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Intensity-Modulated Radiation Therapy requires the manual adjustment to

numerous treatment plan parameters (TPPs) through a trial-and-error process

to deliver precise radiation doses to the target while minimizing exposure

to surrounding healthy tissues. The goal is to achieve a dose distribution

that adheres to a prescribed plan tailored to each patient. Developing an

automated approach to optimize patient-specific prescriptions is valuable in

scenarios where trade-o� selection is uncertain and varies among patients.

This study presents a proof-of-concept artificial intelligence (AI) system based

on an Adaptive Neuro-Fuzzy Inference System (ANFIS) to guide IMRT planning

and achieve optimal, patient-specific prescriptions in aligned with a radiation

oncologist’s treatment objectives. We developed an in-house ANFIS-AI system

utilizing Prescription Dose (PD) constraints to guide the optimization process

toward achievable prescriptions. Mimicking human planning behavior, the AI

system adjusts TPPs, represented as dose-volume constraints, to meet the

prescribed dose goals. This process is informed by a Fuzzy Inference System (FIS)

that incorporates prior knowledge from experienced planners, captured through

“if-then” rules based on routine planning adjustments. The innovative aspect of

our research lies in employing ANFIS’s adaptive network to fine-tune the FIS

components (membership functions and rule strengths), thereby enhancing the

accuracy of the system. Once calibrated, the AI system modifies TPPs for each

patient, progressing through acceptable prescription levels, from restrictive to

clinically allowable. The system evaluates dosimetric parameters and compares

dose distributions, dose-volume histograms, and dosimetric statistics between

the conventional FIS and ANFIS. Results demonstrate that ANFIS consistently

met dosimetric goals, outperforming FIS with a 0.7% improvement in mean dose

conformity for the planning target volume (PTV) and a 28% reduction in mean

dose exposure for organs at risk (OARs) in a C-Shape phantom. In amock prostate

phantom, ANFIS reduced the mean dose by 17.4% for the rectum and by 14.1%

for the bladder. These findings highlight ANFIS’s potential for e�cient, accurate

IMRT planning and its integration into clinical workflows.

KEYWORDS

treatment planning system, fuzzy set theory, fuzzy inference system, Adaptive
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1 Introduction

One of the most important stages in any intensity-modulated

radiation therapy (IMRT) treatment planning process is inverse

optimization (Oelfke and Bortfeld, 2001; Webb, 2019). Developing

a high-quality treatment plan through inverse optimization

requires finding optimal patient-specific Treatment Plan

Parameters (TPPs). These include Weighting Factors (WFs),

prescription doses (PDs), and dose-volume constraints. Effective

plans are achieved when planners use treatment planning systems

(TPS) to adjust and modify TPPs. This process is both repetitive

and time-intensive (Hussein et al., 2018), relying on trial and

error and user expertise (Hong et al., 2008). However, this process

can be suboptimal due to time constraints, leaving potential

room for improvement in the final plan. Therefore, an automated

approach is highly desirable to assist in optimizing patient-specific

TPPs for IMRT plans. Such approach can accommodate the

variability in optimal trade-offs among patients and prevent

the unintentional acceptance of suboptimal plans due to time

constraints. Creating an IMRT plan involves a complex Multi-

Criteria Optimization (MCO) process, as it requires balancing

multiple TPPs (Lahanas et al., 2003; Monz et al., 2008). The

MCO approach enables treatment planners and physicians to

identify the optimal treatment plan for each patient by exploring

and understanding the trade-offs. Although TPS can optimize

the process using predefined TPPs, they cannot identify the

optimal TPPs (Valdes et al., 2017; Feng et al., 2018). Consequently,

identifying the optimal TPPs is a key challenge from the MCO

perspective (Xing et al., 1999).

In a clinical context, achieving an optimal solution in treatment

planning involves more than just minimizing an objective

function based on predefined TPPs. It requires customization

for each unique clinical case. This highlights the importance of

incorporating “human expertise” in treatment planning, which

can significantly reduce the time involved. Such expertise can be

manifested through multiple PD levels, reflecting the physician’s

dosimetric intentions and offering flexibility in scenarios where

achieving the ideal prescription level is unfeasible.While physicians

strive to deliver 100% of the PD to the target and minimize doses

to critical organs, this task is often challenging. Consequently,

it may become necessary for physicians to collaborate closely

with human planners to enhance and refine treatment plans

based on initial results (Wang et al., 2019). Currently, human

planners manually adjust TPPs and explore various PD levels for

MCO. We propose a treatment planning method that employs

a novel Artificial Intelligence (AI) system. This system can

effectively and efficiently support planners and physicians in

the planning process with minimal intervention, aiding in the

identification of TPPs that meet the dosimetric goals while

considering the varying prescription trade-off levels and objectives

for each patient.

Significant progress has been made in recent years in

automated, patient-specific treatment planning, with the aim of

reducing manual intervention while enhancing the quality and

consistency of treatment plans. Several TPS software companies

have developed automation modules designed to replicate the

decision-making processes of human planners during inverse

optimization (Gintz et al., 2016). However, these approaches

often rely on predefined (static) rules and templates, which

may not always yield optimal outcomes for all patients. In

response to these limitations, knowledge-based planning (KBP)

has emerged as a promising approach. KBP leverages historical

planning data in conjunction with patient-specific anatomical

information to predict achievable plan quality for individual

patients (Ge and Wu, 2019). The adoption of KBP for automated,

individualized optimization in modulated radiotherapy has been

demonstrated to improve plan quality while reducing variability

among planners (Fogliata et al., 2017; Scaggion et al., 2018).

A notable application of this approach is the integration

of RapidPlan, a KBP-based tool, into the Eclipse
TM

TPS.

RapidPlan utilizes dose-volume histogram (DVH) predictions

derived from prior treatment plans to establish patient-specific

optimization criteria. Its effectiveness has been validated across

multiple studies (Fogliata et al., 2014; Hussein et al., 2016;

Chang et al., 2016; Foy et al., 2017; Kubo et al., 2017),

demonstrating its capacity to extract quantifiable knowledge from

historical data and provide DVH guidance based on anatomical

geometry analysis. This facilitates the development of optimized

treatment plans, either through human planners or automated

planning algorithms.

An alternative approach to patient-specific treatment

planning is MCO (Craft et al., 2005, 2007), which simultaneously

generates multiple “anchor” plans, each optimized for a distinct

dosimetric objective. A Pareto surface is then created based

on these anchor plans, representing the trade-offs between

competing dosimetric objectives within a multidimensional

space (Hoffmann et al., 2006; Serna et al., 2009). Physicians

can continuously explore the possible treatment options,

allowing them to identify the best possible plans by evaluating

the dosimetric trade-offs represented on the Pareto surface,

with the option to interpolate between anchor plans to refine

the final selection. This MCO strategy has been successfully

integrated into the RayStation TPS, providing valuable support

to human planners in achieving preferred treatment outcomes.

However, despite the advantages of automation programming

interfaces, determining optimal TPPs remains essential in

inverse planning.

Numerous investigations have explored approaches to

determine optimal TPPs. One notable method involves using

statistical analyses to identify relationships between TPPs and

patient anatomy (Lee et al., 2013). Conversely, heuristic strategies

leveraging voxel data from Computed Tomography have been

proposed for TPP refinement (Wu et al., 2003; Yang and Xing,

2004; Yan and Yin, 2008; Wahl et al., 2016). Furthermore,

genetic algorithms have also been employed to calculate WFs

and ascertain the relative importance of multiple objectives

(Wu and Zhu, 2001; Zhang et al., 2006). Remarkably, Deep

Reinforcement Learning based on a virtual treatment planning

framework has been developed, which has successfully identified

TPPs and created plans comparable to those made by human

planners (Shen et al., 2020). Despite these ongoing efforts to

optimize TPPs, several questions remain unanswered. In particular,

determining how to modify an existing plan to achieve desired

dosimetric goals through TPP adjustments remains an open
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challenge. This requires the ability to predict plan changes resulting

from varying TPP values within defined ranges, in order to

accurately estimate the parameter modifications needed to satisfy

dosimetric goals.

Our investigation presents a novel planning technique rooted

in Fuzzy Inference Systems (FIS). Yan et al. incorporated fuzzy

logic principles into the parameter optimization process during

inverse planning (Yin et al., 2010). Within this technique, the

design of the FIS is based on observations of how a human

planner makes decisions during the planning process, relying on

imprecise and non-numerical information. The decisions made

by a human planner are translated into linguistic expressions,

encapsulating their expertise in balancing trade-offs to find optimal

TPPs. Initially, the authors employed FIS to determine an optimal

prescription for the normal tissue in inverse treatment (Li and

Yin, 2000). Subsequently, the researchers utilized a FIS to find

the optimal TPPs for inverse planning, offering an alternative to

traditional procedures overseen by human planners (Yan et al.,

2003b,a). This FIS methodology was later incorporated into a

clinical TPS (Yan et al., 2007). Upon evaluation of multiple clinical

cases using this system, it was observed that the AI-driven dose

plans based on FIS either matched or surpassed the quality of plans

created by human planners usually.

While the outcomes from FIS applications were encouraging

at the time, its clinical integration has been hindered by a

lack of computational power and adaptability. The efficacy and

precision of FIS rely on its core components: the membership

functions (MFs) (i.e., fuzzy sets) and the rules (i.e., fuzzy rules).

Unfortunately, these components are static and do not adjust well

to new varying circumstances. Recent advancements in neural

network (NN) research, coupled with significant improvements in

computational capabilities, can overcome these existing obstacles.

This breakthrough could elevate FIS to a central role in enhancing

the optimization process for IMRT, supporting human planners in

their decision-making processes.

The Adaptive Neuro-Fuzzy Inference System (ANFIS) has

emerged as a promising method to address the limitations of

FIS (Kar et al., 2014). ANFIS is a hybrid system that combines

the principles of NN and FIS, offering a more dynamic and

efficient methodology. At its core, ANFIS enhances FIS by

incorporating a learning algorithm from NN theory. This enables

ANFIS to fine-tune parameters, including fuzzy sets and fuzzy

rules, using data samples. Compared to FIS, ANFIS demonstrates

superior adaptability, flexibility, and efficacy in handling non-linear

scenarios, resulting in more accurate outcomes.

Within the conventional IMRT planning framework, planners

routinely assess plans generated by the optimization engine,

iteratively fine-tuning TPPs to achieve an optimal plan. This

study introduces a novel AI-driven methodology proof of concept,

aiming to reduce the need for human intervention during the

iterative IMRT planning phase. To realize this objective, we

have merged an advanced FIS with ANFIS, culminating in

the creation of an ANFIS Guided Inverse Planning (ANFIS-

GIP) system. This system autonomously discerns necessary

adjustments to TPPs, enhancing plan quality, thereby minimizing

the dependence on manual input by human planners throughout

the planning procedure.

2 Materials and methods

2.1 The ANFIS-GIP algorithm

ANFIS, is a type of artificial NN that is built upon the

principles of FIS. This method was initially developed in the early

1990s (Jang, 1993). It enables a FIS to be represented as a NN,

combining the structures and parameters of FIS with data-driven

learning techniques algorithms found in NNs. The accuracy and

computational complexity of the FIS model depend on the number

and shape of the MFs, as well as on the number of rules and how

they are evaluated. Initially, human experts construct a set of fuzzy

IF-THEN rules, MFs and fuzzy logic operators based on their

knowledge to emulate a precise problem-solving methodology.

Subsequently, ANFIS refines the shapes of MFs and the evaluation

of rules using sample data. The aim is to minimize the FIS’s output

error and boost accuracy. As a result, the FIS gains the ability

to approximate nonlinear functions, providing it with a learning

capability (Abraham, 2005).

We divided the AI algorithm into two sections, as illustrated in

Figure 1. The first section comprises the ANFIS training algorithm,

designed to effectively select the optimal parameters for FIS’s MFs

and how the rules are evaluated (rule strengths). The learning

process is achieved by analyzing the correlation between input and

output variables, as inferred from training datasets. After the system

is trained and the optimal parameters for FIS are identified, the

second section, named as ANFIS-GIP, concentrates on tailoring

the dose distribution within the boundaries of clinical dosimetric

goals. This process is achieved by adjusting the TPPs and probing

patient-specific multiple prescription levels. The primary aim is

to minimize the TPS objective function, which quantifies how

effectively a treatment plan addresses its competing objectives.

2.1.1 ANFIS training and architecture
For the ANFIS training algorithm, we generated the training

dataset by recording the behavior of human planners during

various treatment planning processes. Initially, the physician

provides a set of PD levels for various structures. The human

planner begins by modifying the TPPs based on these PD levels,

starting with the most challenging level to achieve and then

progressing to the easiest ones. These PD levels are then translated

into intended dose points on a specific DVH. Subsequently, the

TPS calculates a dose distribution (DD) based on the PD levels

for various structures. The human planner further refines the

prescriptions by adjusting the DVH dose points and WFs in the

objective function for the planning target volume (PTV), organs

at risk (OARs), and normal tissues (NTs). The TPS adapts in

real time to these modifications, while the planner evaluates how

well the new DVH aligns with their expected goals. The planner

modifies the TPPs until the dosimetric goals are achieved. If the

dosimetric goals are not met after modifying the TPPs, the planner

repeats the process with the next PD level, continuously adjusting

parameters until the desired dosimetric goals are achieved. With

each modification, key data including the current DVH(t), PD(t),

and WF(t) for each structure are saved. The DVH is recorded in

intervals of 10% volume increments and stored in a database.
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FIGURE 1

Complete workflow overview. The upper section illustrates the ANFIS training process algorithm, while the lower section details the algorithm for

ANFIS-guided inverse planning.

Following this, the input and output training sample datasets

are calculated from the existing database. The input training data

is defined as the difference between the prescribed dose, denoted as

PD(t), and the computed dose, denoted as DVH(t). This difference

represents how far the actual dose deviates from the physician’s

intended dose and is symbolized as 1D(t).

1D(t) =
DVH(t)− PD(t)

PD(t)
(1)

The training output is calculated as the relative difference

between the PDs and the relative difference of the WFs for

two subsequent adjustments, denoted by 1PD(t) and 1WF(t).

These differences represent how the TPPs change over two

consecutive steps.

1PD(t) =
PD(t + 1)− PD(t)

PD(t)
(2)

1WF(t) =
WF(t + 1)−WF(t)

WF(t)
(3)

The resulting dataset comprises nine primary vectors. Of these,

three are assigned for input parameters (1DPTV, 1DOAR, and

1DNT), and six are allocated for output variables (1PDPTV,

1PDOAR, 1PDNT, 1WFPTV, 1WFOAR, and 1WFNT). Based on

these defined inputs and outputs, the optimal shapes of MFs and

the evaluation of the fuzzy rules are determined using the ANFIS
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training algorithm. The goal is to generate a FIS with optimal

parameters that can predict how much the TPPs need to change

in order to minimize the difference between the actual dose and the

dose intended by the physician.

After generating the training data, we developed an in-house

ANFIS using PyTorch, a deep learning framework based on

Torch, implemented in Python (Paszke et al., 2019). To compare

the effectiveness of ANFIS with that of FIS, we similarly developed

an FIS using Python’s SciPy (Virtanen et al., 2020) and SciKit-

Fuzzy libraries. The foundation for both the ANFIS and FIS,

including the rules, initial MF shapes, fuzzy logic operators, and

rule strengths, was adapted from US Patent 7804935B2 (Yin et al.,

2010). We then took the FIS from the patent and represented it as

an ANFIS, following the architecture proposed in the foundational

ANFIS paper (Jang, 1993). The result of representing the FIS in the

ANFIS architecture is as follows:

The proposed ANFIS architecture encompasses five distinct

layers: (i) the Input MF layer, (ii) the Rule Layer, (iii) the

Normalization Layer, (iv) the Defuzzification Layer, and (v) the

Total Output Layer. It is important to note that within this

architectural framework, only the first and fourth layers contain

parameters that are trainable, which can be adapted using the

provided input and output training data. The variables in Layer

1 are identified as premise parameters, whereas those in Layer 4

are designated as consequence parameters. Conversely, Layers 2, 3,

and 5 are characterized by their non-trainable, fixed parameters.

This training mechanism is aimed at reducing the discrepancy

between the expected and the actual outputs during the training

phase (Karaboga and Kaya, 2019).

i) Fuzzy layer: this layer is responsible for converting

input values, specifically 1DPTV, 1DOAR, and 1DNT,

into fuzzy values. It accomplishes this by employing a

MF that assigns these values to corresponding fuzzy sets:

{PTVhigh, PTVlow, OARhigh, OARlow, NThigh, NTlow}, according

to the eight specific rules R. The linguistic variables “high” and

“low” are defined by corresponding MFs, denoted as µPTVi , µOARi ,

µNTi . In this context, the linguistic variables represent the degree

to which the calculated dose is high or low with respect to the

intended PD level. Each node within this layer is adaptive and

generates the output O1
i

O1
i =















































µPTVi (1DPTV) with i = low for {R1,R2,R3,R4}

or i = high for {R5,R6,R7,R8}

µOARi (1DOAR) with i = low for {R1,R2,R5,R6}

or i = high for {R3,R4,R7,R8}

µNTi (1DNT) with i = low for {R1,R3,R7}

or i = high for {R2,R4,R5,R6,R8}

(4)

The output from each node reflects the membership degree

within a specified linguistic category. The shape of the MF, which

defines the linguistic label, is adjustable through node-specific

parameters. These parameters are represented by the set {ai, bi}.

A sigmoidal shape is adopted for the MFs. As an illustration, the

functional representation for the node associated with PTVs is

delineated as follows:

O1
i = µPTVi (1DPTV) =

1

1+ e−ai(1DPTV−bi)
for i = R1, . . . ,R8

(5)

ii) Rule layer: this layer consists of fixed nodes, each

representing the firing strength, indicated as wi, associated with a

specific fuzzy rule. Firing strength refers to the measurement of a

rule’s premise strength based on a given set of input values. It is

calculated using fuzzy set operations to assess the activation level

of the rule within a system. Nodes in this layer are responsible for

calculating the firing strengths using the input values received from

the preceding layer. The computation of firing strengths is carried

out by

O2
i = wi = µPTVi (1DPTV) × µNTi (1DNT) × µOARi (1DOAR)

for i = R1, . . . ,R8 (6)

iii) Normalization layer: this layer consists of stationary nodes.

Its primary function is to calculate the normalized firing strengths

corresponding to each rule. This is achieved by determining the

ratio of the firing strength of the ith rule to the sum of the firing

strengths across all rules.

wi =
wi

∑8
i=1 wi

(7)

iv)Defuzzification Layer: Each node within this layer is adaptive

and receives two types of inputs: normalized firing strengths and

the specific inputs 1DPTV, 1DNT, and 1DOAR. The primary

function of this layer is to produce weighted values for each rule’s

node, which are calculated by

wifi = wi ·
(

ci,0 + ci,11DPTV + ci,21DNT + ci,31DOAR

)

for i = R1, . . . ,R8 (8)

where ci,, are the actual consequence parameters.

v) Total output layer: constituting a single, stationary node, this

layer yields the ultimate output of the ANFIS. The process involves

the summation of the outputs from each rule as obtained in the

defuzzification layer.

f =

8
∑

i=1

wifi (9)

For each parameter to modify, the ANFIS needs to determine

12 premise parameters in the Fuzzy Layer, which dictate the

shape of the input MFs. Additionally, it identifies four consequent

parameters specific to the Defuzzification Layer. Figure 2 depicts

the ANFIS NN used for determining the optimal parameters

of the FIS. It is important to note that each of the six TPPs

undergoing adjustments in the optimization process is regulated by

an individual ANFIS network.

Due to the architecture of ANFIS, we chose to implement

it using the PyTorch framework, which provides access to a

wide array of optimizers, including the Recursive Least Squares

(RLS) method, the Steepest Descent Method (SDM), and Back

Propagation. These optimizers facilitate the optimization of

both the premise and consequent parameters within the model.
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FIGURE 2

ANFIS-GIP network structure. (Left) Overall structure of the ANFIS-GIP. Each of the six TPPs possesses its own ANFIS network. (Right) Detailed

structure of an ANFIS network that modifies the 1PDPTV.

Additionally, the framework allows for the integration of other key

features, such as experimentation withmini-batches, algorithms for

optimizing learning rates, and a variety of loss functions. Since our

output is a continuous variable, we use Mean Squared Error (MSE)

as the loss function.

2.1.2 ANFIS guided inverse planning
Upon successful training of the ANFIS, the next phase involves

determining the optimal TPPs using the ANFIS-GIP algorithm.

The workflow of the ANFIS-GIP algorithm is depicted in Figure 1.

First, the PD level are set to the most challenging level defined by

the physician, and theWFs for each structure are initialized to their

default values. Following this, IMRT optimization is performed

using the initial TPPs values. The IMRT optimizations were

conducted with the VARIAN R© Eclipse
TM

TPS version 16.1.0, which

integrates the Anisotropic Analytical Algorithm (AAA) 16.1.0.

Tools such as DVH Estimation 16.1.0 and Photon Optimizer 16.1.0

were also used in this process. To facilitate communication between

the ANFIS and FIS systems and the TPS, the Python Interface

to Eclipse Scripting API (PyESAPI) was implemented, allowing

dynamic interaction with the dose computation and optimization

features of VARIAN R© Eclipse
TM

.

The TPS optimization algorithm utilizes a quadratic cost

objective function. This quadratic function comprises two primary

TPPs that require fine-tuning to achieve the desired dose

distribution (DD): the dose specifications (DS) and the WFs.

The DS, typically set as dosimetric endpoints such as minimum

and maximum dose values (dmin, dmax), represent the intended

dosage for each structure. Meanwhile, the WFs act as penalties

for either underdosing or overdosing the structures. The ideal

DD is determined by minimizing the objective function, which is

structured as follows:

F =

�PTV
∑

i=1

WFmin
PTV ·

[

dmin
PTV − di

]2

+

+
∑

x∈{PTV,OAR,NT}

�x
∑

i=1

WFmax
x ·

[

di − dmax
x

]2

+
(10)

where di represents the calculated dose for each voxel i, while

�PTV, �OAR, and �NT denote the total number of voxels in

the PTV, OAR, and NT, respectively. The term WFmin
PTV denotes

the penalty attributed to the underdosage of the PTV, and dmin
PTV

specifies the minimum dose (i.e., the lower objective) for the PTV.

Finally,[·]+ is the positive operator which is defined as

[x]+ = xH(x) =

{

x x ≥ 0

0 else
(11)

In this context, the lower objective involves applying the

objective function to those doses that fall short of the desired

dose value, thus defining the required dose levels in target

structures. Additionally, WFmax
x , represents the penalties associated

with overdosing the structures. The parameter dmax
x designates

the maximum permissible dose or the upper objective for these

structures. The upper objective, dmax
x , aims to cap the dose in any

given structure, with the quadratic cost function being applied to

doses exceeding the established dose value.

After performing the IMRT optimization, a convergence dose

criterion is evaluated as follows:

√

[ DPTV(n+1)−DPTV(n)]
2+[DOAR(n+1)−DOAR(n)]

2+[DNT(n+1)−DNT(n)]
2

√

DPTV(n)
2+DOAR(n)

2+DNT(n)
2

< T (12)

Where T is a convergence constant, set at 0.01. This

convergence criterion evaluates whether the change in mean doses

between two consecutive TPP modifications reaches a plateau.

ANFIS will continue to modify the TPPs until the convergence

criterion is met. Once the convergence criterion is satisfied, the next

step is to evaluate whether the dosimetric goals for the PD level

are achieved. If the PD level is satisfied, the ANFIS-GIP algorithm

terminates. Otherwise, the algorithm will take the next available

PD level and restart the process of modifying the TPPs using

ANFIS. The adjustment of TPPs in each iteration i is obtained as

follows:
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TABLE 1 Multiple dose prescriptions levels.

PTV OAR NT

Level 1 100 20 30

Level 2 100 20 40

Level 3 100 30 40

Level 4 100 30 50

Level 5 100 40 50

The levels are represented as percentage of the Target dose prescription level.

TPPi+1 = TPPi · [1+ 1TPP],

TPP ∈ {WFPTV,WFOAR,WFNT, PDPTV, PDOAR, PDNT} (13)

In a clinical setting, achieving an optimal solution does

not rely solely on minimizing the objective function modifying

the TPPs; it also needs to be tailored to the specifics of each

individual clinical case. This highlights why, in addition to

identifying the optimal TPPs that minimize the objective function,

incorporating “human expertise” can significantly reduce the

time spent on treatment planning. Such human expertise can be

conceptualized not only through the creation of the rules for the

ANFIS and how these rules are evaluated, but also through the

availability of patient-specific multiple dose prescription levels.

These levels reflect varying physician intentions and provide

flexibility in scenarios where achieving the desired prescription

level proves unattainable. Table 1 illustrates how dose prescriptions

can facilitate progress toward realistic AI-guided inverse planning

optimization.

2.2 Experiment design

We investigated the general learning patterns of ANFIS by

conducting a simulation using non-clinical TG-119 C-Shape and

mock prostate test phantoms (Ezzell et al., 2009; AAPM HQ

Community Collection, 2023). To enhance our dataset and increase

its diversity, we employed a routine to modified the phantom’s CT

structures using MONAI+ software (Consortium, 2024). Using the

original phantoms’ DICOM files, we introduced modifications to

the positions and shapes of both the OAR and the PTV, resulting

in a series of 150 new phantoms. By incorporating these modified

phantoms, our objective was to enrich the dataset and have enough

data for training and testing.

Figure 3 shows an example of the CT structure modifications.

Figure 3A shows the original phantom structures: the red structure

represents the Target-a symmetrical, curved, dome-like shape

enclosing the blue circular structure that represents the spinal cord.

In Figure 3B, the red Target structure remains unchanged, and the

spinal cord has been moved closer to the Target. In Figure 3C,

the red Target structure has been expanded in height and width,

and the spinal cord has been moved farther away. Finally, in

Figure 3D, the red Target structure has been stretched vertically,

creating a taller and narrower dome shape. This modification

increases the height significantly compared to the original phantom

while narrowing the lateral width. The spinal cord remains in the

same position.

To establish the dataset, an experienced human planner

meticulously crafted radiotherapy plans using modified phantoms,

modifying the TPPs and proving the different PD levels. Then

the input and output training data was calculated using the

Equations 1, 2. Subsequently, the collected data samples were

divided into two subsets: data generated by 60% of the phantoms

formed the training set, with the remaining 40% allocated for

validation. For the optimization process during model training, the

Adaptive Moment Optimizer (Adam) algorithm was utilized, with

an initial learning rate established at 0.01. This learning rate was

subsequently adjusted downward in instances where no progress

in reducing the training loss was observed. The Mean Squared

Error (MSE) served as the loss function, augmented by an L2

regularization term (β = 0.015) applied to the weights of the model.

The training regimen was initially set to process batches of 128

samples across a maximum of 500 epochs. However, due to the

constrained size of the datasets used for calibration and cross-

validation, the batch size was later modified to 16. To mitigate the

risk of overfitting, an “EarlyStopping” criterion was implemented,

halting training if no improvement in the loss was detected over

a span of 20 epochs. The implementation of the models was

carried out using Python version 3.8.13 and PyTorch version

1.10.1.

2.2.1 Treatment plan evaluation
To evaluate a dosimetric comparison between the FIS and

ANFIS-GIP systems, treatment plans were generated for 10% of the

modified TG-119 C-Shape and mock prostate phantoms. Statistical

comparisons of the results were performed using an unpaired two-

sample t-test used where p < 0.05 indicates significance in the

difference of the mean values. Plan quality was evaluated based on

the original guidelines of AAPM Task Group 119 for the C-Shape

phantom, while dosimetric goals based on the NRG Oncology

RTOG0126 protocol were followed for themock prostate phantom,

as follows:

C-Shape Phantom

• PTV50.0 Gy ≥ 95%; PTV55.0 Gy ≤ 10%

• OAR25.0 Gy ≤ 5%

Prostate Phantom

• PTV75.6 Gy ≥ 98%; PTV Dmax ≤ 5%

• Rectum75.0 Gy ≤ 15%; Rectum70.0 Gy ≤ 25%; Rectum65.0 Gy ≤

25%; Rectum60.0 Gy ≤ 50%

• Bladder80.0 Gy ≤ 15%; Bladder75.0 Gy ≤ 25%; Bladder70.0 Gy ≤

35%; Bladder65.0 Gy ≤ 50%

To further compare the performance of ANFIS and FIS, we

present the results for one plan generated using both systems. We

used the original phantoms and obtained the final results for each

PD level. The dose distribution, DVH, and dosimetric statistics are

shown to illustrate these comparisons.

The FIS and ANFIS-GIP systems were evaluated using five

distinct sets of dose prescriptions, delineated as [PTV, OAR, NT]:
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FIGURE 3

Examples of CT structure modifications in a phantom model. (A) The original C-shaped Target (red) symmetrically encloses the circular spinal cord

(blue). (B) The spinal cord is shifted closer to the unchanged Target. (C) The Target is expanded in height and width, while the spinal cord is moved

farther away. (D) The Target is stretched vertically, yielding a taller and narrower C-shape, with the spinal cord remaining in its original position.

[100%, 20%, 10%], [100%, 25%, 10%], [100%, 30%, 10%], [100%,

35%, 10], and [100%, 35%, 15%] for the C-Shape, and [100%, 40%,

10%] for the Mock Prostate. These levels are represented as relative

doses with respect to the PTV PD. The statistics evaluated include

mean dose, standard deviation, and dose values covering 95% (D95)

and 10% (D10) of all structures.

Percentage to Goal was also used to evaluate both

systems. It is calculated as the percentage deviation of the

achieved mean dose from the target dosimetric goal, expressed

mathematically as:

Percentage to Goal (%)

=
Achieved Mean Dose− Dosimetric Goal

Dosimetric Goal
× 100 (14)

where the Achieved Mean Dose is the mean dose delivered to

the structure (e.g., PTV, OAR, NT) during the treatment, and the

Dosimetric Goal is the predefined target dose for that structure.

Positive values (+%) indicate that the mean dose exceeds the goal,

while negative values (-%) indicate that the mean dose is below

the goal.

For the beam arrangement, the C-Shape phantom was

evaluated using nine treatment beams, each delivering 6 MV

photon beams. These beams were symmetrically distributed in

a coplanar, 360-degree circumferential arrangement, positioned

at 40-degree intervals from the vertical axis. This configuration

is commonly used in spinal radiosurgery with IMRT. For the

prostate mock phantom, a 6 MV, 7-field arrangement was applied,

with beams spaced at 50-degree intervals from the vertical axis,

following the RTOG 0126 protocol.

3 Results

Figure 4 and Table 2 present the dosimetric results comparing

FIS and ANFIS plans for 15 modified C-Shape phantoms. The box

plots in Figure 4 display a comparison between the two systems

for the three dosimetric goals, while the numerical summaries

of these metrics are provided in Table 2. We observe that the

only dosimetric goal achieved by both systems in all 15 plans

was the PTV 50Gy ≥ 95%. For this goal, FIS achieves a median

coverage of 97.4%, with a mean of 97.6± 1.2% and an interquartile

range (IQR) from ∼96.6 to 98.6%, extending from 95 to close

to 100%. ANFIS shows superior performance, achieving a tighter

distribution with a median of 99.2%, a mean of 99.3 ± 0.3%, and

an IQR between∼99.0% and 99.6%, suggesting greater consistency

and reliability in reaching the target coverage compared to FIS. For

PTV V55 Gy ≤ 10%, FIS has a median of 4.5%, a mean of 4.7

± 3.8%, and shows high variability, extending up to 15%. ANFIS,

however, achieves a much lower median of 0.1%, a mean of 1.3

± 2.1%, and reduced variability, indicating greater effectiveness

in meeting this constraint. Lastly, for OAR V25 Gy ≤ 5%, FIS

yields a median of 4.0% and a mean of 4.2 ± 1.9%, with a

broad range extending up to nearly 10%. In contrast, ANFIS

demonstrates a lower median of 0.9%, a mean of 1.7 ± 1.7%, and

significantly reduced variability, suggesting a better capability to

minimize OAR exposure. The low p-values across all parameters

indicate that the improvements observed with ANFIS over FIS

are statistically significant on the difference of the mean doses,

underscoring ANFIS’s superior performance in meeting dosimetric

goals.

Overall, these box plots and corresponding numerical values

highlight that ANFIS outperforms FIS in meeting dosimetric goals

for he C-Shape phantom, with greater consistency and reduced

variability. ANFIS demonstrates a clear advantage in achieving

target volume coverage while better adhering to dose constraints

for both PTV and OAR, supporting its potential as a more robust

approach for treatment planning.

Figure 5 presents a set of box plots comparing FIS and ANFIS

plans across 10 dosimetric parameters for 15 modified mock

prostate phantoms, with numerical summaries provided in Table 3.

Each box plot illustrates the distribution of the percentage volume

for the PTV and OAR constraints, focusing on compliance with

clinical dosimetric goals.

For the PTV goals, ANFIS is able to fulfill all of them, while

FIS meets them in only some plans. For the PTV V100.0% ≥

98.0% goal, ANFIS demonstrates a narrower distribution with a

mean of 98.9 ± 0.4% and a median of 99.0%, while FIS achieves

a mean of 98.0 ± 2.2% and a median of 98.3%. Only ANFIS

was able to meet this goal across all plans, demonstrating greater

consistency. For the PTV Dmax ≤ 107.0% clinical goal, ANFIS

outperforms FIS in maintaining this constraint, achieving a mean

of 106.1 ± 0.8% and a median of 106.4%, whereas FIS has a mean

of 109.0± 3.7% and a median of 108.4%, neither of which fulfill the
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FIGURE 4

Box plot comparison of dosimetrical results for 10% of the augmented C-Shape phantoms.

TABLE 2 Numerical dosimetric results for 10% of the modified C-Shape phantoms, reported in the format: mean ± standard deviation (median).

C-Shape phantom

Structure Parameters FIS ANFIS p

PTV V 50Gy ≥ 95% 97.6± 1.2 (97.4) 99.3± 0.3 (99.2) 0.007

V 55Gy ≤ 10% 4.7± 3.8 (4.5) 1.3± 2.1 (0.1) 0.000

OAR V 25Gy ≤ 5% 4.2± 1.9 (4.0) 1.7± 1.7 (0.9) 0.001

goal, indicating greater variability and more frequent exceedances

with FIS.

For the rectum goals, ANFIS is able to fulfill all four goals,

whereas FIS, despite showing close results, only meets the easiest

of these goals. For the rectum V75 Gy ≤ 15% goal, ANFIS

demonstrates superior control with a mean of 14.4 ± 0.6% and a

median of 14.6%, while FIS has amean of 15.7± 4.6% and amedian

of 14.8%, displaying more variability and occasional constraint

violations. For the V70 Gy ≤ 25% goal, ANFIS maintains this limit

with a mean of 20.8 ± 1.4% and a median of 21.2%, while FIS

has a mean of 19.9 ± 4.9% and a median of 19.0%, not fulfilling

this goal across all 15 plans and showing higher variability in FIS

results. For V65 Gy ≤ 35%, ANFIS consistently remains below this

limit with a mean of 29.6 ± 3.2% and a median of 30.9%, while

FIS has a mean of 20.0 ± 5.8% and a median of 22.1%, exhibiting

increased variation. For the V60 Gy ≤ 50% goal, ANFIS achieves

better compliance with the 50% volume constraint, with a mean of

38.5 ± 5.4% and a median of 40.2%, whereas FIS has a mean of

28.4 ± 7.8% and a median of 25.0%, indicating a larger spread in

FIS values.

For the bladder goals, all four were achieved by both ANFIS

and FIS. Nevertheless, ANFIS shows less variability, indicating a

narrower range than FIS results. In general, the p-values indicate

that ANFIS achieves statistically significant improvements on the

differences of the mean dose value over FIS in several dosimetric

constraints, particularly in controlling the maximum PTV dose

and specific dose limits for the rectum and bladder. Overall, the

dosimetric results indicate that ANFIS generally outperforms FIS

in adhering to clinical dosimetric constraints, with lower variability

and tighter control over both PTV and OAR metrics.

The next step in evaluating the performance of ANFIS vs.

FIS was to compare an IMRT plan performed on the original

phantoms, focusing on dose distribution (DD) and dosimetric

statistics derived from their DVHs. Figure 6 presents a detailed

comparison between FIS and ANFIS dose distributions for the C-

Shape phantom across five PD levels, along with the corresponding

DVH. Each row in the figure represents one dose prescription level,

labeled from Level 1 to Level 5, and displays the best result achieved

by each system at that particular level. The first two columns

show the dose distributions for FIS (left) and ANFIS (center),

with contour lines indicating relative dose levels as percentages of

the PTV PD. The PD levels are specified at the top of each dose

distribution plot in the format [100%, X%, Y%]. Additionally, the

third column in each row presents the DVH comparisons for FIS

and ANFIS, facilitating a comparison of how effectively each system

meets the dosimetric goals for PTV coverage and OAR sparing

across the different prescription levels.

Figure 6 shows differences in dose distribution patterns and

dose coverage achieved by FIS and ANFIS, highlighting the

potential of ANFIS to improve conformity to prescribed dosimetric

goals across different dose levels. The dose distributions (DD)

for Level 1 are very similar between the two systems, as

observed in their respective DVHs. However, the DVHs suggest

an improvement in OAR dose sparing with ANFIS. For Levels 2

through 5, there is a noticeable improvement in DD conformity

to the PTV with ANFIS. The corresponding DVHs further suggest

enhanced OAR dose sparing, especially at Levels 3 and 4.

Table 4 provides a comparison of dosimetric statistics for FIS

and ANFIS across five different dose prescription levels for the C-

Shape phantom. The best result achieved by each system at each

prescription level is presented.

For the PTV, ANFIS demonstrates slightly tighter control

over dose delivery across all levels, with mean doses closer to

the prescription (100%) and generally lower standard deviations
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FIGURE 5

Box plot comparison of dosimetric results for mock prostate phantoms. The horizontal blue line represents the dosimetric goal.

TABLE 3 Numerical dosimetric results for 10% of the modified mock Prostate phantoms are reported in the format: mean ± standard deviation (median).

Mock prostate phantom

Structure Parameters FIS ANFIS p

PTV
V 100% ≥ 98.0% 98.0± 2.2 (98.3) 98.9± 0.4 (99.0) 0.165

Dmax ≤ 107.0% 109.0± 3.7 (108.4) 106.1± 0.8 (106.4) 0.010

Rectum

V 75Gy ≤ 15% 15.7± 4.6 (14.8) 14.4± 0.6 (14.6) 0.293

V 70Gy ≤ 25% 19.9± 4.9 (19.0) 20.8± 1.4 (21.2) 0.523

V 65Gy ≤ 35% 24.0± 5.8 (22.1) 29.6± 3.2 (30.9) 0.004

V 60Gy ≤ 50% 28.3± 7.8 (25.0) 38.5± 5.4 (40.2) 0.000

Bladder

V 80Gy ≤ 15% 4.2± 4.7 (2.2) 7.0± 3.0 (7.1) 0.077

V 75Gy ≤ 25% 7.8± 5.3 (4.7) 11.4± 3.6 (12.3) 0.045

V 70Gy ≤ 35% 10.1± 6.3 (6.4) 14.5± 4.2 (15.8) 0.038

V 65Gy ≤ 50% 12.7± 7.85 (8.3) 18.4± 5.1 (19.9) 0.030

compared to FIS. For example, at Level 5 [100, 35, 15], ANFIS

achieves a mean of 100.0% with a standard deviation of 1.0%,

while FIS shows a mean of 100.2% with a standard deviation of

1.8%. Additionally, ANFIS generally achieves higher D95 values,

indicating more consistent target coverage. Notably, the median

dose for the PTV aligns with the prescribed dose (PD) at all levels.

For the OAR, the results highlight ANFIS’s superior sparing

capabilities, as evidenced by lower mean doses and standard
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FIGURE 6

DD comparison between FIS and ANFIS for the C-Shape phantom, and DVH comparison across five dose prescription levels. Each row represents a

specific PD level. In the DVH plots, dashed lines represent FIS, and solid lines represent ANFIS.
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TABLE 4 Dose statistics comparing FIS and ANFIS for C-Shape phantom.

Level

FIS—calculated dose (%)

PTV OAR NT

Mean STD D95 D10 Mean STD D10 Mean STD

1 [100, 20, 10] 101.1 3.3 95.5 104.6 23.3 3.9 29.0 10.0 18.9

2 [100, 25, 10] 101.1 3.4 95.3 104.7 35.3 12.4 26.4 10.0 18.9

3 [100, 30, 10] 100.6 2.3 96.2 103.1 40.6 13.7 32.8 10.2 18.8

4 [100, 35, 10] 100.3 2.0 96.3 102.4 36.7 13.4 57.8 10.4 18.7

5 [100, 35, 15] 100.2 1.8 96.6 102.1 32.2 8.7 44.4 10.5 18.7

Level ANFIS—calculated dose (%)

PTV OAR NT

Mean STD D95 D10 Mean STD D10 Mean STD

1 [100, 20, 10] 100.0 2.6 96.1 103.4 21.1 4.1 26.6 9.2 18.5

2 [100, 25, 10] 100.0 1.6 96.8 101.7 20.9 4.0 53.1 10.6 18.7

3 [100, 30, 10] 100.0 1.4 97.2 101.5 24.7 6.0 59.9 10.7 18.7

4 [100, 35, 10] 100.0 0.8 98.7 100.9 29.3 7.9 40.2 10.0 20.4

5 [100, 35, 15] 100.0 1.0 98.4 101.3 31.8 10.3 48.2 10.0 19.9

The table shows the best results obtained at each PD level.

deviations across most levels. For instance, at Level 3 [100%, 30%,

10%], ANFIS achieves a mean dose of 24.7% with a standard

deviation of 6.0%, compared to FIS’s mean of 40.6% and a standard

deviation of 13.7%. ANFIS also shows lower D10 values, reflecting

improved control over high-dose regions in the OAR.

For the NT, both FIS and ANFIS show relatively consistent dose

control, though ANFIS exhibits slightly lower standard deviations

at certain levels. For example, at Level 4 [100, 35, 10], ANFIS

achieves a mean NT dose of 10.0% with a standard deviation of

20.4%, while FIS shows a mean of 10.4% and a standard deviation

of 18.7%.

Overall, Table 4 suggests that ANFIS generally outperforms

FIS in achieving target dose conformity for the PTV, minimizing

dose exposure to the OAR, and maintaining stable dose control

for NT across different prescription levels. These results indicate

that ANFIS offers improved consistency and control in adhering to

dosimetric constraints. Notably, the ANFIS-GIP was able to fulfill

the PD requirements for all structures at Level 4, meaning that the

mean dose for each structure was less than or equal to the specified

PD level. In contrast, FIS was unable to fulfill the PD requirements

at any level.

Figure 7 presents the complete dose distribution (DD) for the

Prostate phantom along with a zoomed-in view of the isodose

lines obtained with FIS and ANFIS for each PD level. Meanwhile,

Figure 8 shows the corresponding DVHs, and Table 5 provides the

dose statistics.

The DD plots illustrate that ANFIS generally achieves a very

similar DD within the PTV. The DVH for the PTV suggests

that both FIS and ANFIS achieve comparable PTV coverage, with

ANFIS demonstrating slightly tighter control in dose conformity,

as evidenced by the steeper curves for the PTV. Based on the

dose statistics, ANFIS maintains a mean dose close to 100% across

all levels, with generally lower standard deviations compared to

FIS. The D95 values for ANFIS are consistently higher than those

for FIS, indicating improved target coverage. For FIS, the mean

dose for the PTV is consistently 100% across all levels, with

standard deviations ranging from 1.7 to 4.6. However, D95 values

decrease from 97.8% at Level 1 to 93.0% at Level 4, indicating

some variability in maintaining dose coverage at higher levels. In

contrast, ANFIS maintains a mean dose of 100% for the PTV

across all levels, with slightly better consistency in D95 values,

ranging from 97.6 to 91.3%. While the standard deviation remains

comparable to that of FIS, ANFIS shows tighter control over

dose coverage.

Regarding OAR sparing (rectum and bladder), the DVHs

indicate that ANFIS consistently provides better sparing for both

organs, particularly at Levels 3 and 4, where ANFIS shows reduced

dose exposure in the high-dose regions of the OARs compared

to FIS. This suggests that ANFIS offers improved control in

minimizing unnecessary dose to critical structures, as further

illustrated in the dose distributionmaps, especially in the lower part

of the prostate and the upper region of the bladder.

For the rectum, the mean dose under FIS generally increases

with prescription level, reaching a maximum of 38.8% at Level

5, with D30 and D10 values varying across levels, showing

higher doses at lower prescription levels. In contrast, ANFIS

consistently achieves lower mean doses to the rectum than FIS,

especially at Levels 2 and 3, with mean doses dropping as low as

29.7%. Additionally, ANFIS shows reduced D30 and D10 values,

particularly at Levels 3 and 4, indicating enhanced rectum sparing.

Similarly, for the bladder, FIS shows mean doses remaining

around 38%–39% across levels, with D30 and D10 values

fluctuating and reaching as high as 79.6% at Level 1. ANFIS,

however, achieves lower mean doses to the bladder at each level,
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FIGURE 7

Dose distribution (DD) comparison between FIS (Column1) and ANFIS (Column2) for the mock prostate phantom across five dose prescription levels.

Each row corresponds to a specific PD. The two columns show (1) the total dose distribution for the central slice and (2) a zoomed-in view of the

same slice, illustrating the isodose curves around the relevant structures.
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FIGURE 8

DVH comparison of FIS and ANFIS across the five prescription dose levels for the mock prostate phantom.

with a mean dose as low as 28.3% at Level 3. The D30 and

D10 values for ANFIS are consistently lower than those for FIS,

demonstrating improved bladder dose sparing.

For the NT both FIS and ANFIS produced similar results.

It is important to note that ANFIS is able to fulfill the PD levels

from Level 3 through Level 5, meaning that the mean doses to the

structures are lower than the prescribed PD level. In contrast, FIS

was only able to achieve the PD requirement at the easiest level.

In Table 5, for each prescription level, the mean dose for one OAR

is consistently lower when using the ANFIS system compared to

FIS, indicating that a reduced mean dose is achieved with ANFIS.

However, for NT (i.e., the entire phantom body), the mean dose

in Levels 2 and 3 is slightly lower with FIS. This result is not

unexpected, given that the phantom body represents the largest

structure, and its mean dose is averaged across the full volume of

CT voxels. In contrast, smaller structures, such as organs, exhibit

more pronounced differences in mean dose because of their fewer

voxels. Similarly, in Table 5, the mean dose for both Rectum and

Bladder (OARs) is lower with ANFIS for all prescription dose levels.

Reducing the mean dose to OARs is clinically significant, as it

decreases the probability of secondary cancer development.

Finally, Figures 9, 10 illustrate how the membership

functions (MFs) changed after ANFIS training. They display

the input MFs used to modify the weighting factors (WFs)

and prescription doses (PDs), respectively. The original FIS

MFs are depicted with dashed lines, while the new optimal

shapes identified after ANFIS training are represented by

solid lines.

4 Discussions

Our initial findings indicate that the optimization of TPPs

can be effectively achieved through the application of the ANFIS-

GIP system. The dosimetric outcomes confirm that ANFIS enables

a more accurate attainment of the desired DD compared to

the FIS. The dosimetric comparisons show that ANFIS generally

outperforms FIS, particularly in controlling the maximum dose

to the PTV and displaying reduced variability. Additionally,

the p-values reveal that ANFIS achieves statistically significant

improvements in the mean doses. Despite ANFIS’s overall superior

performance across various levels, it was noted that at the most

challenging level, the outcomes from ANFIS and traditional

FIS were similar. However, at the remaining PD levels, ANFIS

consistently demonstrated superior results. Notably, at any given

prescription level, ANFIS was able to achieve a mean dose of 100%

for the PTV. This outcome is due to the prioritization embedded in

the rule set, which favors the PTV and OAR structures over the NT.

Tables 6, 7 present the percentage of goal attainment for each

structure using FIS and ANFIS for the C-shape and mock prostate

phantoms, calculated using Equation 14. A positive result indicates

that the mean dose exceeds the dosimetric goal, whereas a negative

result indicates that the mean dose is below the dosimetric goal. A

prescribed dose (PD) level is reached when the percentage to goal

is zero for the PTV and negative for the other structures.

Table 6 shows that for the PTV, ANFIS consistently achieved the

target goal (0% deviation) across all levels, whereas FIS exhibited

slight positive deviations at lower levels, such as +1.1% at Levels 1
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TABLE 5 Dose statistics comparing FIS and ANFIS for mock prostate phantom.

Level

FIS—calculated dose (%)

PTV Rectum (OAR) Bladder (OAR) Body (NT)

Mean STD D95 D10 D5 Mean D30 D10 Mean D30 D10 Mean D30 D10

1 [100, 20, 10] 100.0 1.7 97.8 101.5 101.8 51.8 68.8 90.9 38.3 55.8 79.6 7.0 2.4 24.5

2 [100, 25, 10] 100.0 4.2 96.3 103.1 104.1 35.0 41.4 74.0 39.1 56.0 82.0 7.1 2.4 24.8

3 [100, 30, 10] 100.0 4.5 94.4 102.4 102.9 34.7 42.1 73.1 38.4 53.6 79.9 7.0 2.4 25.4

4 [100, 35, 10] 100.0 4.6 93.0 102.8 103.5 36.6 46.8 74.2 34.8 47.2 72.3 7.1 2.4 25.6

5 [100, 40, 10] 100.0 3.5 96.1 102.7 103.4 38.8 47.1 80.1 38.7 55.4 81.5 6.6 2.2 24.1

Level ANFIS—calculated dose (%)

PTV Rectum (OAR) Bladder (OAR) Body (NT)

Mean STD D95 D10 D5 Mean D30 D10 Mean D30 D10 Mean D30 D10

1 [100, 20, 10] 100.0 1.8 97.6 101.6 102.1 42.8 56.5 90.1 34.5 49.1 75.4 6.9 2.3 25.4

2 [100, 25, 10] 100.0 4.6 96.6 103.3 104.5 31.2 35.6 71.0 36.9 51.7 79.4 7.2 2.5 25.1

3 [100, 30, 10] 100.0 5.2 95.4 102.9 103.9 29.7 32.8 67.7 28.3 36.4 64.9 6.7 2.3 23.5

4 [100, 35, 10] 100.0 5.5 91.3 103.3 104.0 33.9 43.2 70.0 34.4 46.4 72.2 7.1 2.4 25.6

5 [100, 40, 10] 100.0 3.4 97.2 102.9 103.6 37.8 45.2 80.5 35.5 49.1 77.9 7.0 2.4 25.4

The table shows the best results obtained at each PD level.
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FIGURE 9

Input MFs for Modifying the WFs across di�erent structures. (A) Input 1WFPTV MFs. (B) Input 1WFOAR MFs. (C) Input 1WFNT MFs.

and 2. For the OAR, ANFIS reduced the mean dose compared to

FIS, with the most significant improvement observed at Level 3,

where ANFIS achieved –17.7% compared to +35.3% for FIS. For

NT, ANFIS achieved better dose reductions only at Levels 4 and 5,

particularly at Level 5 (–33.3% for ANFIS compared to –30.0%

for FIS). This outcome was expected because the mean dose is

calculated over all CT voxels, meaning that ANFIS and FIS tend

to yield similar results (which explains why the DVH for NT is

nearly identical for each of the five levels). Overall, these results

demonstrate that ANFIS effectively met dosimetric goals for the

PTV while providing superior sparing of the OAR and NT. On

average across the five levels, ANFIS outperformed FIS with a 0.7%

improvement in mean dose conformity, while for the OAR, the

mean dose was reduced by 28.8% when using ANFIS compared

to FIS.

Table 7 presents the percentages to goal for the mock prostate

phantom. For the PTV, both FIS and ANFIS consistently achieved

the target goal (0% deviation) across all levels. For the rectum

and bladder, ANFIS achieved lower mean doses than FIS at every

level. For example, at Level 1, the rectum dose deviation was

+114.0% for ANFIS compared to +159.0% for FIS, and for the

bladder, the dose deviation was +72.5% for ANFIS vs. +91.5% for

FIS. Additionally, for the body, ANFIS achieved slightly better

reductions at Levels 1 and 3. On average across the five levels,

ANFIS improved the percentage to goal for the mean dose by

17.4% for the rectum and by 14.1% for the bladder. Overall,

Table 7 highlights ANFIS’s superior ability to reduce mean doses

for OARs and NT while maintaining accurate target coverage for

the PTV.

We demonstrated that ANFIS-GIP can enhance the

performance of an existing FIS. We believe that FIS has potential

in a clinical setting, as it provides insight into the reasoning and

decision-making process of the AI. It is important to note that in

this proof of concept, the training of the ANFIS-GIP to optimize

FIS parameters was based on PD levels, which explains why

ANFIS-GIP primarily focuses on ensuring that the mean doses for

the various structures are below the PD level targets. This approach

can be further improved in the future by training the ANFIS-GIP

system not only on PD levels but also on additional dosimetric

goals. This enhancement could be achieved by incorporating new

rules specifically targeting these additional parameters.

For the NT curves, only a minor difference is observed because

the dose is averaged across the entire phantom, encompassing all

CT voxels. Given that these phantoms are parallelepiped and do not

replicate the anatomical variability of actual patients, the observed

outcome aligns with expectations. Notably, for the OARs, the DVH

curves for ANFIS remain below those for FIS, indicating a reduced

dose, an outcome particularly desirable in radiation therapy.

Regarding the PTV volume, an optimal DVH curve aligns

as closely as possible with the 100% dose line, indicating

comprehensive dose coverage of the PTV. When comparing DVH

data from Levels 3 to 5, the ANFIS-based plans demonstrate

improved target coverage. Nevertheless, in Figure 8, the PTV DVH

curves appear similar for both FIS and ANFIS, likely because the
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FIGURE 10

Input MFs for Modifying the PDs across di�erent structures (A) Input MFs for 1PDPTV. (B) Input MFs for 1PDOAR. (C) Input MFs for 1PDNT.

TABLE 6 Percentages to goal obtained for the di�erent structures for C-Shape pantom.

Level (goals)

Percentage to goal (%)

PTV OAR NT

FIS ANFIS FIS ANFIS FIS ANFIS

1 [100, 20, 10] +1.1 0.0 +16.5 +5.5 0.0 –8.0

2 [100, 25, 10] +1.1 0.0 +41.2 –16.4 0.0 +6.0

3 [100, 30, 10] +0.6 0.0 +35.3 –17.7 +2.0 +7.0

4 [100, 35, 10] +0.3 0.0 +4.9 –16.3 +4.0 0.0

5 [100, 35, 15] +0.2 0.0 –8.0 –9.1 –30.0 –33.3

TABLE 7 Percentages to goal obtained for the di�erent structures for mock prostate phantom.

Level (goals)

Percentage to goal (%)

PTV Rectum (OAR) Bladder (OAR) Body (NT)

FIS ANFIS FIS ANFIS FIS ANFIS FIS ANFIS

1 [100, 20, 10] 0.0 0.0 +159.0 +114.0 +91.5 +72.5 –30.0 –31.0

2 [100, 25, 10] 0.0 0.0 +40.0 +24.8 +56.4 +47.6 –29.0 –28.0

3 [100, 30, 10] 0.0 0.0 +15.7 –1.0 +28.0 –5.7 –30.0 –33.0

4 [100, 35, 10] 0.0 0.0 +4.6 –3.1 –0.6 –1.71 –29.0 –29.0

5 [100, 40, 15] 0.0 0.0 –3.0 –5.5 –3.3 –11.3 –34.0 –30.0
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rules prioritize delivering the prescribed dose to the PTV before

optimizing doses to other structures. This behavior is also evident

in Table 5, where the mean PTV dose remains at 100% for all

prescription levels. Despite these similarities for the target, the

benefit of ANFIS is more pronounced in sparing OARs, which

underscores its clinical advantage.

A critique of our proof of concept, based on the ANFIS-

GIP algorithm workflow, is that the algorithm performs an IMRT

optimization after each TPP modification, which can be time-

intensive. However, the ANFIS-GIP system was designed to work

in conjunction with the optimizer, allowing the TPS to respond in

real-time to each TPP adjustment by ANFIS-GIP. Thus, the system

is not intended to recalculate the final 3D dose volume after every

TPP modification, thereby reducing computational demands.

Additionally, the ANFIS-GIP system was developed with the

goal of reducing the time required for the planner to interact with

the TPS. We envision this system as a starting point for human

planners. In practice, ANFIS-GIP would first determine the optimal

TPP modifications and achieve the best possible results for each

PD level. Once the system has completed this process, the human

planner could begin planning and refining the treatment from this

optimized starting point.

The configuration of an ANFIS is crucial for successful

application. In our system, the IF-THEN rules were derived from

the expert knowledge of the treatment planner. For instance, the

modification rules for the WFs can be described as follows: “if the

PTV dose is below the PD, its WF should be increased; if the OAR

and NT doses exceed the PD, their WF should also be increased.”

These rules are broadly applicable for general cases without specific

requirements. However, as additional clinical considerations are

incorporated, the rule set may need to become more complex.

In clinical cases, various quantitative goals, such as maximum

dose, dose coverage, and other dosimetric metrics, could be

integrated into the ANFIS as inputs, replacing the calculated

mean doses. Accordingly, the components of the fuzzy inference

system (e.g., membership functions and rules) should be tailored

to different clinical scenarios to ensure that the ANFIS responds

appropriately to distinct input/output relationships. It should be

noted that, in the current system, the rules were determined

by a human planner. For practical purposes, it is also advisable

to explore the automatic generation of rules based on the

training data.

While adopting a strategy that replicates planner behavior

might be considered a phenomenological approach, it provides

a rapid pathway to establishing an automated planning process

that can reliably achieve outcomes aligned with the goals set by

human planners. Furthermore, our research illustrates that a FIS

can evolve into an ANFIS through the analysis of training samples,

reinforcing the adaptability and potential of such systems in the

realm of treatment planning optimization.

Integrating intuitionistic fuzzy sets (Atanassov, 1986; Versaci

et al., 2024) into the current fuzzy framework could substantially

enhance the capabilities of our system by offering a more

comprehensive means of modeling and managing the inherent

uncertainty in treatment planning. Unlike traditional fuzzy sets,

intuitionistic fuzzy sets incorporate not only the degree of

membership but also the degree of non-membership and the level

of indeterminacy. This added dimensionality could broaden the

flexibility of the ANFIS approach, enabling a richer and more

nuanced representation of complex decisions—particularly those

involving intricate dose-volume constraints and the evaluation

of optimal solutions. While implementing such a tool may not

be immediately expected, considering this perspective for future

developments could significantly improve the system’s adaptability,

resulting in more robust and accurate decision-making across

various clinical scenarios.

In addition to exploring this integration, future work will

focus on enhancing the adaptability and precision of the ANFIS-

GIP system for broader clinical applications, specifically by

applying it to real patient cases, such as prostate and head

& neck treatments. Improvements will include expanding the

rule set to incorporate additional dosimetric objectives, such

as maximum dose constraints and dose homogeneity, for a

more comprehensive optimization framework. Further training

on diverse clinical datasets and testing in real-time treatment

planning environments will be pursued to validate the system’s

robustness and efficiency. Additionally, we will compare ANFIS

system performance against a human planner and other competing

automated treatment planning AI methods, such as Rapidplan.

Also, to measure the plan quality, we plan to use the VARIAN

PlanScoreCard to automatically generate scoring metrics based

on PTV coverage and awarding points for OAR doses below

specified thresholds. Integrating a feedback loop for planners to

fine-tune the system’s output based on clinical experience could

enhance its usability and acceptance in clinical workflows. A

potential limitation of the proposed system lies in its reliance

on training data drawn from human planner observations, which

may introduce bias. Although the ANFIS system currently reflects

the subjective expertise of a single planner, it could ultimately be

enriched by integrating insights from multiple planners to reduce

bias. For this proof of concept, modified data from a simple

phantom case were used, but future work will focus on testing

with real patient data, particularly for prostate cancer cases, and

exploring the impact of automatically generating rules based on

the dataset.

5 Conclusion

In this study, we present a novel proof of concept employing

ANFIS for IMRT planning, which enables the generation of

TPPs without human intervention. This approach facilitates

an interactive process for treatment plan selection based on

physicians’ preferences and allows for the exploration of new

Pareto frontier regions as needed. ANFIS demonstrated superior

dosimetric outcomes compared to a traditional FIS, showing

less variability and more robust results, as it consistently

met all dosimetric goals. The methodology holds potential for

enhancing compatibility with commercial TPS and automating

IMRT optimization. By integrating human knowledge and

“learning” from clinical data, this system reduces the need

for manual input and emulates human planner decision-

making, marking a significant advancement toward reducing the

clinical workload.
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