representing 53 bird species from across India. The dataset was split

into 70% training, 15% validation, and 15% test sets.

This section presents the experimental evaluation of the

proposed Visual-acoustic fusion techniques for Indian bird species

identification. We assess the model performance using both visual

and acoustic data, and further analyze the improvements brought

bymultimodal fusion techniques in terms of classification accuracy,

robustness, and modality contributions.

For the visual modality, we fine-tuned a pre-trained Inception-

ResNet-152 model using bird images, extracting deep visual

features. For the acoustic modality, audio features were extracted

using Mel-frequency cepstral coefficients (MFCCs), and a Long

Short-Term Memory (LSTM) network was employed to analyze

sequential audio data. The two fusion techniques, early and late

fusion, were implemented and tested to evaluate their effectiveness.

5.2 Results for visual and acoustic modality
alone

To establish baseline results, we first evaluated the performance

of individual modalities shown in Table 7. The fine-tuned visual

model (DCNN) achieved an accuracy of 87.2%, while the acoustic

model (LSTM with MFCCs) attained an accuracy of 84.3%. These

results highlight the classification potential of each modality,

though both exhibit certain limitations when used independently.

5.3 Performance comparison: early fusion
vs. late fusion

Table 8 comprises Performance comparison of early fusion and

late fusion approaches for multi modal bird species identification.

In the early fusion approach, visual and acoustic features are

concatenated into a single feature vector before classification,

leading to a significant accuracy improvement of 95.2%. This

method allows the model to capture complementary features from

both modalities, resulting in superior classification performance

shown in the Figure 3. In contrast, the late fusion approach trains

independent classifiers for visual and acoustic data, with their final

predictions combined using a weighted sum. This method achieved

an accuracy of 93.8%, demonstrating slightly lower performance

than early fusion but offering greater robustness in situations with

noisy or incomplete data which is shown in the Figure 4. The

comparison underscores the strengths of each fusion strategy, with
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1: Input: Bird images I = {I1,I2, . . .,In}, audio file A

2: Output: Classification results C

3: Step 1: Data Collection

4: Acquire bird images I and audio file A

5: Step 2: Preprocessing

6: Resize images: Ii ← Resize(Ii,target_size)

7: Apply data augmentation: I′i ← Augment(Ii)

8: Reduce noise in audio: A′ ← Denoise(A)

9: Extract MFCCs: MFCC = MFCC(A′)

10: Encode labels: yi ∈ {0,1, . . .,k− 1} for k classes

11: Step 3: Feature Extraction

12: Extract visual features: V = ResNet-50(I)

13: Extract acoustic features: Afeatures = LSTM(MFCC)

14: Step 4: Multimodal Fusion

15: Early Fusion: Fearly ← V ⊕ Afeatures // Concatenate

visual and acoustic features

16: Late Fusion: Train separate classifiers CV (visual)

and CA (acoustic)

17: Combine outputs: C← Fusion(CV,CA)

18: Step 5: Model Training

19: Train model: θ ← Train(Fearly,y) using Adam

optimizer

20: Optimize with categorical cross-entropy loss:

L(θ) = −
n
∑

i=1

yi log(ŷi)

21: Return: Classification results C

Algorithm 1. Bird Classification for Chloropsis jerdoni bird using a

multimodal approach.

TABLE 7 Performance of individual modalities.

Modality Accuracy F1-score

Visual modality (DCNN) 87.2% 0.85

Acoustic modality (LSTM

with MFCC)

84.3% 0.82

TABLE 8 Performance comparison between early fusion and late fusion

techniques for bird species identification.

Metric Early fusion Late fusion

Accuracy 95.2% 93.8%

Precision 95% 93%

Recall 94% 92%

F1-Score 94% 92%

early fusion excelling in accuracy and late fusion providing greater

resilience to data imperfections.

5.4 Comparison of fusion techniques

The fusion techniques consistently outperformed individual

modality classifiers. Early fusion, with an accuracy of 95.2%, was

FIGURE 3

Performance metrics of early fusion strategy.

FIGURE 4

Performance metrics of late fusion strategy.

TABLE 9 Performance comparison of fusion techniques.

Method Accuracy F1-score

Visual Modality 87.2% 0.85

Acoustic Modality 84.3% 0.82

Early Fusion 95.2% 0.94

Late Fusion 93.8% 0.92

superior when both modalities were reliable. Late fusion, with an

accuracy of 93.8%, proved more robust when one modality was

noisy or missing, offering an effective backup in cases of incomplete

data. Table 9 below provides a comparative summary of visual

modality, acoustic modality, early fusion and late fusion which is

shown in Figure 5.

5.5 Robustness to noise and missing data

Table 10 evaluated the robustness of both fusion strategies

by introducing noise into the audio recordings and removing

visual data from a subset of samples. The late fusion strategy

exhibited greater resilience, with accuracy dropping only slightly

from 93.8% to 91.4%. Early fusion, though more accurate under

normal conditions, experienced a more pronounced drop, from
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FIGURE 5

Comparison of accuracy across fusion techniques.

TABLE 10 Robustness to noise and missing data.

Method Accuracy (with
noise)

Accuracy (with
missing data)

Early fusion 90.8% 89.7%

Late fusion 91.4% 90.8%

FIGURE 6

Accuracy under noisy and missing data conditions.

95.2% to 90.8%, when confronted with incomplete data or noisy

inputs.the detailed accuracy comparison is shown in the Figure 6.

6 Discussion

The experimental results validate the advantages of multi

modal fusion in bird species identification tasks. Both fusion

techniques demonstrated substantial improvements over using

visual or acoustic data alone. Early fusion yielded the highest

accuracy (95.2%), making it ideal for scenarios where data from

both modalities are consistently available and of high quality. Late

fusion, while slightly less accurate, offered enhanced robustness

in real-world conditions where noise or incomplete data are

more likely.

Both fusion techniques achieved high accuracy, and the early

fusion yielded slightly better results because of the effective

integration of complementary visual and acoustic information. The

exact accuracy values for both approaches are reported in the

results section, where the early fusion model shows a significant

improvement in species identification, particularly in challenging

environments with noisy backgrounds or incomplete data.

These results underscore the effectiveness ofmulti modal fusion

for ecological monitoring, where data from multiple modalities

can be harnessed for improved performance. Future research could

explore adaptive fusion techniques that dynamically adjust to

varying data quality, further optimizing system performance in

challenging environments.

The accuracy in this study is determined by evaluating the

percentage of correctly identified bird species across the test dataset.

For both early and late fusion techniques, the model’s predictions

are compared with the true labels in the iBC53 dataset. The

accuracymetric considers all correctly classified species (both visual

and acoustic inputs) out of the total samples. When evaluating

the multimodal fusion approaches, the parameter includes the

combined contributions of visual and acoustic modalities, allowing

for a direct comparison of the effectiveness of early versus late

fusion strategies. Additional metrics such as precision, recall,

and F1-score complement the accuracy measure to provide a

more comprehensive evaluation of the model’s performance. The

performance of the proposed model was measured using various

parameters, including accuracy, precision, recall, F1-score, and

AUC-ROC. These metrics were evaluated for both early and late

fusion techniques, with early fusion consistently outperforming late

fusion across all parameters.

The models were evaluated using accuracy, precision, recall,

and F1-score. Early fusion outperformed both individual modalities

and late fusion, as shown in Table 11 with the performance graph

illustrated in Figure 7.

7 Conclusion

A multi-modal framework for identifying bird species was

introduced, utilizing deep learning techniques to combine

visual and audio data. The method demonstrated exceptional

performance through the use of early fusion techniques, making

it particularly beneficial for ecological research and biodiversity

preservation in India. The findings highlight that accuracy

and robustness are significantly enhanced by combining the

complementary strengths of DCNNs and LSTMs, offering a

reliable approach to addressing the challenges of multi-modal data

and environmental variability.

7.1 Future work

Future work will focus on exploring adaptive fusion strategies

that dynamically adjust modality weights based on data quality.

In addition, our goal is to incorporate environmental data

as an additional modality and develop real-time bird species

identification capabilities for broader applications, including

conservation efforts and citizen science projects.
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TABLE 11 Performance comparison of di�erent models.

Model Accuracy Precision Recall F1-score

DCNN (visual only) 85.2% 84.8% 84.9% 84.7%

LSTM (acoustic only) 82.5% 82.2% 82.1% 82.3%

Early fusion 92.4% 92.2% 92.0% 91.8%

Late fusion 89.7% 89.2% 89.3% 89.2%

The bold values represent the highest (or most significant) values within each category, highlighting key findings or optimal results.

FIGURE 7

Performance comparison of di�erent models.
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