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Brain tumor segmentation from Magnetic Resonance Images (MRI) presents

significant challenges due to the complex nature of brain tumor tissues. This

complexity poses a significant challenge in distinguishing tumor tissues from

healthy tissues, particularly when radiologists rely on manual segmentation.

Reliable and accurate segmentation is crucial for e�ective tumor grading and

treatment planning. In this paper, we proposed a novel ensemble dual-modality

approach for 3D brain tumor segmentation using MRI. Initially, individual

U-Net models are trained and evaluated on single MRI modalities (T1, T2,

T1ce, and FLAIR) to establish each modality’s performance. Subsequently, we

trained U-net models using combinations of the best-performing modalities to

exploit the complementary information and improve segmentation accuracy.

Finally, we introduced the ensemble dual-modality by combining the two

best-performing pre-trained dual-modalities models to enhance segmentation

performance. Experimental results show that the proposed model enhanced

the segmentation result and achieved a Dice Coe�cient of 97.73% and a

Mean IoU of 60.08%. The results illustrate that the ensemble dual-modality

approach outperforms single-modality and dual-modality models. Grad-CAM

visualizations are implemented, generating heat maps that highlight tumor

regions and provide useful information to clinicians about how the model made

the decision, increasing their confidence in using deep learning-based systems.

Our code publicly available at: https://github.com/Ahmeed-Suliman-Farhan/

Ensemble-Dual-Modality-Approach.
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ensemble dual-modality, brain tumor segmentation, MRI images, U-net, deep learning,
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Introduction

Brain tumors represent one of the most severe and complex challenges in the medical

field (Muhammad et al., 2021). They arise from abnormal growth of cells within the

brain or inside the skull (Farhan et al., 2023). It is one of the most dangerous diseases

and one of the leading causes of death in various countries (Alqhtani et al., 2024). The

most common type of brain tumors is gliomas, which are considered a challenge for both

doctors and researchers because of diversity and difficulty in diagnosing and treating them.

It is estimated that about 80,000 people in the United States are diagnosed with brain

tumors each year, and the majority of them have gliomas (Zhou, 2023; Thakkar et al.,

2020). Gliomas are classified into two main groups according to their grade: high-grade
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gliomas (HGG) and low-grade gliomas (LGG). Determining the

grade has a significant role in planning the treatment (Sun et al.,

2023). Although low-grade gliomas are less aggressive than high-

grade gliomas, they can develop into higher-grade gliomas if

there is no treatment in time, which increases the severity of the

disease and complicates treatment (Bogdańska et al., 2017; Claus

et al., 2015). Therefore, early diagnosis of brain tumors is essential

and increases the chances of patients survival and treatment (Al-

Zoghby et al., 2023; Saeedi et al., 2023). Diagnosis of brain tumors

begins with MRI because it is the most efficient tool for imaging

brain tissue. In addition, MRI provides a three-dimensional view

of the brain, which helps doctors better diagnose the tumor (Abd-

Ellah et al., 2024).

Magnetic resonance imaging (MRI) is a form of multimodality

imaging. MRI generates images of different contrasts because

protons in the tissues vary in their relaxation rates (Zhan et al.,

2022; Zhou et al., 2019). Different modalities of MRI images, such

as T1-weighted, T1-weighted images with contrast enhancement

(T1c), FLAIR, and T2-weighted help doctors better view the tumor

(Tandel et al., 2023). For example, T2 and FLAIR modalities

target on the edema area surrounding the tumor while T1 and

T1c focus on the tumor area (Zhou et al., 2019). Figure 1 shows

the different modalities of brain MRI images. These different

modalities help doctors accurately analyze and diagnose the tumor

and develop treatment plans (Hammad et al., 2023; Sailunaz et al.,

2023). However, brain tumors from MRI images can be difficult

to recognize and segment due to high variability in tumor shape,

size, and location (Almufareh et al., 2024). In addition, manual

segmentation is time-consuming and prone to errors (due to

variability in interpretations) and requires an expert radiologist.

Therefore, there is an urgent need to develop an automatic system

for segmenting brain tumors from MRI images. This system

can help segment and diagnose tumors accurately and efficiently

(Karim et al., 2024; Hussain and Shouno, 2024).

Accurately segmenting brain tumors from magnetic resonance

imaging (MRI) data is important to diagnosis. However,

segmentation is complicated due to the different brain tumors

types and the difficulty distinguishing between infected and

healthy cells, highlighting the urgent need for an automated

segmentation system. In recent years, deep learning, especially

the U-Net architecture, has shown promising results in medical

image segmentation (Zhang F. et al., 2024). Because each

modality provides limited information, single-modality MRI

methods often do not perform well in brain tumor segmentation.

Although multiple MRI modalities can enhance segmentation

accuracy, most current segmentation models do not integrate

features from different modalities. This study suggests a new

ensemble dual-modality method based on the U-Net model.

This method aims to improve segmentation performance by

training and integrating bimodal U-Net models, making the

method for brain tumor segmentation more accurate. The

study shows that the proposed ensemble dual-modality model

performed better than the single-modality and multi-modality

models. This study aims to address the following research

questions:

• How can the ensemble dual-modality model improve the

robustness of segmentation models?

• How can the model enhance explainability and build clinical

trust?

• How can interactive tools and feedback mechanisms

facilitate real-world adaptation and continuous learning of

segmentation models across different clinics and enhance the

generalization of the segmentation model?

The main contributions of this study is as follows:

• An ensemble dual-modality module is proposed to

combine two pre-trained dual-modality models to improve

segmentation accuracy.

• This study evaluates the results of the U-net model on single-

modality input and multi-modalities input.

• Explainable AI techniques such as Grad-CAM is used

to enhance interpretability and thus enable clinicians to

understand decision-making.

• An interactive interface with feedback mechanisms is built

to facilitate the feedback mechanism, enabling the model to

continuously learn from data from different clinics, enhancing

the model’s generalizability.

• The study proposed a novel approach for preprocessing

3D MRI images and cropping the region of interest (ROI).

Accurately identifying and cropping the region of interest

reduces the complexity of segmentation and ensures that the

segmentation model focuses on the most relevant areas of the

brain.

• The proposed method was rigorously evaluated using the

BraTS2020 dataset and the results shows the effectiveness of

the ensemble dual-modality model in accurately segmenting

brain tumors.

Literature review

In recent years, the field of medical image analysis has gained

significant attention, particularly in the segmentation of brain

tumor from MRI images. The deep learning models has become

one of the most famous methods in medical image segmentation

because of its strong ability to extract features. A lot of research has

been done in the field of using the deep learning models for brain

tumor segmentation, and has shown its efficiency and usefulness in

tumor segmentation.

A significant trend in brain tumor segmentation involves

using multiple MRI modalities to enhance segmentation results

for example, Zhou (2024) proposed a novel multi-modalities brain

tumor segmentation based on U-net, which utilized disentangled

representation learning and region-aware contrastive learning.

The disentangled representation learning helps to disentangle

the entangled features into independent factors that represent

various components of the tumor, and the region-aware contrastive

learning helps to mine the feature representation from the

related tumor regions. The proposed model was evaluated on the

BraTS 2018 and BraTS 2019 datasets and achieved outperforming

compared with other state-of-the-art models. Similarly, Zhou

(2023) proposed a new brain tumor segmentation multi-modalities

model from MRI images. The model has the ability to segment

brain tumors even when one or more modalities are missing
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FIGURE 1

MRI sequences for brain.

and can also reconstruct the missing modalities. It exploits

multiple MRI modality features in order to enhance segmentation

performance. Furthermore, latent feature learning is employed to

extract multimodal latent correlations. The proposed approach

was evaluated on the BraTS 2018 dataset and achieved promising

segmentation results. In a comparable manner, Zhu et al. (2024)

proposed an approach that uses multi-modality MRI data to

enhance spatial information and obtain more accurate tumor

boundary. This approach includes three modules: (1) border

shape correction (BSC), (2) spatial information enhancement (SIE),

and (3) modality information extraction (MIE). Together, these

modules are assembled into 3D brain tumor segmentation model

that works on the input, backbone, and loss functions of DCNNs.

The proposed model evaluated on BraTS2017, BraTS2018, and

BraTS2019 datasets. The proposed model achieved an average

DSC of 0.821, 0.858, and 0.853 for the BraTS2017, BraTS2018,

and BraTS2019 datasets, respectively. As well, Ranjbarzadeh et al.

(2024) proposed a brain tumor segmentation framework using

four modalities of MRI image types. The proposed model is based

on convolutional neural networks (CNNs) and Improved Chimp

Optimization Algorithm (IChOA). Initially, all four MRI modality

types (T1, T2, T1ce, and Flair) are normalized to identify potential

tumor regions. Afterwards, IChOA is used to select features using a

Support VectorMachine (SVM) classifier. Finally, these features are

fed into the proposed CNNmodel for tumor segmentation. IChOA

contributes to feature selection and hyperparameter optimization

of the proposed CNN model. Experimental results on the BRATS

2018 dataset show that the proposed model achieved a Precision of

97.41%, recall of 95.78%, and dice score of 97.04%.

Some researchers have focused on improving computational

efficiency while maintaining reasonable segmentation accuracy.

Montaha et al. (2023) introuced a 2D U-Net-based approach

to segmenting brain tumors from 3D MRI data. It utilizes skip

connections to preserve spatial information and processes 2D slices

from the 3D scans to reduce computational costs while maintaining

high performance. The preprocessing steps, such as rescaling and

normalization, further enhance performance. The proposed

method is trained and tested on the BraTS2020 dataset, and the

model achieved 93.1% DSC and 99.41% accuracy respectively.

As well, Feng et al. (2024) introduced a new way to represent

frequencies to reduce feature loss in the segmentation model,

primarily when brain tumor detection is encoded and decoded.

This method, called MLU-Net, integrates frequency representation

techniques and Multilayer Perceptron (MLP)-based techniques

into a lightweight U-Net architecture. MLU-Net enhances

the performance of medical image segmentation tasks while

maintaining high computational efficiency by using frequency

representation and MLP-based methods. Experimental results for

brain tumor segmentation highlight the significant advantages of

the proposed approach. MLU-Net achieved remarkable efficiency

improvements, reducing parameters and computational workload

to just 1/39 and 1/61 of those required by the U-Net model. Also,

it outperforms U-Net in segmentation accuracy, improving the

Dice and Intersection over Union (IoU) metrics by 3.37% and

3.30%, respectively. Also, Zhang W. et al. (2024) proposed a

novel approach named ETUNet (Efficient Transformer Enhanced

UNet) for 3D brain tumor segmentation. This method integrates

transformer modules into the UNet architecture to utilize their

efficiency in capturing long-range dependencies and enhancing

feature representations. By incorporating transformers, ETUNet

aims to improve the segmentation accuracy and efficiency

compared to UNet models. The proposed approach evaluated

on BraTS-2018 and BraTS-2020 datasets, and obtained average

Dice Similarity Coefficient (DSC) scores of 0.854 and 0.862

and Hausdorff Distance (HD95) values of 6.688 and 5.455 on

BraTS-2018 and BraTS-2020 datasets, respectively.

To address the challenge of limited labeled data

(Hammer Håversen et al., 2024) proposed a novel approach

for 3D segmentation using a self-supervised and self-querying

framework integrated into the U-Net architecture. Unlike

traditional methods that rely solely on labeled data for supervision,

QT-UNet utilize self-supervision to learn from unlabelled data,

reducing the need for annotated samples. The proposed approach

evaluated on (BraTS 2021) dataset and obtained a Hausdorff

Distance of 4.85 mm and an average Dice score of 88.61.

Other studies involve the introduction of dual-pathmodels. For

example, Fang and Wang (2022) proposed a dual-path network

designed to enhance the effectiveness of brain tumor segmentation.

This architecture used data from multiple MRI modalities to

improve segmentation accuracy in MRI images. The proposed

model is trained and evaluated on the BraTS 2015 dataset,

demonstrating efficient performance.
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To enhance the model explainability (Dasanayaka et al., 2022b)

proposed an interpretable machine learning model based on U-

Net and DenseNet for brain tumor segmentation and classification

from MRI images. The segmentation model segments the brain

tumors into enhancing tumor, whole tumor, and tumor cor. The

segmentation model achieved Dice coefficients of 0.779, 0.885,

and 0.804 for enhancing tumor, whole tumor, and tumor core,

respectively. The classification module classifies the tumor into

three types: glioblastoma, oligodendroglioma, and astrocytoma and

achever an average accuracy of 89.3% and a kappa coefficient

of 0.733. They used Grad-CAM to explain how the model

makes decisions, enhancing its transparency and reliability for

medical use.

To Improving feature fusion and contextual learning, Yousef

et al. (2023) proposed a novel Deep Learning-based Brain Tumor

Segmentation architecture called Bridged-U-Net-ASPP-EVO for

Brain tumor segmentation and includes spatial hierarchical pooling

(ASPP) and an advanced normalization layer. The modifications

to the on U-Net architecture incorporates include: (1) an Atrous

Spatial Pyramid Pooling (ASPP) module, which captures multi-

scale information, and a bridging mechanism that facilitates better

feature fusion between the encoder and decoder paths. (2) The

Evolving Normalization Activation Layer (EVO_NORM) is utilized

to optimize feature normalization and activation simultaneously,

leading to better convergence and accuracy. (3) The model

integrates a Squeeze and Excitation with Residual Block (SE-

Block) to recalibrate channel-wise feature responses and strengthen

relevant features while reducing noise. (4) A Bridge Layer is

introduced to improve information flow between the encoder and

decoder paths, ensuring precise spatial and contextual feature

fusion. The proposed approach is tested and evaluated using the

BraTS 2020 and BraTS 2021 datasets. The evaluation results on the

BraTS 2020 dataset showed an average of 0.78, 0.8159, and 0.9073

for ET, TC, and WT, respectively, and HD95% of 21.684, 15.941,

and 5.37. The test results on the BraTS 2021 dataset achieved

averaged DSC of 0.8434, 0.8594, and 0.9187 for ET, TC, and WT,

respectively, and average HD95% of 11.669, 141887, and 5.3687.

While the studies mentioned have showcased the effectiveness

of U-net for brain tumor segmentation, however, the existing

approaches often face limitations in leveraging the complementary

information from multiple MRI modalities with a multi-

path model. Additionally, existing approaches may suffer from

robustness and reduced generalization capability. These studies

highlight the following challenges:

• Lack of robustness and generalization: Models generally

suffer from reduced generalizability when applied to different

datasets, which limits their clinical usefulness. This issue

becomes even more apparent when data comes from different

devices or clinics. Since models trained on a single dataset

often fail to generalize well to differences in imaging protocols.

• Limited explainability: Existingmodels often lackmechanisms

for explaining their predictions, which is very important in

medical applications.

• Real-world implementation: Many current approaches lack

tools, interactive interfaces, or frameworks that allow

clinicians to interact with model outputs or allow feedback or

use of real-world data in the training process. This prevents

the model from being flexible enough to generalize across

different clinics and devices. Deep learning models can only

succeed in the real world if they learn from large real-time

datasets from multiple clinics and imaging devices.

To address these limitations, our proposed ensemble Dual-

Modality approach integrates different MRI modalities and

ensemble Dual paths to enhance segmentation accuracy. By

leveraging the strengths of each modality and combining them

through an ensemble framework, we aim to improve the robustness

and efficiency of brain tumor segmentation while mitigating the

challenges associated with single-modality approaches. Moreover,

using Grad-CAM gives clear insights into how the model makes

the decisions and ensures that predictions are explainable, bridging

a gap in explainable AI for medical applications.

Additionally, we designed an interactive user interface that

facilitates the model’s real-world application. This interface enables

clinicians to upload MRI data, review segmentation results,

and provide annotations or corrections. The feedback collected

through this interface is incorporated into the training process,

allowing the model to adapt to real-world data from multiple

clinics and devices. By creating a continuous learning loop,

the tool ensures the model generalizes effectively across diverse

clinical environments, addressing both robustness and real-world

implementation challenges.

Proposed methodology

The methodology proposed in this research is an ensemble

dual-modality approach for brain tumor segmenting from MRI

images. Figure 2 shows all stages of the proposed technology. In

the first stage, the BraTS2020 dataset was chosen to train and

test the proposed method. The second stage of pre-processing

the dataset includes identifying and cropping the region of

interest and resizing it, then dividing it into testing, training, and

validation sets. After that, the third stage is feature extraction

and segmentation of the brain tumor, comprising three key steps:

Step one trains and evaluates the U-net model on each MRI

modality separately, including T1, T2, T1ce, and FLAIR. The

second step involves training and evaluating the U-net model

using multi-modalities. The third step combined two pre-train

models with input modalities T2+T1ce and T1ce+FLAIR, which

obtained the best results from the previous step in creating

an ensemble dual-modality segmentation model. Together, these

stages form a comprehensive framework for enhancing the

efficiency of brain tumor segmentation. The following sections

explain each stage in more detail, including its impact on brain

segmentation performance.

U-Net model architecture

The U-Net architecture is a convolutional neural network

widely used in biomedical image segmentation. It was introduced

by Ronneberger et al. (2015), and is characterized by a symmetrical

“U” shape, consisting of a contracting path (encoder) and a

dilating path (decoder). The encoder captures the context through
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FIGURE 2

Workflow of the proposed approach.

convolutional layers and max-pooling layers, gradually reducing

the spatial dimensions as depth increases. The decoder then

upsamples the features, using the transferred convolutions, and

connects them to the corresponding encoder features through

skip connections (Ibtehaz and Rahman, 2020; Montaha et al.,

2023). Figure 3 illustrates the specific configuration of the 3D

U-Net architecture utilized in our study, highlighting its layers

and connections.

Datasets

This study used the Brain Tumor Segmentation 2020

(BraTS2020) dataset to train and test the proposed approach.

This dataset contains 494 3D image subjects, divided into 369

subjects for training and 125 for validation. Each subject includes

MRI scan data across multiple modalities: T1-weighted, T1

post-contrast (T1ce), T2-weighted, and FLAIR (fluid-attenuated

inversion recovery). Each modality has a resolution of 240 ×

240 in the axial plane, paired with a depth of 155 slices. The

training dataset also contains ground truth labels that have been

manually reviewed by doctors. Therefore, in this study, we used

these 369 subjects for training and testing the proposed method.

The annotations ground truth include [tumor core (TC), whole

tumor (WT), and enhanced tumor (ET)] (Menze et al., 2014; Bakas

et al., 2017, 2018).

Pre-processing

The preprocessing of the BraTS2020 dataset includes cropping

the region of interest (ROI). The ROI cropping step is important

and improves the performance of segmentation models by making

the model focus on the relevant parts of the brain. This study used

369 subjects from the BraTS2020 dataset to train and test themodel.

These 369 subjects include the ground truth labels.

To define and crop the ROI for each subject, we chose the

T1 modality of MRI images because this modality demonstrates

the contrast between the brain and the surrounding edges. Slice

number 77 was chosen from the T1 modality, which includes a

depth of 155 slices. As the middle slice, this typically offers a central

view of the brain and the tumor, ensuring that the cropped region

in all other slices encompasses the whole brain. This slice was used

to calculate the coordinates x1, x2, y1, and y2, which are critical

to determining the ROI. Subsequently, we reduced the depth from

155 to 128 slices by selecting slices from 13 to 141. The next step

is cropping all slices by applying the same calculated coordinates

value on all 128 slices of theMRI across all modalities: T1, T2, T1ce,

FLAIR, and the mask. After that, the cropped images were resized

to 128x128 pixels, resulting in a standardized input size of (128,

128, 128) for the segmentation model. Figure 4 shows these steps

in detail.

Finally, the dataset was divided into three groups for training,

validation, and testing. The distribution was 70% of the dataset for

training, 15% for validation, and 15% for testing.

Ensemble dual-modality method

This paper introduces an ensemble dual-modality approach to

enhance brain tumor segmentation capabilities and help clinical

decision-making. Individual Unetmodels are trained and evaluated

on each MRI modality separately, including T1, T2, T1ce, and

FLAIR. This step determines each method’s essential tumor
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FIGURE 3

U-Net model architecture.

segmentation performance, as shown in Figure 5. The T2 and T1ce

Flair methods were selected, which obtained the best results for the

next step.

In the next stage, Unet models are trained using combinations

of the three selected modalities, which obtained the best

results from the previous step. This method trains models

on multi-input modalities, such as T2 + T1ce, T2 + FLAIR,

T1ce + FLAIR, T2 + T1ce + Flair, as shown in Figure 6.

This method exploits complementary information in different

modalities to enhance segmentation accuracy. Using multiple

modalities simultaneously can yield more robust segmentation

results because each MRI modality captures unique aspects of

tumor characteristics.

After training the dual modality models, the pre-trained

models are combined. We chose the two models with input

modalities T2 + T1ce and T1ce + FLAIR that obtained the

best results from the previous steps to create an ensemble

dual-modality segmentation model. This ensemble process

combines the individual dual-modality models by removing the

output layer from each model and adding a Concatenate Layer

to concatenate their feature maps. They were followed by an

additional convolutional layer with [a Relu activation function, a

filter size of (3 × 3 × 3), a stride size of 1 and an output shape of

16] Afterwards, an output layer with a softmax activation function

as shown in Figure 7. The Ensemble Dual-Modality method

aims to harness the complementary strengths of each modality,

leading to a more comprehensive and accurate segmentation

of brain tumors. The Ensemble Dual-Modality approach

integrates multiple MRI modalities and ensemble the Unet deep

learning model to improve the accuracy and reliability of brain

tumor segmentation.

Visualizations and interactive interface

We have developed an interactive web-based interface to

facilitate specialist and clinic access. The tool provides functions

such as managing brain MRI data, reviewing system predictions,

predicting tumor diagnostics, and offering an interactive interface

for specialist feedback on tumor predictions, all of which require

user registration. The tool features a main dashboard that displays

key statistics, including the total number of MRI images uploaded,

those processed by the system, those yet to be reviewed by

specialists, and those already reviewed. Users can upload brain

MRI images through the data upload interface, with unique

identification numbers generated for each patient to ensure privacy

and tracking. The search and review interface allows users to view

processed MRI predictions and see details of segmented tumor

areas and annotations. An interactive interface lets specialists

modify and perform manual tumor segmentation and provide

detailed notes. These inputs can retrain the system with real-

world data from various clinics, enhancing its accuracy and

generalisability over time.

Experiment results

This section comprehensively overviews the specific

hyperparameters used in the experiments. It also describes

the performance metrics used to demonstrate the effectiveness

of the ensemble dual-modality model in segmenting

brain tumors from MRI images. It then details the

ensemble dual-modality testing results on the BraTS

2020 dataset.
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FIGURE 4

Description preprocessing steps.
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FIGURE 5

Training and evaluation of individual U-net models on separate MRI modalities (T1, T2, T1ce, and FLAIR) for brain tumor segmentation.

FIGURE 6

Training and evaluation U-net models using combinations of selected MRI modalities (T2 + T1ce, T2 + FLAIR, T1ce + FLAIR, T2 + T1ce + FLAIR) for

enhanced brain tumor segmentation.

Experimental setup

The proposed model was implemented using Python 3.8.0,

Keras 2.6.0, and TensorFlow 2.6.0 libraries. The experiments were

performed on a device with the following specifications: OS [Linux:

Ubuntu 22.04.4 LTS (GNU/Linux 5.15.0-97generic x86_64)],

Processor [Intel(R) Xeon(R) CPU E52680 v4 @ 2.40GHz], RAM

(128 GB) and GPU [05:00.0 VGA compatible controller: Matrox

Electronics Systems Ltd. MGA G200e [Pilot] ServerEngines (SEP1)

(rev 05)].

Hyperparameters

Before starting the training process, basic hyperparameters

must be set, including batch size, number of epochs, and learning
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FIGURE 7

The ensemble dual-modality segmentation model by combining the best-performing dual-modality models (T2 + T1ce and T1ce + FLAIR).

rate. For this task, the batch size was 4, the number of epochs

was 40, and the learning rate was 0.0001. There was also an

early stopping point for stopping training if validation loss did

not improve after five consecutive epochs. This strategy helps

to avoid overfitting and improves computational efficiency by

aborting training when further development is not likely. These

weights with the smallest validation loss were saved and used to test

the approach.

Performance metrics

To evaluate the performance of our brain tumor segmentation

models, we used several key metrics: accuracy, mean intersection

over union (Mean IoU), Dice similarity coefficient (DSC),

precision, sensitivity, and specificity. Thesemeasures show you how

the proposed approach performs from different aspects (Verma

et al., 2024; Jyothi and Singh, 2023; Renugadevi et al., 2023).

1. Accuracy: The segmentation accuracy is based on the

proportion of correctly classified pixels (tumor and non-tumor)

in comparison with total pixels. Accuracy, although helpful for

generalizing performance, it can be misleading in imbalanced

data, such as segmenting brain tumors, where pixels from non-

tumor often trump tumor pixels.

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(1)

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2025.1525240
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Farhan et al. 10.3389/frai.2025.1525240

TABLE 1 Results for all scenarios.

Metrics T1 T2 T1ce Flair T2_t1ce T2_flair T1ce_flair T1ce_T2
_Flair

T2_t1ce +
T1ce_flair

Accuracy 0.969191 0.975229 0.974564 0.975452 0.979207 0.978127 0.981185 0.979357 0.983575

Mean_iou 0.318932 0.358804 0.455298 0.355311 0.504634 0.388971 0.493028 0.434116 0.600833

Dice_coef 0.954508 0.966633 0.964015 0.966846 0.971875 0.971087 0.972989 0.973409 0.977302

Precision 0.984345 0.986528 0.981337 0.981470 0.983169 0.984929 0.987366 0.983540 0.987980

Sensitivity 0.957838 0.965744 0.969547 0.971912 0.976294 0.973914 0.976221 0.976706 0.980297

Specificity 0.994924 0.995619 0.993877 0.993903 0.994438 0.995052 0.995851 0.994563 0.996028

Bold values indicate the best-performing results for each metric.

FIGURE 8

Results of mean IoU and DSC for all scenarios.

2. Mean intersection over union (Mean IoU): The mean IoU

is a very important metric for evaluating the accuracy of

the segmentation. It measures the mean overlap between the

predicted and ground truth mask. The equation gives the mean

IoU:

IoU =

∣

∣A
⋂

B
∣

∣

∣

∣A
⋃

B
∣

∣

(2)

3. Dice similarity coefficient: The DSC is another important

metric that measures the similarity between the predicted

segmentation and the ground truth. It is defined as twice the

overlap area divided by the total number of pixels in the

predicted and ground truth masks. The equation gives DSC:

Dice = 2

∣

∣A
⋂

B
∣

∣

|A| + |B|
(3)

where A is the set of pixels in the predicted segmentation, and B

is the set of pixels in the ground truth.

4. Precision: Precision measures the accuracy of the model’s

positive predictions, defined as the ratio of actual positive pixels

to the sum of true positive and false positive pixels. It indicates

the number of predicted tumor pixels that belong to the tumor.

Precision =
TP

(TP + FP)
(4)

5. Sensitivity (Recall): Sensitivity or recall measures a model’s

ability to correctly identify all true positive pixels. It is the ratio of

true positive pixels to the sum of true positive and false negative

pixels.

Sensitivity =
TP

(TP + FN)
(5)

6. Specificity: Specificity measures a model’s ability to correctly

identify all true negative pixels. The ratio of true negative pixels
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FIGURE 9

Example of applying the ensemble dual-modality method.

FIGURE 10

Losses and accuracy curves of the ensemble dual-modality model during the training and validation process.
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TABLE 2 Comparison of the proposed ensemble dual-modality model

with existing other models.

Methodology Dice coe�cient Mean IoU

U-Net (Ronneberger et al., 2015) 0.973 0.434

U-Net++ (Zhou et al., 2018) 0.969 0.445

Attention U-Net (Oktay et al., 2018) 0.971 0.424

Ensemble dual-modality (Proposed) 0.977 0.601

to the sum of true negative and false positive pixels.

Specificity =
TN

(TN + FP)
(6)

While all of these metrics are important, we primarily focused

on the mean IoU and Dice Similarity Coefficient (DSC) in our

study. These metrics are more useful for evaluating segmentation

tasks because they directly measure the overlap between predicted

and actual tumor regions, providing a clearer picture of the model’s

performance in accurately defining tumor boundaries.

Results

In this section, we trained and tested the proposed model using

the BraTS2020 dataset, which includes T1, T1c, T2, and FLAIR

modalities. This experiment was divided into three scenarios: single

modality, multi-modality, and ensemble dual-modality. Table 1 and

Figure 8 show the summary of the test results for all scenarios.

Single-modality segmentation
In this scenario, each MRI modality (T1, T2, T1ce, and

FLAIR) was trained and tested on the U-Net model. The brain

tumor segmentation performance was diverse among differentMRI

modalities during training and testing. The T1 modality achieved a

Dice Coef of 0.954508 and a Mean IoU of 0.318932. Meanwhile,

the T2 modality showed a Dice Coef of 0.966633 and a Mean IoU

of 0.358804. In contrast, the T1ce modality obtained a Dice Coef

of 0.964015 and a Mean IoU of 0.455298; T1ce images enhanced

the visibility of the tumor due to contrast enhancement. Finally,

the FLAIR modality resulted in a Dice Coef of 0.966846 and a

Mean IoU of 0.355311. T1ce demonstrated the highest Mean IoU,

indicating its potential for better tumor delineation. In addition, the

T2 and FLAIR modalities performed better than the T1 modality.

These results indicate that while single modalities provide valuable

information, they have limitations in accurately capturing the full

extent of the tumor.

Multi-modality segmentation
U-Net models were trained using combinations of multiple

MRI modalities. Combining modalities improved segmentation

accuracy significantly, as shown in Table 1 and Figure 8. The T2

with T1ce modality achieved a Dice Coef of 0.971875 and a Mean

IoU of 0.504634. While T2 with FLAIR, this combination resulted

in a Dice Coef of 0.971087 and a Mean IoU of 0.388971. In

contrast, the T1ce with FLAIR Has a Dice Coef of 0.972989 and

a Mean IoU of 0.493028. Conversely, the T2 + T1ce + FLAIR

triple-modality achieved a Dice Coef of 0.976191 and a Mean

IoU of 0.579291. This multi-modality approach leveraged the

complementary information provided by different MRI sequences,

leading to more comprehensive tumor segmentation.

Ensemble dual-modality segmentation
The Ensemble Dual-Modality model combined the pre-trained

models of the two best-performing dual-modality combinations

(T1ce+FLAIR and T2+FLAIR). The Ensemble Dual-Modality

model outperformed both the single-modality and multi-modality

models by achieving a Dice Coef of 0.977302 and a Mean IoU

of 0.600833. The Ensemble Dual-Modality model provided more

accurate tumor segmentation because it integrated features from

both dual-modality models, leveraging the strengths of each model.

Also, using additional convolutional layers in the Ensemble Dual-

Modality model helped merge features from different models, thus

improving performance. Figure 9 shows an example of the result of

the Ensemble Dual-Modality model applied.

Figure 10 illustrates the losses and accuracy curves of the

ensemble dual-modality model during the training and validation

process. The left plot shows the trends of accuracy, where it

can be seen that the training accuracy increases smoothly and

stabilizes above 98%, while the validation accuracy follows this

trend, indicating that overfitting is minimal. The right plot shows

the training and validation loss curves. The training loss drops

rapidly in the first few epochs and then converges to a stable value.

While the validation loss follows a trend close to the training loss,

indicating that the model can generalize to unseen data.

Compare the proposed ensemble
dual-modality approach with existing
methods

In this comparative study, we compare the result of the

proposed ensemble dual-modality with the following standard

models: U-Net (Ronneberger et al., 2015), U-Net++ (Zhou et al.,

2018), and Attention U-Net (Oktay et al., 2018). For a fair

evaluation, the same dataset (BraTS2020) was used, and all

hyperparameters and server settings were the same. The results

in Table 2 show the proposed ensemble dual-modality approach

outperforms the other models. Our model achieved a Dice

Coefficient of 0.977 and a Mean IoU of 0.601, While U-Net

obtained (Dice: 0.973, Mean IoU: 0.434), U-Net++ (Dice: 0.969,

Mean IoU: 0.445), and Attention U-Net (Dice: 0.971, Mean IoU:

0.424). The integration of complementary features from the dual-

modality models and extra convolutional layer led to increased

segmentation accuracy.

Explainability

The black box behavior of AI algorithms has been questioned,

with the quest to see how predictions are made. Especially in

medicine, doctors are skeptical about blindly accepting predictions
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FIGURE 11

Visualization of MRI input images alongside Grad-CAM heat maps.

without a proper understanding (Wijethilake et al., 2021).

Therefore, explainability is very important when applying AI

models in clinical applications. It makes the decision-making

process of the AI model understandable and trustworthy for

clinicians. In this study, we embedded explainability using Grad-

CAM visualizations (Selvaraju et al., 2017; Farhan et al., 2023;

Dasanayaka et al., 2022a) and web interactive user interfaces.

• Grad-CAM heat maps: Grad-CAM heat maps pinpoint the

regions within the MRI scans that the model focuses on when

segmenting. These visualizations overlay the heat maps on top

of the original images, giving clear insights into how themodel

makes its decisions. Figure 11 shows an example of Grad-

CAM visualizations for the dual-modality ensemble model,

where regions of the tumor are highlighted. This approach

enhances explainability and helps doctors verify the model’s

predictions.

• Interactive visualization tool and feedback: We developed

an interactive user interface on the web to display the brain

tumor segmentation results. This tool provides clinicians with

a user-friendly interface to:

1- Review the segmentation results.

2- Annotate and modify segmentations interactively.

3- Provide feedback on predictions, such as correcting

segmentation boundaries or adding comments.

The feedback is used to retrain the model, improving its

accuracy and generalizability over time. Figure 12 illustrates

an example of this interactive interface.

This explainability ensures that the proposed model is accurate,

transparent, and adaptable to clinical workflows, fostering trust and

confidence among healthcare professionals.

Discussion

These results show that the proposed ensemble dual-

modality model is effective in improving accuracy and robustness

in brain tumor segmentation. The proposed model achieved

a Dice coefficient of 0.977 and an average IoU of 0.601

respectively, by leveraging complementary information from

multiple MRI modalities, outperforming standard methods such

as U-Net and U-Net++. Moreover, the visualizations shown in

Supplementary Figures 1–9 present the full segmentation outcomes
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FIGURE 12

An interactive visualization tool for brain tumor segmentation.

for the different modalities and provide further evidence of the

robustness of our segmentation approach.

In order to improve the explainability of the proposed

method, Grad-CAM visualizations are implemented, generating

heat maps highlighting tumor regions. This functionality gives

useful information to clinicians on the model’s decision processes,

increasing their trust in using deep learning-based systems. An

interactive user interface is also developed to get feedback on

decisions such as modify the segmentation results obtained by

the model or annotations, or correcting the predictions. This

feedback contributes to the continuous retraining of the model on

data from various clinics and different imaging protocols, which

leads to model generalizability. This feature makes the proposed

model more applicable to real-world applications and addresses

the limitations of many existing approaches, such as robustness

and generalizability.

The performance of the proposed model is compared with U-

Net, U-Net++, and Attention U-Net, under identical conditions

(same database, hyperparameters, and hardware specifications).

As shown in Table 2, the ensemble dual-modality model achieved

superior segmentation results over the these models, and this

improvement is attributed to the ability of the ensemble framework

to effectively combine the strengths of multiple models.

The trade-off between model complexity and performance,

the ensemble dual-modality framework is carefully designed to

balance resource usage with improved segmentation accuracy. By

only including the best two performing dual-modality models,

T1ce + FLAIR and T2 + T1ce, we optimized the integration

of complementary information while keeping computational

complexity manageable. Furthermore, parallel processing during

training and ROI cropping reduced thememory and computational

overhead.
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The study also considered potential challenges such as

overfitting and underfitting during the training process. To

mitigate overfitting, we implemented dropout layers and

used early stopping to prevent overtraining. Underfitting is

addressed by designing the ensemble dual-modality approach

to incorporate complementary information from dual-modality

inputs, ensuring that the model captures a broader range

of tumor features. Monitoring the learning curves (training

accuracy and validation/loss) confirmed the signs of overfitting

or underfitting. These curves, as shown in Figure 10, show a close

alignment between the training and validation metrics, indicating a

well-trained model.

While the study relied on the BraTS2020 dataset (for training,

validation, and testing), future work will rely on collaboration with

physicians to evaluate and apply the model in the real world.

The proposed approach can be tested on real-world data and

its effectiveness in clinical practice. The feedback mechanism by

experts will play an important role in retraining the model and thus

continuous improvement over time.

Conclusion

Reliable and accurate segmentation is crucial for effective

tumor grading and subsequent treatment planning. Different MRI

sequences such as T1, FLAIR, T1ce, and T2 provide unique

insights into various aspects of the tumor. Our study proposed

a novel ensemble dual-modality approach for 3D brain tumor

segmentation from MRI. The proposed approach leverages the

strengths of multiple MRI modalities and ensemble learning. The

results demonstrate that the U-net model with single-modality

input can be significantly enhanced through dual-modality and

ensemble methods. By combining T2, T1ce, and FLAIR modalities,

dual-modality achieved better performance than single-modality in

terms of Dice Coefficient and Mean IoU, underscoring the value

of utilizing complementary information from different imaging

techniques. The ensemble dual-modality model combined the two

dual-modality pre-trained models that achieved the best results.

The proposed approach achieved a Dice coefficient of 97.73% and

a Mean IoU of 60.08% when evaluated on the BraTS2020 dataset.

The proposed method leverages the strengths and characteristics of

each modality to obtain accurate segmentation. The results indicate

the potential of leveraging ensemble learning in other medical

applications that involve complex diagnoses.
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SUPPLEMENTARY FIGURE 1

Example of segmentation results with just T1 modality input.

SUPPLEMENTARY FIGURE 2

Example of segmentation results with just T2 modality input.

SUPPLEMENTARY FIGURE 3

Example of segmentation results with just T1ce modality input.

SUPPLEMENTARY FIGURE 4

Example of segmentation results with just flair modality input.

SUPPLEMENTARY FIGURE 5

Example of segmentation results with T2 + T1ce modalities input.
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SUPPLEMENTARY FIGURE 6

Example of segmentation results with T2 + flair modalities input.

SUPPLEMENTARY FIGURE 7

Example of segmentation results with T1ce+ flair modalities input.

SUPPLEMENTARY FIGURE 8

Example of segmentation results with T2 + T1ce + flair modalities input.

SUPPLEMENTARY FIGURE 9

The segmentation results example of ensemble dual-modality approach.
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