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Introduction: The integration of artificial intelligence (AI) into ophthalmic 
diagnostics has the potential to significantly enhance diagnostic accuracy and 
interpretability, thereby supporting clinical decision-making. However, a major 
challenge in AI-driven medical applications is the lack of transparency, which 
limits clinicians’ trust in automated recommendations. This study investigates 
the application of machine learning techniques by integrating knowledge 
graphs with contrastive learning and utilizing “clinical profile” prompts to refine 
the performance of the ophthalmology-specific large language model, MeEYE, 
which is built on the CHATGLM3-6B architecture. This approach aims to improve 
the model’s ability to capture clinically relevant features while enhancing both 
the accuracy and explainability of diagnostic predictions.

Methods: This study employs a novel methodological framework that 
incorporates domain-specific knowledge through knowledge graphs and 
enhances feature representation using contrastive learning. The MeEYE model 
is fine-tuned with structured clinical knowledge, enabling it to better distinguish 
subtle yet significant ophthalmic features. Additionally, “clinical profile” prompts 
are incorporated to further improve contextual understanding and diagnostic 
precision. The proposed method is evaluated through comprehensive 
performance benchmarking, including quantitative assessments and clinical 
case studies, to ensure its efficacy in real-world ophthalmic diagnosis.

Results: The experimental findings demonstrate that integrating knowledge 
graphs and contrastive learning into the MeEYE model significantly improves both 
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diagnostic accuracy and model interpretability. Comparative analyses against 
baseline models reveal that the proposed approach enhances the identification 
of ophthalmic conditions with higher precision and clarity. Furthermore, the 
model’s ability to generate transparent and clinically relevant AI recommendations 
is substantiated through rigorous evaluation, highlighting its potential for real-
world clinical implementation.

Discussion: The results underscore the importance of explainable AI in medical 
diagnostics, particularly in ophthalmology, where model transparency is critical 
for clinical acceptance and utility. By incorporating domain-specific knowledge 
with advanced machine learning techniques, the proposed approach not only 
enhances model performance but also ensures that AI-generated insights 
are interpretable and reliable for clinical decision-making. These findings 
suggest that integrating structured medical knowledge with machine learning 
frameworks can address key challenges in AI-driven diagnostics, ultimately 
contributing to improved patient outcomes. Future research should explore the 
adaptability of this approach across various medical domains to further advance 
AI-assisted diagnostic systems.

KEYWORDS

machine learning, medical intelligent systems, ophthalmic disease detection, 
knowledge graph, contrastive learning, clinical profile prompts, interpretable artificial 
intelligence

1 Introduction

In modern medicine, particularly in ophthalmic diagnosis and 
treatment, there is an urgent need to develop GPT (Generative 
Pre-trained Transformer)-based technologies for auxiliary diagnosis 
(Zandi et al., 2024). The increasing prevalence of eye diseases, which 
affect visual health and significantly diminish the quality of life, has 
driven the demand for advanced AI tools like GPT to assist in routine 
ophthalmic care and diagnosis. Leveraging such technology is very 
important to address the growing patient load and improve diagnostic 
efficiency (Tan et al., 2023).

Despite GPT’s impressive natural language processing capabilities, 
several technical challenges arise when applying it to the specialized field 
of ophthalmology (Nath et al., 2022). A major issue is the insufficient 
domain expertise in GPT’s responses. Ophthalmology is a highly 
specialized discipline that involves complex anatomy, pathophysiology, 
and diagnostic techniques, all requiring high levels of precision (Wang 
et al., 2024). Without targeted professional training, GPT-generated 
responses often fall short of clinical accuracy requirements, potentially 
leading to unprofessional or misleading information (Biswas, 2023). 
Additionally, the “black box” nature of computer-aided diagnosis (CAD) 
models, in which the decision-making process is not transparent, poses 
a significant barrier to their clinical adoption. Therefore, improving the 
transparency and interpretability of CAD systems is critical to their 
integration into clinical practice (Wang et al., 2023).

To address these challenges, this study proposes a novel approach 
that integrates knowledge graphs (KG) with contrastive learning 
techniques to enhance patient queries and improve the accuracy and 
interpretability of GPT-based ophthalmic diagnosis systems (Ni et al., 
2024). Knowledge graphs, as structured representations of domain-
specific information, effectively capture the intricate relationships 
between clinical entities and help organize complex medical data 
(Zhu, 2024). In this study, a comprehensive Ophthalmic Clinical 
Knowledge Graph (OphKG) was developed through a systematic 

review of 150 academic papers from the China National Knowledge 
Infrastructure (CNKI) and Web of Science (WOS) (Wang et al., 2021). 
OphKG incorporates detailed information such as clinical symptoms, 
diagnostic markers, treatment outcomes, and patient demographics, 
serving as a foundation of domain knowledge for AI model training. 
By integrating this knowledge graph into a contrastive learning 
framework, the model is better equipped to distinguish subtle 
differences in clinical presentations, thus enriching the content of 
patient queries. Contrastive learning improves model performance by 
identifying differences between similar and dissimilar data, enhancing 
generalization across various patient groups.

The study integrates patient query graphs with OphKG using 
contrastive learning (Fang et al., 2023) and introduces a “Clinical 
Profile”(Younossi et al., 2024) prompt into the patient query process 
(Benoit, 2023). This prompt, derived from the knowledge graph, 
includes key clinical attributes such as symptom severity, diagnostic 
test results, and medical history. The ophthalmology-specific model 
MeEYE (Wang, 2024), fine-tuned from the CHATGLM3-6B 
architecture (Yang et al., 2024), was trained using these prompts. In 
experimental cases, 500 simulated patient queries were conducted to 
compare the performance of MeEYE with baseline models 
[ChatGLM3-6B, GPT-4.0 (Taloni et al., 2023), and ERNIE Bot-4.0 API 
(Zeng et al., 2024)]. The study compared query responses generated 
with knowledge graph prompts against those from direct queries (the 
baseline method). The responses were evaluated by three 
ophthalmology experts, focusing on accuracy, relevance, and 
interpretability. By incorporating clinical prompts, the model can 
focus on key clinical features, thus improving both the accuracy and 
the clarity of the generated diagnostic predictions.

The proposed method aims to enhance the diagnostic 
performance and transparency of GPT-based CAD systems while 
providing clinicians and patients with deeper insights into the 
decision-making process. This is expected to foster greater trust in 
AI-assisted diagnostics. By integrating domain-specific knowledge 
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graphs and employing contrastive learning and clinical prompt 
strategies, the method offers a significant advancement in the 
development of personalized ophthalmic care and diagnostic 
consultation. The structure of this article includes the methodology in 
Chapter 2, experimental case results in Chapter 3, a discussion in 
Chapter 4, and the conclusion in Chapter 5.

2 Methodology

As illustrated in Figure 1, this study introduces a prompt framework 
that leverages a domain-specific knowledge graph and contrastive 
learning techniques to enhance the accuracy and interpretability of a 
computer-aided diagnosis (CAD) system. The framework incorporates 
a “Clinical Profile” prompt to guide the model’s predictions. The 
proposed methodology is comprised of five key components: the 
development of an ophthalmic clinical knowledge graph, enhancement 
of knowledge graph elements through contrastive learning, integration 
of the “Clinical Profile” prompt, fine-tuning of the large model, and the 
implementation of a GPT-based ophthalmic auxiliary diagnostic system, 
followed by a comprehensive evaluation of the method’s effectiveness.

2.1 Construction of the ophthalmic 
knowledge graph (OphKG)

This study constructs an OphKG encompassing key domain-
specific knowledge derived from 150 academic papers sourced from 

CNKI and WOS. The construction process is divided into three 
primary modules. First, relevant clinical information, including 
clinical symptoms, diagnostic criteria, treatment interventions, patient 
demographic data, and clinical outcomes, is extracted from the 
academic literature. This data is then systematically organized to 
create a comprehensive knowledge base capturing relationships 
between ophthalmology-related clinical entities. Second, to ensure the 
accuracy and reliability of the OphKG, the extracted data undergoes 
rigorous validation and correction by domain experts. This expert 
review process is critical for optimizing the knowledge graph, ensuring 
that it accurately reflects current knowledge and aligns with 
established ophthalmic clinical guidelines. Lastly, after the knowledge 
graph is constructed, knowledge graph embedding techniques are 
employed to convert the structured data into vectorized 
representations. These embeddings capture the semantic relationships 
between entities in the knowledge graph, enabling machine learning 
models to effectively utilize this domain-specific knowledge during 
the training process.

2.2 Contrastive learning and element 
enhancement

This study utilizes a contrastive learning framework to enhance 
the original patient question-answer graph, building on the 
Ophthalmic Knowledge Graph (OphKG). By integrating clinically 
relevant information, this framework enriches the model’s 
learning process.

FIGURE 1

The architecture of knowledge graph-enhanced ophthalmic contrastive learning with ‘clinical profile’ prompt.
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Initially, clinical symptoms, related elements, and relationships 
are extracted from patient queries to construct the original patient 
question knowledge graph (denoted as g). Using the patient’s initial 
input, the system employs Jieba for word segmentation and a text 
classification algorithm (based on dictionaries and BiLSTM+BERT) 
to classify words into clinical feature categories such as symptoms 
(observations), causes (underlying reasons), patient experience 
(subjective feelings), and risk factors (potential contributing 
factors). These features are identified and linked through the 
OphKG. For instance, in response to a patient query like “My eyes 
feel dry and teary, “the model extracts the relevant symptoms, 
causes, patient experiences, and risk factors from the input data, 
associating them with the corresponding entities in the 
knowledge graph.

The original graph g  is then enriched by linking it to the 
corresponding entities and relationships within OphKG, 
producing an OphKG embedding G . This embedding incorporates 
additional clinical context and semantic information, enhancing 
the original patient data with knowledge derived from the graph. 
By embedding clinical background and domain-specific semantics 
from OphKG, the patient query data becomes more contextually  
informed.

Following this, an element-guided graph augmentation technique 
is applied. An element-relation sub-graph is generated to capture the 
interrelationships among different clinical features within the original 
graph. This sub-graph is used to create an augmented graph G , which 
integrates additional connections and clinically relevant information 
from OphKG, ensuring that the enhanced graph maintains its clinical 
integrity and relevance.

To extract meaningful representations, independent graph 
encoders are designed for both the original and enhanced graphs. 
These encoders generate graph embeddings, which are fed into 
projection networks to produce the final graph representations. The 
goal is to maximize the consistency between the original and 
augmented graph representations while minimizing their similarity 
to other graphs within the dataset. A contrastive loss function is 
employed to optimize this process, encouraging the model to produce 
similar representations for clinically analogous graphs and distinct 
representations for clinically divergent ones. This approach enhances 
the model’s ability to generalize across diverse patient profiles and 
improves its capacity to detect subtle clinical differences in 
ophthalmic disease presentations.

Finally, the contrastive learning framework strengthens the 
model’s ability to differentiate between various clinical 
presentations of eye diseases. Separate graph encoders— ( )·F  for 
the original graph g  and ( )·f for the augmented graph G , —are 
employed to extract graph embeddings (denoted as gh  and Gh



, 
respectively). These embeddings are further processed through 
projection networks ( )·G  and ( )·g , yielding final representations 

gZ  and GZ


. The objective is to maximize the alignment between 
the representations of the original and augmented graphs while 
minimizing their similarity to other graph pairs in the dataset. By 
leveraging a contrastive loss function, the model is optimized to 
produce congruent representations for clinically similar graphs 
and distinct representations for clinically dissimilar graphs. This 
process enhances the model’s ability to generalize across patient 
profiles and improves its detection of nuanced clinical distinctions 
in ophthalmic disease.

2.3 Integration of the ‘clinical profile’ 
prompt

The integration of a ‘Clinical Profile’ prompt during the model’s 
fine-tuning phase enhances its alignment with real-world clinical 
decision-making processes. Derived from the OphKG, this prompt 
directs the model’s attention to clinically relevant features, thereby 
improving the accuracy and contextual relevance of its predictions.

The process begins with the identification of the patient’s clinical 
profile based on their initial complaint. This clinical profile includes 
key components such as symptoms (observable signs), causes 
(underlying mechanisms), patient-reported experiences (subjective 
symptoms), and risk factors (potential contributors). Using the 
knowledge graph, the model extracts these elements when processing 
the patient’s input (e.g., “My eyes are dry and I  am experiencing 
tearing”). At this stage, the model detects the core clinical features 
associated with the patient’s condition, including symptoms, causes, 
patient experiences, and risk factors.

In the subsequent stage, the identified clinical profile is utilized to 
retrieve relevant information from the OphKG. This retrieval process 
ensures that the model receives a contextually accurate ‘Clinical 
Profile’ prompt, encapsulating the most critical information about the 
patient’s condition. The retrieved data refines the model’s focus on the 
essential clinical features associated with the query, providing a 
comprehensive understanding of the patient’s symptoms and relevant 
clinical background.

Finally, the ‘Clinical Profile’ prompt is embedded into the model’s 
graph representation, a key step in the fine-tuning process. This 
embedding directs the model’s focus toward the most pertinent clinical 
features. By integrating this prompt, the model improves both the 
accuracy and interpretability of its predictions. The prompt acts as a 
crucial intermediary, guiding the model’s decision-making process and 
ensuring that its predictions are anchored in clinically significant features.

2.4 Prompt-enhanced fine-tuning

The fine-tuning process incorporates ‘Clinical Profile’ prompts, 
which is exposed to more granular patient data, supplemented by 
clinical profile prompts derived from the OphKG. These prompts 
include critical details such as symptoms, causes, patient experiences, 
and risk factors, all of which are directly relevant to the specific 
clinical scenario. The inclusion of these ‘Clinical Profile’ prompts is 
pivotal in the fine-tuning of the CHATGLM3-6B model, a 
conversational pre-trained model developed by Zhipu AI in 
collaboration with the Knowledge Engineering Group (KEG) Lab at 
Tsinghua University. Built on Graph Neural Networks (GNN) and 
Long Short-Term Memory (LSTM) networks, CHATGLM3 converts 
input dialogue sequences into graph structures, enhancing its ability 
to understand and process conversation content. The open-source 
version, ChatGLM3-6B, retains key advantages of its predecessors, 
such as smooth conversational performance and ease of deployment.

In this study, the fine-tuned ChatGLM3-6B model forms the basis 
for developing the ophthalmic large model, MeEYE. This fine-tuning 
process allows the model to integrate more specific and detailed 
patient data, in conjunction with clinically relevant feature prompts 
from the OphKG. These prompts encapsulate key clinical attributes, 
including symptoms, causes, medical history, and risk factors, closely 
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mirroring real-world clinical contexts. As a result, the model’s internal 
representation becomes more closely aligned with clinical decision-
making processes.

By integrating clinical feature prompts, the model not only 
leverages the broad features acquired during contrastive learning but 
also accounts for subtle variations within the clinical context. The 
contextual information provided by these prompts enables the model 
to generate more accurate diagnoses. Additionally, the predictions 
become more interpretable for clinicians, as they are directly linked to 
specific clinical profiles, ultimately improving both the transparency 
and interpretability of the diagnostic decision-making process.

2.5 Model integration and prediction

To generate accurate and interpretable predictions that comply 
with established clinical guidelines and expert knowledge, this study 
compares the MeEYE model with baseline models, including 
ChatGLM3-6B, GPT-4.0, and ERNIE Bot-4.0 API. Knowledge graph-
based prompts were employed to structure and guide the questions 
posed to each model, supporting predictions related to ophthalmic 
diseases, as well as their treatment and prevention. This approach 
ensures that the predictions are both clinically relevant and aligned 
with expert standards.

2.6 Model evaluations

This study rigorously evaluates the performance of the proposed 
method by comparing it with a baseline model utilizing GPT-4.0 and 
ERNIE Bot-4.0 LLM APIs. Both models were assessed using a 
comprehensive dataset of patient inquiries related to ophthalmic 
diseases, with the baseline model generating predictive responses to 
the question, “What is the eye disease, and how should it be treated or 
prevented?” Key evaluation metrics included accuracy, precision, 
recall, F1 score, AUC-ROC, interpretability score, and diagnostic time. 
The interpretability score was determined by averaging ratings from 
three experts based on the model’s outputs.

The proposed method integrates contrastive learning with prompt-
based fine-tuning, guided by the OphKG, while the baseline model 
relies solely on LLM APIs. Predictions from both models were 
compared against a ground truth dataset validated by clinical experts, 
and statistical significance tests were performed to identify any 
significant differences in performance. Additionally, interpretability was 
assessed through expert reviews and real-world clinical case studies, 
emphasizing the clarity and clinical relevance of the predictions. This 
comparative analysis provides a comprehensive understanding of each 
method’s strengths and limitations, evaluating the proposed approach’s 
potential to improve diagnostic accuracy, reduce diagnosis time, and 
enhance the interpretability of AI-driven clinical decision-making.

3 Results

3.1 OphKG construction

This study developed an Ophthalmic Clinical Feature Knowledge 
Graph (OphKG) (Figure 2) by extracting three key elements from 150 

academic papers in both Chinese and English. The resulting 
knowledge graph contains 4,125 nodes, 20 types of relationships, and 
4,250 attributes, with a peak memory consumption of 1.3 GB. The 
nodes are categorized into seven distinct clusters: Eye Diseases 
(orange nodes), Other Diseases (light pink nodes), AI-based 
Diagnostic Methods (bright pink nodes), Traditional Chinese 
Medicine (tangerine nodes), Treatment and Prevention (blue nodes), 
Immunity and Inflammation (green nodes), and Causes 
(yellow nodes).

3.2 Enhanced model performance

This study conducted a comparative evaluation of the proposed 
MeEYE model by simulating 500 diagnostic questions. The assessment 
results, as shown in Table  1, indicate that the MeEYE model 
outperformed baseline models (ChatGLM3-6B, GPT-4.0, and ERNIE 
Bot-4.0 API) across multiple key performance metrics.

In the “clinical profile” prompt input, MeEYE achieved an 
accuracy of 89.7%, significantly higher than the baseline models’ 
75.3%. For direct question input, MeEYE’s accuracy was 87.5%, 
surpassing the baseline models’ 74.0%. These results suggest that 
MeEYE provides more precise diagnostic outcomes for ophthalmic 
auxiliary diagnosis tasks. Furthermore, MeEYE demonstrated 
superior precision, achieving 88.4% for the “clinical profile” prompt 
and 86.1% for direct questions, compared to the baseline models’ 72.5 
and 70.2%. This indicates a lower error rate in predicting positive 
cases. In terms of recall, MeEYE achieved 90.1% for the “clinical 
profile” prompt and 88.2% for direct questions, outperforming the 
baseline models’ 74.8 and 73.1%, demonstrating its enhanced ability 
to capture true cases with fewer missed diagnoses.

As a comprehensive measure of precision and recall, MeEYE’s 
F1-Score was 89.2% for the “clinical profile” prompt and 87.1% for 
direct questions, significantly higher than the baseline models’ 73.6 
and 71.6%, further validating its overall performance advantage. 
MeEYE also achieved AUC-ROC values of 0.94 for the “clinical 
profile” prompt and 0.92 for direct questions, compared to 0.82 and 
0.80 for the baseline models, indicating a substantial improvement in 
the model’s ability to distinguish between positive and negative cases.

Regarding interpretability, MeEYE scored 85 for the “clinical 
profile” prompt and 83 for direct questions, markedly higher than the 
baseline models’ scores of 60 and 58. This demonstrates that the 
diagnostic outputs of MeEYE are more closely aligned with clinical 
standards and are easier for clinicians to interpret.

Although MeEYE’s prediction time was slightly longer (10 s for 
the “clinical profile” prompt and 9.5 s for direct questions), this minor 
delay is considered acceptable given the significant improvement in 
diagnostic accuracy and performance.

By integrating “clinical profile” prompts and contrastive learning, 
MeEYE surpasses traditional baseline models in all ophthalmic 
auxiliary diagnostic metrics, showcasing its strong potential for 
practical applications in medical diagnostics.

3.3 Case studies

This case study investigates the input “My eyes are red and 
uncomfortable,” analyzing the diagnostic and treatment 
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recommendations produced by the MeEYE model in comparison 
to the baseline models (ChatGLM3-6B, GPT-4.0, and ERNIE 
Bot-4.0 API) using two distinct approaches. Following the 
application of contrastive learning, an enhanced knowledge graph 
for “Red Eye” (Wang, 2023) was generated (Figure 3), with Table 2 
providing detailed descriptions of the graph’s nodes. The knowledge 
graph primarily consists of nodes related to the “Red Eye” and 
incorporates relevant clinical prior knowledge derived from the 
enhanced graph, facilitating a more informed and comprehensive 
diagnostic output.

The original query in this case study was articulated as: “My eyes 
are red and uncomfortable.” Utilizing the ophthalmic clinical feature 
prompt method proposed in this study, the enhanced knowledge 
graph was transformed into a more detailed representation: “My 
symptom is red eyes; Possible causes include: dry eye, conjunctivitis, 
tear film stability, tear secretion, inflammatory markers (e.g., IL-6, 
TNF-α), neurogenic dry eye, air quality and humidity, immune 
system disorders, hormone levels, microbiome imbalance, screen 
time and blinking frequency, non-steroidal anti-inflammatory drugs 
(NSAIDs); I  belong to the risk factors of age ≥ 60 years, elderly, 

FIGURE 2

Ophthalmic clinical knowledge graph.
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postmenopausal women; My symptoms include eye pain, blurred 
vision, photophobia, eye discharge, discomfort.”

After the user reviewed and refined the input, the final statement 
was as follows: “My symptom is red eyes; Possible causes include dry eye, 
conjunctivitis, tear film stability, tear secretion, inflammatory markers, 
air quality and humidity, screen time and blinking frequency; I belong 
to the risk factors of age ≥ 60 years, elderly; My symptoms include eye 
pain, blurred vision, photophobia, eye discharge, discomfort.”

The final query submitted to the GPT model was framed as: “As 
an ophthalmology expert, please address the following: My symptom 
is red and swollen eyes; Possible causes include: dry eye, 
conjunctivitis, tear film stability, tear secretion, inflammatory 
markers, air quality and humidity, screen time and blinking 
frequency; I belong to the risk factors of age ≥ 60 years, elderly; My 
symptoms include eye pain, blurred vision, photophobia, eye 
discharge, discomfort. What is the most likely ophthalmic disease, 
and what are the recommended treatments or preventive measures?”

For comparison, the same case was submitted to ChatGLM3-6B, 
GPT-4.0, and ERNIE Bot-4.0 using a simplified input: “My eyes are 
red and uncomfortable. What is the most likely ophthalmic disease, 
and how should it be treated or prevented?”

In the “Red Eye” case, the proposed model demonstrated a 
markedly superior ability to accurately identify the patient’s symptoms. 
Using the “clinical profile” prompt input, MeEYE achieved an accuracy 
of 91.5%, significantly surpassing the baseline models: 74.6% for 
ChatGLM3-6B, 78.4% for GPT-4.0, and 77.78% for ERNIE Bot-4.0. In 
the direct question input, MeEYE also achieved a higher accuracy of 
89.2%, consistently outperforming the baseline models. This indicates 

that, when combined with knowledge graph prompts, MeEYE is more 
effective at addressing complex clinical issues (Table 3).

MeEYE’s interpretability score for the “clinical profile” prompt 
input was 87, far exceeding the scores of ChatGLM3-6B (60), GPT-4.0 
(65), and ERNIE Bot-4.0 (63). This reflects MeEYE’s closer alignment 
with the clinical reasoning process typically employed by physicians, 
enhancing the transparency and interpretability of its outputs. For the 
direct question input, MeEYE’s interpretability score was 85, again 
significantly higher than the other models. Although MeEYE’s 
diagnosis time was slightly longer at 12 s compared to the baseline 
models’ 7–8 s, the trade-off is deemed acceptable given the substantial 
improvements in accuracy and interpretability. For the direct 
question input, MeEYE’s diagnosis time was 11 s, still longer than the 
baseline models, but the performance benefits remained evident.

4 Discussion

This study enhanced the accuracy and interpretability of 
ophthalmic disease diagnosis by combining “clinical profile” prompts, 
contrastive learning, and fine-tuning large language models.

4.1 Clinical profile prompts

Clinical profile prompts provide the model with domain-specific 
contextual information, such as symptoms, potential causes, and 
patient history. Compared to directly inputting questions, these 
prompts refine critical details within the query, enhancing the model’s 
ability to address complex medical cases. By emphasizing specific 
symptoms or risk factors, the model can more accurately identify and 
classify conditions, leading to improved diagnostic precision. This 
approach reduces the likelihood of misdiagnosis that may occur due 
to the model’s insufficient contextual understanding.

As these clinical prompts are grounded in real-world medical 
scenarios, the generated predictions are more closely aligned with the 
clinical reasoning processes used by physicians. The prompts enable the 
model to focus on clinically significant features, making its outputs 
more interpretable for healthcare professionals. This is particularly 
important in the diagnosis of complex ophthalmic conditions, where 
clinical profile prompts improve the transparency of the decision-
making process. As a result, the interpretability of the model’s diagnostic 
outputs is enhanced, assisting physicians in better understanding and 
applying the model’s recommendations in clinical practice.

Additionally, clinical prompts allow the model to more effectively 
manage the variability among individual patients. Since each patient 
may present with distinct clinical features, prompts enable the model 
to tailor its diagnostic approach to the specific context of the patient. 
This targeted prompting enhances the model’s adaptability to diverse 
cases and minimizes performance degradation when dealing with 
cross-domain or cross-condition scenarios.

4.2 Contrastive learning

The application of contrastive learning significantly enhances the 
model’s ability to detect clinically relevant distinctions in patient data. 
Contrastive learning excels at differentiating between similar and 

TABLE 1 Model performance evaluation results.

Metric Baseline 
models 

(ChatGLM3-6B, 
GPT-4.0, and 

ERNIE Bot-4.0 
API)

MeEYE

“Clinical 

profile” 

prompt input

Accuracy (%) 75.3 89.7

Precision (%) 72.5 88.0.4

Recall (%) 74.8 90.1

F1-Score (%) 73.6 89.2

AUC-ROC 0.82 0.94

Interpretability 

score

60 85

Detection time 

(seconds)

8 10

Direct 

question 

input

Accuracy (%) 74 87.5

Precision (%) 70.2 86.1

Recall (%) 73.1 88.2

F1-Score (%) 71.6 87.1

AUC-ROC 0.8 0.92

Interpretability 

score
58 83

Detection time 

(seconds)
7.5 9.5
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FIGURE 3

“Red eye” augmentation knowledge graph.
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dissimilar data pairs, which is particularly advantageous in this study 
as it enables the model to generalize effectively across diverse patient 
populations. The OphKG was instrumental in this process by guiding 
the selection of clinically pertinent data pairs, ensuring that the 
model’s learning remains closely aligned with established 
medical knowledge.

A key innovation of this study is the introduction of clinical 
profile prompts during the fine-tuning phase. These prompts, derived 
from OphKG, incorporate essential clinical attributes such as 
symptom severity, diagnostic test results, and patient history. By 
directing the model’s attention to these clinically significant features, 
the prompts not only improve the model’s predictive accuracy but also 
enhance its interpretability. This approach not only boosts diagnostic 
performance but also provides clinicians with meaningful insights 
into the AI’s decision-making process, thereby fostering greater trust 
in AI-driven diagnostic systems.

4.3 Fine-tuning large models

Large language models (LLMs), such as ChatGLM3-6B, exhibit 
strong natural language processing capabilities during the pre-training 
phase. However, in specialized domains like ophthalmic diagnosis, the 
performance of general-purpose language models can be  limited. 
Fine-tuning LLMs enables the model to adapt more effectively to the 
specific datasets and task requirements of the medical field. In this 
study, the MeEYE model, after undergoing fine-tuning, demonstrated 
an enhanced ability to manage complex ophthalmic data. When 
combined with clinical feature prompts from the knowledge graph, it 
produced more accurate diagnostic outcomes.

The fine-tuned LLM integrates the general language processing 
capabilities of the base model with specialized medical knowledge. 
Across various metrics, including accuracy, precision, recall, and 
F1-Score, the fine-tuned MeEYE model significantly outperformed 
the baseline models, which had not been fine-tuned. This outcome 
highlights that fine-tuned LLMs can achieve superior performance in 

medical diagnostic settings, providing both accurate diagnoses and 
consistent performance across diverse clinical scenarios.

By undergoing fine-tuning, the model gains the flexibility to 
handle a range of medical tasks, such as disease classification, 
symptom analysis, and treatment recommendations. This adaptability 
makes the fine-tuned model applicable not only to ophthalmic 
diagnosis but also to other areas of medicine, demonstrating its broad 
potential for medical applications.

4.4 Case study analysis

A case study using the input “My eyes are red and uncomfortable” 
further validated the effectiveness of the proposed method. By 
integrating detailed prompts that included specific symptoms, 
potential causes, risk factors, and patient-reported experiences, the 
model generated diagnostic outcomes that were both more accurate 
and clinically relevant compared to the baseline models. In this 
instance, the proposed method achieved an accuracy of 91.5%, 
significantly surpassing the baseline models (ChatGLM3-6B at 74.6%, 
GPT-4.0 at 78.4%, and ERNIE Bot-4.0 at 77.8%). Additionally, the 
method demonstrated superior interpretability, with a score of 87 
compared to 60, 65, and 63 for the baseline models, underscoring its 
ability to provide clinicians with clear, actionable insights.

Despite the notable advantages demonstrated by the “knowledge 
graph-enhanced ophthalmic contrastive learning and ‘clinical profile’ 
prompt” method in diagnosing dry eye, certain limitations remain. 
First, the model’s performance is highly dependent on the quality and 
comprehensiveness of the knowledge graph. Since the OphKG was 
constructed from a limited set of literature, it may not fully capture all 
clinical variations of dry eye, particularly rare cases or poorly 
understood pathological mechanisms, potentially constraining the 
model’s generalizability. Second, while the introduction of clinical 
profile prompts enhanced interpretability, these prompts are derived 
from the existing knowledge in the graph and may be inadequate 
when addressing novel or emerging clinical features. Furthermore, the 

TABLE 3 Model performance evaluation results of the case.

Question input 
method

Metric MeEYE ChatGLM3-6B 
baseline

GPT-4.0 
baseline

ERNIE Bot-4.0 
baseline

“Clinical profile” 
prompt input

Accuracy (%) 91.5 74.6 78.4 77.78

Interpretability score 87 60 65 63

Detection time (seconds) 12 7 8 7

Direct question input

Accuracy (%) 89.2 72.4 76.8 75.9

Interpretability score 85 58 63 61

Detection time (seconds) 11 7 8 7

TABLE 2 Retraveled network of “red eye.”

Symptom Causes Risk factors Patents’ feelings

Red eye

Dry eye, conjunctivitis, tear film stability, tear secretion, 

inflammatory markers (such as IL-6, TNF-α), neurogenic dry 

eye, air quality and humidity, immune system disorders, 

hormone levels, microbiome imbalance, screen time and 

blinking frequency, non-steroidal anti-inflammatory drugs 

(NSAIDs)

Age ≥ 60, elderly, postmenopausal 

women

Eye pain, blurred vision, photophobia, 

eye discharge
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interpretability score relies on subjective expert evaluations, lacking 
more objective and quantitative assessment methods.

4.5 Future research

Ensuring the interpretability of AI-driven ophthalmic diagnostic 
models is essential for their clinical adoption and trustworthiness. 
While this study employs expert evaluations to assess model 
interpretability, future research should focus on developing a hybrid 
evaluation framework that integrates both qualitative and quantitative 
interpretability metrics. Automated techniques such as SHapley 
Additive exPlanations (SHAP) and Local Interpretable Model-
agnostic Explanations (LIME) should be incorporated to provide an 
objective breakdown of the model’s decision-making process, 
enhancing transparency and clinical relevance. Additionally, efforts 
should be directed toward refining expert-based scoring methods by 
implementing structured assessment rubrics, inter-rater reliability 
measures, and calibration exercises to ensure consistency across 
expert evaluations. Longitudinal studies should also be conducted to 
monitor the evolution of interpretability scores as the model is fine-
tuned with real-world clinical data, ensuring that AI-generated 
explanations remain meaningful and aligned with evolving 
medical guidelines.

To further enhance the generalizability and real-world 
applicability of AI-based ophthalmic diagnostic models, future 
research should prioritize mitigating bias in model training and 
optimizing computational efficiency. Expanding the dataset to 
include a more diverse representation of patient demographics, 
including variations in age, gender, ethnicity, and disease severity, is 
crucial for improving model fairness and ensuring robust 
performance across underrepresented subpopulations. Additionally, 
integrating adaptive learning mechanisms that allow models to 
update dynamically based on real-world clinical feedback will 
enhance the ability of AI systems to handle emerging ophthalmic 
conditions. Optimizing computational efficiency through techniques 
such as knowledge distillation, model pruning, and edge computing 
will be necessary to facilitate real-time AI-assisted diagnostics in 
high-volume clinical settings. These advancements will collectively 
ensure that AI-driven ophthalmic diagnostic models are not only 
accurate and interpretable but also scalable, equitable, and practical 
for widespread clinical implementation.

Thus, future research should prioritize expanding the knowledge 
graph’s scope, ensuring it encompasses a broader range of ophthalmic 
conditions and emerging medical knowledge to enhance model 
generalizability. Additionally, further efforts should focus on 
developing more adaptable AI models capable of maintaining high 
diagnostic accuracy across diverse patient populations and complex 
clinical scenarios. To improve model transparency and clinical trust, 
the integration of automated and standardized interpretability 
assessment methods is essential, enabling objective and reproducible 
evaluations. While this study has demonstrated success in diagnosing 
dry eye, its applicability to a wider spectrum of ophthalmic diseases 
and multi-disease diagnostic scenarios remains an open area for 
investigation. Future studies should validate the model’s performance 
in diverse real-world clinical environments, assessing its robustness, 
scalability, and effectiveness in handling complex ophthalmic 
conditions. These advancements will be  critical for ensuring that 

AI-driven diagnostic tools are not only clinically accurate but also 
interpretable, equitable, and broadly applicable across ophthalmology 
and beyond.

5 Conclusion

This study presents a novel approach that integrates knowledge 
graphs with contrastive learning, enhanced by “clinical profile” prompts, 
to fine-tune the ophthalmology-specific large model, MeEYE, based on 
the CHATGLM3-6B architecture. This method marks a significant 
advancement in AI-driven ophthalmic diagnostics, improving both the 
accuracy and interpretability of diagnostic predictions. By leveraging 
domain-specific knowledge from the OphKG and employing 
contrastive learning, the model effectively captures clinically relevant 
features, offering more reliable and transparent AI-generated 
recommendations. This addresses the critical need for explainable AI in 
clinical settings, providing clinicians with clear, trustworthy insights 
that have the potential to enhance patient care.

The study highlights the successful combination of specialized 
ophthalmic expertise with advanced AI methodologies, resulting in 
a system that enhances diagnostic precision and closely aligns with 
the clinical reasoning used by healthcare professionals. The findings 
demonstrate that the proposed approach significantly outperforms 
baseline models in both accuracy and interpretability, emphasizing 
its ability to manage complex medical cases with greater efficiency. 
Furthermore, the developed framework, which boosts AI model 
performance through the integration of knowledge graphs and 
tailored prompts, has significant potential for application in other 
medical fields. By enhancing the transparency and reliability of 
AI-driven diagnostics, this approach could lead to more informed 
clinical decisions, better patient outcomes, and increased confidence 
in AI technologies in healthcare.

This research lays the groundwork for future advancements in 
AI-assisted healthcare. Expanding the knowledge graph to cover a 
wider range of diseases and incorporating emerging medical 
knowledge will further enhance the system’s robustness. Additionally, 
applying this approach to more complex, multi-disease diagnostic 
scenarios could transform the role of AI in various medical domains. 
The promising future of this research lies in its potential to 
revolutionize AI-driven diagnostics, making healthcare more precise, 
personalized, and widely accessible.

Author’s note

A related Chinese invention patent named “Machine learning 
based emergency medical prompt method and system for dry eye 
disease” is applied in August 23, 2024. The application number 
is 202410685677.
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