
TYPE Original Research

PUBLISHED 14 February 2025

DOI 10.3389/frai.2025.1521063

OPEN ACCESS

EDITED BY

Basabi Chakraborty,

Madanapalle Institute of Technology and

Science, India

REVIEWED BY

Marlon Marcon,

Federal Technological University of Paraná

Dois Vizinhos, Brazil

Prashanta Kumar Patra,

Odisha University of Technology and

Research, India

*CORRESPONDENCE

Raúl Jimenez-Cruz

r.jimenez.c@tec.mx

RECEIVED 01 November 2024

ACCEPTED 27 January 2025

PUBLISHED 14 February 2025

CITATION

Jimenez-Cruz R, Yáñez-Márquez C,

Gonzalez-Mendoza M, Villuendas-Rey Y and

Monroy R (2025) Spherical model for

Minimalist Machine Learning paradigm in

handling complex databases.

Front. Artif. Intell. 8:1521063.

doi: 10.3389/frai.2025.1521063

COPYRIGHT

© 2025 Jimenez-Cruz, Yáñez-Márquez,

Gonzalez-Mendoza, Villuendas-Rey and

Monroy. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Spherical model for Minimalist
Machine Learning paradigm in
handling complex databases

Raúl Jimenez-Cruz 1,2*, Cornelio Yáñez-Márquez 2,

Miguel Gonzalez-Mendoza 1, Yenni Villuendas-Rey 2 and

Raúl Monroy 1

1Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico, 2Smart

Computing Laboratory, Centro de Investigación en Computación, Instituto Politecnico Nacional,

Mexico, Mexico

This paper presents the development of the N-Spherical Minimalist Machine

Learning (MML) classifier, an innovative model within the Minimalist Machine

Learning paradigm. Using N-spherical coordinates and concepts from

metaheuristics and associative models, this classifier e�ectively addresses

challenges such as data dimensionality and class imbalance in complex

datasets. Performance evaluations using the F1 measure and balanced accuracy

demonstrate its superior e�ciency and robustness compared to state-of-the-art

classifiers. Statistical validation is conducted using the Friedman and Holm tests.

Although currently limited to binary classification, this work highlights the

potential of minimalist approaches in machine learning for classification of

highly dimensional and imbalanced data. Future extensions aim to include

multi-class problems and mechanisms for handling categorical data.

KEYWORDS

classification, machine learning, pattern recognition, Minimalist Machine Learning,

pattern classification

1 Introduction

Research into the best intelligent classifier has long been recognized as a formidable

challenge, especially after the introduction of “The No Free Lunch Theorem” in 1997

(Wolpert andMacready, 1997;Wolpert, 2002). This theorem underscores the impossibility

of designing a universal classifier that excels across all types of datasets. In response to these

challenges, this study introduces the N-Spherical Minimalist Machine Learning (MML)

classifier, which simplifies the representation of high-dimensional data using spherical

coordinates and enhances classification performance by addressing class imbalance

and data complexity. This innovative model combines metaheuristics with N-spherical

coordinate transformations to provide an efficient solution within the Minimalist Machine

Learning (MML) paradigm.

The main problem addressed in this research involves overcoming data complexity

issues, including high dimensionality and class imbalance, which pose significant obstacles

in real-world datasets. Our approach focuses on developing the N-Spherical MML

classifier, a novel model grounded in the MML paradigm. This paradigm operates under

the hypothesis that re-distributing the spatial positioning of patterns through coordinate

transformation can enhance classification outcomes.

Moreover, this approach integrates a unique feature selection mechanism to determine

both the optimal number of features and their relative importance, thereby reducing

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1521063
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1521063&domain=pdf&date_stamp=2025-02-14
mailto:r.jimenez.c@tec.mx
https://doi.org/10.3389/frai.2025.1521063
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2025.1521063/full
https://orcid.org/0000-0002-0154-4865
https://orcid.org/0000-0002-6250-4728
https://orcid.org/0000-0001-6451-9109
https://orcid.org/0000-0001-9889-3924
https://orcid.org/0000-0002-3465-995X
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Jimenez-Cruz et al. 10.3389/frai.2025.1521063

dataset complexity. Our pioneering methodology, which fuses

the MML framework with non-Cartesian coordinates and an

innovative attribute selection strategy, represents a significant

advancement in the field. The combination of these elements

underscores the potential of minimalist approaches in addressing

complex challenges in machine learning, paving the way for future

research inmulti-class classification and themanagement of diverse

data types.

2 Materials and methods

This section examines existing methods in machine learning,

focusing on their application to pattern classification and reduction

of imbalance. By analyzing recent advances and their limitations,

we establish the foundation for introducing the novel contributions

of the N-Spherical MML model.

2.1 Metaheuristics

Nature serves as a vast optimization mechanism, where

countless species evolve, demonstrating refined survival abilities

over time. Inspired by nature’s behavior, evolutionary computing

has experienced remarkable growth. This field mimics natural

processes through highly adaptive algorithms that solve a

wide range of problems using metaheuristics. These algorithms

randomly generate numerous potential solutions, evolving through

local search operators, information exchange between individuals,

and random mutations.

Researchers in metaheuristics have drawn inspiration from

various natural and social phenomena, as well as the behaviors of

living species, including genetics, immune systems, ant colonies,

bees, bats, swarms, music, fireflies, chemical reactions, fish, and

birds. For instance, in García-calvo et al. (2018), a variant

of genetic algorithms, one of the oldest and most renowned

metaheuristics, employs granulated structures for effective feature

selection. Yelghi and Köse (2018) and Zhang et al. (2018) explore

metaheuristic variants inspired by fireflies and gray wolves for

optimization. Storn and Price (1997) describes a straightforward yet

effectivemetaheuristic called Differential Evolution, which employs

randomly diverse individuals to generate offspring through simple

combinations within the original population.

In our work, we chose to leverage Differential Evolution to

enhance our proposed model by autonomously adjusting two

parameters involved in both the learning and classification phases.

This decision was made due to the rapid convergence, robustness,

and simplicity of this metaheuristic.

2.2 Class imbalance

Class imbalance in databases poses a significant challenge,

affecting the performance of pattern classifiers. Alongside class

overlap, outliers, and mixed or missing data, class imbalance

presents adverse scenarios that require effective strategies when

developing new classifier models.

In Tang and He (2017), two sampling approaches for learning

in imbalanced databases are presented: under-sampling and over-

sampling. The study also introduces a novel metric called the

Generalized Imbalance Ratio (GIR), achieving success by bagging

multiple known classifiers.

Similarly, Hu et al. (2018) addresses class imbalance by

maximizing the area under the curve (AUC) and proposing a new

learning algorithm for imbalanced data called Kernelized Online

Imbalanced Learning (KOIL). Another approach is presented in

Liu et al. (2018), where a solution to the multiple criteria problem

is introduced through example assignment, while Maldonado and

López (2018) addresses high dimensionality challenges and uses

Support Vector Machines (SVM) for feature selection.

Additionally, Wong et al. (2018) addresses the class imbalance

problem using a hybrid method that combines metaheuristics

with evaluations in three of the most prominent classifiers in the

field: SVM, C4.5, and k-NN. Lastly, Das et al. (2018) provides an

extensive survey on data complexity issues (termed “irregularities”

by the authors), offering numerous research avenues for future

exploration. These ideas have inspired certain aspects of the

development of our proposed model.

In summary, while existing methods have laid the groundwork

for advancements in machine learning, they often fall short in

addressing the specific challenges posed by high-dimensional,

imbalanced datasets. The N-Spherical MML model, with its

innovative integration of metaheuristics, class imbalance handling,

and dimensionality reduction, represents a significant step forward

in this domain.

2.3 Minimalist Machine Learning paradigm

Minimalist Machine Learning (MML) is an innovative

paradigm designed for intelligent pattern classification tasks. This

paradigm is grounded in the notion that the input receives a

dataset D consisting of N patterns with n attributes distributed

across m classes.

Example: Suppose we have a dataset with two classes and

various attributes. The MML approach simplifies this by focusing

on essential attributes and transforming the data into a spherical

coordinate system, which aids in the classification process.

If k ∈ N, k <= N → xk = [xk1, x
k
2, ..., x

k
n] (1)

Definitions:

• k represents the k-th pattern in the dataset D.

• n denotes the n-th attribute in the dataset D.

The goal is to produce a graphical representation on the

Cartesian plane that depicts the classes and includes a straight line

minimizing errors or ideally separating the two classes.

Once the dataset D is inputted, a validationmethod is applied to

obtain two disjoint sets. The training phase involves finding a subset

of features to which a set of operations can be applied in both the

training and test sets, but separately in each set.

The classification phase of MML entails taking a pattern from

the test set and checking whether it lies above or below the

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2025.1521063
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Jimenez-Cruz et al. 10.3389/frai.2025.1521063

horizontal line. Ideally, the output is expected to be a graph on the

Cartesian plane where the two classes are represented, along with a

horizontal line that minimizes errors separating these two classes.

Building on the aforementioned, it can be stated that the MML

paradigm has a central premise that there exists a family of subsets

of the n attributes for which there is a set of simple operations

applied in a specific order that yields the desired representation on

the Cartesian plane.

Therefore, it can be said that the family of subsets, the

operations to be performed (applied to every pattern in the

training and test sets), and the order of application define a unique

algorithm within the MML paradigm.

2.4 Spherical coordinates in N dimensions

Polar coordinates are a coordinate system determined by a

distance and an angle (Anton et al., 2010). Like the Cartesian

coordinate system, this system is determined by a point O, also

called the origin. Following the logic of Cartesian coordinates,

the ordered pair for polar coordinates is denoted as follows (r,

θ), where r is the distance between the origin O and the point

P, and θ is the angle formed between the polar axis and a line

from O to P.

Based on this concept, polar coordinates can be expanded

to N dimensions, which change names as the dimension grows.

When implemented in 3 dimensions, they are called spherical

coordinates, and when expanded beyond 3 dimensions, they are

termed hyperspherical coordinates. An N-dimensional sphere is a

generalization of a sphere in a hyperplane.

In 1960, lecture notes were published (Blumenson,

1960) that implemented a method of generalization for

three-dimensional spherical coordinates without requiring

geometric intuition. Basically, according to the definition in

the publication, transitioning from Cartesian coordinates in

n dimensions to spherical coordinates in n dimensions works

as follows:

Given a point x in Cartesian space with n components (x1, x2,

x3, . . . , xn), it is possible to transform the components of the point

x into components in hyperspherical space.

(x1, x2, x3, . . . , xn)→ (r,α1,α2, . . . ,αn−1) (2)

Where:

• (x1, x2, x3, . . . , xn): They are each of the n components of x in

Cartesian space.

• r: It is the radius from the origin of the sphere to the point in

n-spherical space.

• (α1,α2, . . . ,αn−1): They are the n-1 dimensional angles of

the hypersphere.

To obtain each component in N-spherical space, the following

equations developed in [33] are used:

r =
√

(x1)2 + (x2)2 + ...+ (xn−1)2 + (xn)2 (3)

α1 = arcos(
x1

√

(x1)2 + (x2)2 + ...+ (xn−1)2 + (xn)2
) (4)

α2 = arcos(
x2

√

(x2)2 + (x3)2 + ...+ (xn−1)2 + (xn)2
) (5)

αn−2 = arcos(
xn−2

√

(xn−2)2 + (xn−1)2 + (xn)2
) (6)

αn−1 = arcos(
xn−1

√

((xn−1)2 + (xn)2
) (7)

As shown, the primary component of N-spherical coordinates

is the radius r (Equation 3), which determines the distance of

a point x from the origin in the N-dimensional space. This

component encapsulates the magnitude of the point’s position

relative to the center of the coordinate system.

The remaining components (Equations 4–7) are angular

coordinates that define the specific orientation of the point within

the spherical system. These angles provide additional geometric

information by describing the point’s position along different axes

of the N-dimensional space. Together, the radius and angles form

a comprehensive representation of the point, allowing for a more

nuanced understanding of its spatial relationship to other points

in the dataset. This coordinate system plays a pivotal role in the N-

SphericalMMLmodel, as it enables the transformation of Cartesian

data into a form that better highlights separability between classes.

2.5 Datasets

This section describes the datasets used in our proposed model

and at the final of this section we have a Table 1 where is resumed

all important data of the datasets:

• Leukemia dataset (Golub et al., 1999): Microarray dataset

containing gene expression data related to leukemia. It

consists of 38 patterns, with 27 patterns in the “Acute

Lymphoblastic Leukemia” (ALL) class and 11 in the “Acute

Myelogenous Leukemia” (AML) class. After feature selection,

the dataset contains 3,052 genes.

• Nutt dataset (Nutt et al., 2003): Dataset comprising 28 patterns

of brain cancer patients, divided into “Classic Glioblastomas”

(CG) and “Non-Classic Glioblastomas” (NCG) classes, each

with 14 patterns. This dataset contains 1071 genes.

• Lymphoma dataset (OpenML, Unknown)1: Contains 45

patterns classified into “Germinal Center B-cell Lymphoma”

(GCL) and “Anaplastic Cell Lymphoma” (ACL) classes, with

22 and 23 patterns, respectively.

• Lung dataset (Sun, 2014): Consists of 85 patterns related to

lung cancer, with 62 patterns in the “Small cell lung cancer”

(SCLC) class and 24 in the “Non-small cell lung cancer”

(NSCLC) class.

1 OpenML (Unknown). lymphoma_2classes. Dataset. Available at: https://

www.openml.org/d/1101 (accessed November 20, 2024).

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2025.1521063
https://www.openml.org/d/1101
https://www.openml.org/d/1101
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Jimenez-Cruz et al. 10.3389/frai.2025.1521063

• AP Endometrium Prostate dataset (Stiglic and Kokol, 2010e):

Gene expression dataset linking endometrial and prostate

cancer. It contains 130 patterns, with 61 in the “Endometrium”

class and 69 in the “Prostate” class.

• Covid-19 Kaggle dataset (Harikrishnan, 2020): Used for

classifying COVID-19 cases. This dataset comprises 5,434

patterns, with 4,383 patterns labeled as “Yes” and 1,051

patterns as “No.”

• AP Ovary Lung dataset (Stiglic and Kokol, 2010e): Contains

gene expression data associating ovarian and lung cancer. It

consists of 324 patterns, with 198 in the “Ovary” class and 126

in the “Lung” class.

• AP Breast Uterus dataset (Stiglic and Kokol, 2010b): Gene

expression dataset relating breast and uterine cancer. It

includes 468 patterns, with 344 in the “Breast” class and 124

in the “Uterus” class.

• AP Breast Ovary dataset (Stiglic and Kokol, 2010a): Gene

expression dataset linking breast and ovarian cancer. It

comprises 542 patterns, with 344 in the “Ovary” class and 198

in the “Breast” class.

• AP Lung Kidney dataset (Stiglic and Kokol, 2010d): Contains

gene expression data associating lung and kidney cancer. It

consists of 386 patterns, with 260 in the “Kidney” class and

126 in the “Lung” class.

• AP Endometrium Kidney dataset (Stiglic and Kokol,

2010c): Gene expression dataset linking endometrial and

kidney cancer. It comprises 321 patterns, with 61 in the

“Endometrium” class and 260 in the “Kidney” class.

• Diabetic Mellitus dataset (Abdulrahman, 2019): Used to

classify diabetes mellitus cases. This dataset contains 281

patterns, with 99 in the “positive” class and 182 in the

“negative” class.

• Brain Cancer Kaggle dataset (JillaniSoftTech, Unknown)2:

Used for classifying brain cancer tumors. It consists of 36

patterns, with 18 in the “Normal” class and 18 in the

“Tumor” class.

The resumed data about every dataset is shown in Table 1.

2.6 State-of-the-art classifiers for
comparison

WEKA (Das et al., 2018) is a data analysis andmachine learning

platform written in Java. Developed by the University of Waikato

in New Zealand, this platform offers a wide range of algorithms

for data analysis and predictive modeling, including regression,

classification, and clustering tasks.

The software allows datasets to be preprocessed, if necessary,

and inserted into a learning scheme to analyze the results and

performance of a selected classifier. The main objective of using

WEKA in this study is to compare the results obtained between the

2 JillaniSoftTech (Unknown). Brain tumor. Dataset. Available at: https://

www.kaggle.com/datasets/jillanisofttech/brain-tumor (accessed November

20, 2024).

proposed model and a diverse collection of well-known classifiers.

In the following, we describe the algorithms used in this platform:

• Naïve Bayes Algorithm: Naïve Bayes (Kurzyński, 1988) is a

classification algorithm based on the application of Bayes’

theorem, which calculates the probability of a hypothesis

given the evidence. It assumes that the features are

conditionally independent, given the class label. Instance-

Based Classifier (IBK).

• The Instance-Based Classifier (IBK): Aha et al. (1991) is

an enhanced version of the K-Nearest Neighbors (KNN)

algorithm. Although KNN can only handle numerical

values, IBK can work with both categorical and numerical

values, as well as handling missing values using an

implemented measure called the heterogeneous Euclidean-

overlap measure (HEOM).

• Logistic regression: Logistic regression is a classification

algorithm used for predictive modeling when the dependent

variable (target) is categorical. It is particularly useful for

binary classification problems, where the outcome variable has

only two possible classes or states (e.g., 0 or 1, yes or no).

• Sequential Minimal Optimization (SMO): SMO is a popular

algorithm used for training Support Vector Machines (SVM),

a powerful model for pattern classification (Cortes and

Vapnik, 1995). SVMs are based on a well-founded theory

and aim to find the hyperplane that maximizes the margin

of separation between classes or nearly separates them with

a slight margin of error. The key idea behind SVMs is to

transform the input data into a higher-dimensional space

where it can be linearly separated. This transformation is

achieved using a kernel function selected by the designer,

which helps in finding the support vectors that define the

created hyperplanes.

• Decision trees: Decision trees (Rodner and Denzler, 2011) are

well-known supervised learning algorithms. They have a tree-

like structure where each internal node or leaf represents a

feature, and the final leaf nodes constitute the classification

prediction. All nodes are connected by branches that represent

simple if-then-else rules inferred from the data features.

• Multi-Layer Perceptron: The multi-layer perceptron

(Rumelhart et al., 1986; Hall et al., 2009) is an artificial

neural network that can be used as a classifier, representing

an enhanced version of the simple perceptron. The key

feature of this algorithm is its multiple layers, which enable

it to tackle nonlinear problems. While neural networks

offer numerous advantages, such as high performance and

suitability for tasks like image classification, they also come

with limitations. One significant drawback is that if the model

is not properly trained, it tends to produce highly inaccurate

results. Additionally, the optimization functions used in

training neural networks often seek only local minima, which

can lead to premature termination of the training process,

even without reaching the desired error threshold set by

the designer.

Another significant challenge is the considerable training and

classification time required, particularly when working with high-

dimensional datasets like those in this study. These computational

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2025.1521063
https://www.kaggle.com/datasets/jillanisofttech/brain-tumor
https://www.kaggle.com/datasets/jillanisofttech/brain-tumor
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Jimenez-Cruz et al. 10.3389/frai.2025.1521063

TABLE 1 Datasets description.

Dataset name Number of
patterns

Number of
attributes

Patterns at
positive class

Patterns at negative
class

Imbalance
ratio

Leukemia 38 3,052 27 11 2.45

Nutt 28 1,071 14 14 1

Lymphoma 45 4,026 22 23 1.04

Lung 85 7,130 62 24 2.58

AP Endometrium

Prostate

130 10,936 61 69 1.13

Covid-19 Kaggle 5,434 20 4,383 1,051 4.17

AP Ovary Lung 324 10,936 198 126 1.57

AP Breast Uterus 468 10,936 344 124 2.77

AP Breast Ovary 542 10,936 344 198 1.73

AP Lung Kidney 386 10,936 260 126 2.06

AP Endometrium

Kidney

321 10,936 61 260 4.26

Diabetic Mellitus 281 97 99 182 1.83

Brain Cancer Kaggle 36 7,465 18 18 1

demands can become a bottleneck, especially in scenarios where

rapid model deployment or frequent retraining is necessary. To

address this, our implementation in WEKA was optimized by

configuring the Multilayer- perceptron algorithm with five hidden

layers. This adjustment was made after observing that the default

configuration resulted in excessively long training times, making

the process impractical for large-scale experiments.

By reducing the number of hidden layers, the algorithm

achieves a balance between computational efficiency and

model performance, ensuring that it remains suitable for real-

world applications. Despite the inherent challenges posed by

high-dimensional data, this optimization retains the model’s

ability to deliver reliable and accurate classification results.

Furthermore, this adjustment highlights the importance of

fine-tuning hyperparameters to meet specific performance and

scalability requirements, particularly in machine learning tasks

involving complex datasets.

3 Results

To measure the performance of the proposed N-Spherical

MML model, preprocessing steps were implemented to ensure

consistency across datasets. For datasets with missing values,

imputation techniques were applied, while label coding was used to

handle categorical values. The programming and implementation

were carried out using MATLAB, executed on a MacBook Pro

laptop equipped with an M1 Pro processor and 16 GB of RAM.

Notably, no special MATLAB functions or toolboxes were used; all

implementations were developed from scratch using custom code.

The selected performance measure was balanced accuracy,

which gives equal importance to both classes. Once this

performance measure was established, statistical tests were

conducted to comprehensively evaluate the results. Specifically,

the Friedman test, a nonparametric statistical test, was applied to

verify whether statistically significant differences exist between the

performances of the classifiers. To identify where these differences

occur, the Holm Test (Post-Hoc) was used. A significance level of

α = 0.05 was considered, ensuring confidence in 95%. Rejection

of the null hypothesis indicates significant differences among the

classification algorithms.

3.1 N-Spherical MML model

This section presents the most relevant part of this work:

the methodology for constructing the proposed model. It begins

with the conceptual foundations and progresses to the complete

assembly of the model with the purpose of understanding the

complete operation.

The proposed model is built on a simple yet solid conceptual

basis, combining the methods of Minimalist Machine Learning

(MML) with the application of N-spherical coordinates.

Additionally, a significant contribution to the proposed algorithm

was implemented, in which a selection of the most relevant

attributes is made using a method that we call “Twice mean”

or T-means.

The hypothesis posits that points plotted in Cartesian space

with a certain distribution will exhibit a distinct distribution

in spherical space. With this premise in mind, the following

question arises.

If MML involves separating two classes in the Cartesian plane

using a horizontal line, what will happen in a spherical space?

The answer is straightforward: instead of separating the

classes with a horizontal line in the polar plane, the classes can

be separated by a circle of radius rm, which we will call a

“circumference” in the graphs and a “radius” when referring to the

calculated value of these circumferences. One class lies within this

circumference, and the other class lies outside this circumference of

radius rm.

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2025.1521063
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Jimenez-Cruz et al. 10.3389/frai.2025.1521063

This classifier assumes that the dataset D is initially represented

in Cartesian coordinates, with each feature of the patterns

corresponding to a component in Cartesian space. For instance, in

the “Iris Dataset” (Dua and Taniskidou, 2017), each pattern has four

features, representing a point in a 4-dimensional Cartesian space.

This assumption enables us to convert each pattern from Cartesian

coordinates to N-dimensional spherical coordinates, resulting in a

newly derived dataset that can offer different insights and improved

model performance.

The proposed model is based on this premise, where the

search for the most relevant attributes for each dataset will be

performed to train the model in the training phase and test the

model in the classification phase. Additionally, the “Leave One Out

Cross Validation” (LOOCV) validation method was implemented

in all experiments because the method is deterministic. It is

pertinent to clarify that the proposed method can currently only be

implemented in binary classification datasets, but work is underway

on a version to overcome this limitation.

3.1.1 Algorithm
Database and validation method.

We assume a database with L numerical attributes and

two classes:

• Class 1: D1 with n1 patterns.

• Class 2: D2 with n2 patterns.

The validation method involves splitting the database into two

disjoint sets: a training set E and a test set P.

We will use Leave-One-Out Cross-Validation (LOOCV) due to

its deterministic nature. To illustrate the proposed model, consider

the Brain Cancer Kaggle database, where each pattern contains

7464 numerical attributes (L = 7,464):

• Class 1: D1 “Tumor” contains 18 patterns; that is, n1 = 18.

• Class 2: D2 “Normal” contains 18 patterns; that is, n2 = 18.

70 81 25 10 22 113 36 . . . 138 53 -4 123 2 19

3.1.2 First iteration of leave-one-out (example)
The first pattern of Class 1 (test pattern X) is included in the test

set P.

P contains a single pattern: X = D1(1,:).

The rest of the patterns in the database form the training set E.

From this point on, throughout the learning phase, the

information from pattern X will be excluded.

The set E contains the following:

• Y1: 17 patterns from Class 1 with L numeric attributes.

• Y2: 18 patterns from Class 2 with L numeric attributes.

Set E feed into the Learning Phase (note that test pattern X does

not participate in this phase). At the output of the Learning Phase,

three pieces of information are obtained:

• Position of Class 1.

• Learning attributes.

• Spherical frontiers vector.

FIGURE 1

Training phase flow chart.

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2025.1521063
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Jimenez-Cruz et al. 10.3389/frai.2025.1521063

FIGURE 2

Classification phase.

The first three steps are as follows: T-means, calculation of error

vectors E1 and E2, and calculation of their arithmetic means. With

mean(E1) and mean(E2), the value of C1_IN is obtained, which

is crucial for the rest of the algorithmic steps. In the output of

the Learning Phase, three pieces of very important information are

obtained, which will be part of the input to the Classification Phase

Figure 1.

In the first iteration of the Brain Cancer Kaggle example, the

values of the parameters adjusted by Differential Evolution are:

ATT = 14 and BOUND = 5.

For these three pieces of information, test pattern X is joined as

input to the Classification Phase Figure 2.

At the output of the Classification Phase, the assigned class

for the test pattern X is obtained. If X falls within the boundary

defined by Class 1, it is assigned to Class 1; otherwise, it is assigned

to Class 2.

3.1.3 Training phase. Step 1: T-Means
One of the main challenges in minimalist machine learning is

attribute selection. Although advancements like D-means (Molina,

2020) have been made, we propose a method with a different

approach called Twice means or T-means, while also incorporating

some elements fromD-means. T-means consists of L iterations, one

for each attribute j, from 1 to L.

• Y1: Projections of the training patterns from Class 1 onto

attribute j (blue dots).

• Y2: Projections of the training patterns from Class 2 onto

attribute j (red stars).

For each attribute j: T-means is the mean of the two means

m1 and m2; m1 = mean(Y1); m2 = mean(Y2); T-means =

mean ([m1 m2]).

Diagram of the first iteration of T-means (j = 1), for the first

iteration of the model (i = 1) Figure 3.

T_M is a vector with the L values of T-means. In this iteration

of T-means, only attribute j = 1 is considered: T_M(1) = 376.3301.

3.1.4 Learning Phase. Step 2: E1 y E2
E1 is a vector of L error values assuming that Class 1 is below

T-means. For attribute j = 1, in E1(1) (Equation 8) there are 3 errors

from Class 1 and 4 errors from Class 2:

E1(1) = 3+ 4 = 7 (8)

FIGURE 3

Diagram of the first iteration of T-means.

E2 is a vector of L error values assuming that Class 1 is above T-

means. For attribute j = 1, in E2(1) (Equation 9), there are 14 errors

from Class 1 and 14 errors from Class 2:

E2(1) = 14+ 14 = 28 (9)

Diagram illustrating Figure 4A. E1 and E2 for the first iteration of

T-means, j = 1.

Diagram illustrating Figure 4B. E1 and E2 for the second

iteration of T-means, j = 2.

For attribute j = 2, in E1(2) there are 0 errors from Class 1 and

3 errors from Class 2: E1(2) = 0 + 3 = 3.

For attribute j = 2, in E2(2) there are 17 errors from Class 1 and

15 errors from Class 2: E2(2) = 17 + 15 = 32.

3.1.5 Learning Phase. Step 3: means of E1 and E2
E1 corresponds to the case where Class 1 is below T-means. In

the example, E1 has L = 7,464 components.

E1

7 3 17 4 17 4 ... 31 25 19 30 19 21

E2 corresponds to the case where Class 1 is above T-means. In

the example, E2 has L = 7,464 components.

E2

28 32 18 31 18 31 ... 4 10 16 5 16 14

The values of mean(E1) = 17.5355 and mean(E2) = 17.4606

clearly indicate the global behavior of E1 and E2.

Frontiers in Artificial Intelligence 07 frontiersin.org

https://doi.org/10.3389/frai.2025.1521063
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Jimenez-Cruz et al. 10.3389/frai.2025.1521063

FIGURE 4

Diagram illustrating E1 and E2 for the first (A) and second (B) iterations of T-means.

FIGURE 5

Decision criterion.

3.1.6 Learning Phase. Step 4.1: C1_IN criterion
Early decision criterion for when the Classification Phase is

reached ilustrated at the Figure 5.

3.1.7 Step 4.2: two values of the criterion C1_IN
• The two possible values of C1_IN mark a branching point in

the model.

• Two different paths are formed in the algorithmic steps.

• The value C1_IN = 1 indicates that in that path, the values of

the vector E1 will be used.

• The value C1_IN = 1 indicates that in that path, the values of

the vector E1 will be used.

• The value C1_IN = 0 indicates that in that path, the values of

the vector E2 will be used.

The value of C1_IN indicates the correct position for the model

to assign Class 1 to the test pattern X.

C1_IN = mean(E1) < mean(E2) (10)

If C1_IN = 1, Class 1 is assigned to the test pattern X if it is located

inside the spherical boundary see Figure 6.

If X is located outside the spherical boundary, Class 2

is assigned.

If C1_IN = 0, Class 1 is assigned to the test pattern X if it is

located outside the spherical boundary see Figure 6.

If X is located INSIDE the spherical boundary, Class 2 will

be assigned.

3.1.8 Learning Phase. Step 5: C1_IN = 0
Since C1_IN = 0, the values of the vector E2 will be used. In the

example, E2 has L = 7,464 components.

E2

28 32 18 31 18 31 ... 4 10 16 5 16 14

The vector of errors E2 is sorted:

[Sorted L values, Attribute indices]: [ES2, A2]← sort(E2).

The first ATT attribute indices from A2 are selected (in the

example, ATT = 14):

A2(1:14) = [7,176, 7,360, 7,383, 7,420, 7,428, 7,451, 2,573, 7,164,

7,220, 7,244, 7,299, 7,355, 7,389, 7,392].

Resubstitution error in the training set.

Output: ATT spherical radius.

The first three spherical radius are illustrated in the Figure 7:

R_esfA(7176) = 480.5 (11)

R_esfB(7360) = 21.5 (12)

R_esfC(7383) = 132 (13)

The complete vector with the 14 spherical radius is:

R_esf= [480.5, 21.5, 132.5, 24, 25.5, 49, 33, 567.5, 356.5, 9.5,

459.5, 176, 226.5, 102.5].

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2025.1521063
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Jimenez-Cruz et al. 10.3389/frai.2025.1521063

FIGURE 6

Point inside the spherical boundary and Point outside the spherical boundary.

FIGURE 7

First, second and third spherical radius.

3.1.8.1 Resubstitution error in the training set

ATT spherical radius→ ATT_errors vector.

In the Figure 8A, patterns projected onto attribute A2(1) =

7,176 are illustrated Figure 8A.

• The spherical radius (in black) is R_esf(7176) = 480.5.

• Since C1_IN=0C1_IN=0, Class 1 is OUTSIDE the

spherical radius.

• Class 1 generates 16 errors (blue balls inside).

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2025.1521063
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Jimenez-Cruz et al. 10.3389/frai.2025.1521063

FIGURE 8

Patterns projected on A2 (A), patterns projected on A2 (B), class separated (C).

• Class 2 generates only 1 error (red star outside).

• ATT_errors(1)=16+1=17 errors.

At the same Figure 8B, patterns projected onto attribute A2(2)

= 7,360 are illustrated.

• The spherical radius (in black) is R_esf(7,360) = 21.5.

• Class 1 generates 4 errors (blue balls inside).

• Class 2 generates only 1 error (red star outside).

• ATT_errors(2)=4+1=5 errors.

In the same Figure 8C, patterns projected onto attribute A2(6)

= 7,451 are illustrated.

• The spherical radius (in black) is R_esf(7,451) = 49.

• Class 1 and Class 2 are perfectly separated by the spherical

radius Figure 8C.

• ATT_errors(6) = 0 errors.

Below is the complete Table 2 of attributes, spherical radius, and

errors. The first iteration of the example, ATT = 14.
The ATT_errors vector is sorted:

• In [ATT_errors sorted, ATT_features_ord]: [ATT_ES1,

ATT_A1]← sort (ATT_errors).

• In [ATT_errors sorted] = [0, 2, 3, 3,3, 4, 4, 5, 5, 7, 8, 16, 17, 29].

• In [ATT_features_ord]=[7,451, 7,220, 7,299, 7,355, 7,389,

7,428, 7,392, 7,360, 7,244, 7,420, 7,383, 7,164, 7,176, 2,573].

TABLE 2 First iteration.

Attribute index Spherical radius Errors

7,176 480.5 17

7,360 21.5 5

7,383 132.5 8

7,420 24.0 7

7,428 25.5 4

7,451 49.0 0

2,573 33.0 29

7,164 567.5 16

7,220 356.5 2

7,244 9.5 5

7,299 459.5 3

7,355 176.0 3

7,389 226.5 3

7,392 102.5 4

For the first iteration of the example, BOUND = 5. Progressive

sets are formed based on ATT_features_ord:

• SET_1 = 7,451.

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2025.1521063
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Jimenez-Cruz et al. 10.3389/frai.2025.1521063

• SET_2 = 7,451, 7,220.

• SET_3 = 7,451, 7,220, 7,299.

• SET_4 = 7,451, 7,220, 7,299, 7,355.

• SET_5 = 7,451, 7,220, 7,299, 7,355, 7,389.

Decision spherical BOUND is calculated:

For the first iteration of the example, BOUND = 5.

SET_1 = 7,451.

Decision spherical boundary_1 = 49 Figure 9 No.1.

SET_2 = 7,451, 7,220.

Decision spherical boundary_2 = 367.4421 Figure 9 No.2.

SET_3 = 7,451, 7,220, 7,299.

Decision spherical boundary_3 = 579.4759 Figure 9 No.3.

For SET_3, the decision boundary is in 3D.

The image of this decision boundary is a sphere immersed in

3D. The figure illustrates a projection of this decision boundary

in 2D.

SET_4 = 7,451, 7,220, 7,299, 7,355.

For SET_4, the decision boundary is in 4D. The image of this

decision boundary is a sphere immersed in 4D.

The figure illustrates a projection of this decision boundary

in 2D. Decision spherical boundary_4 = 621.0160 Figure 9 No.4.

SET_5 = 7,451, 7,220, 7,299, 7,355, 7,389.

For SET_5, the decision boundary is in 5D. The image of this

decision boundary is a sphere immersed in 5D.

The figure illustrates a projection of this decision boundary

in 2D. Decision spherical boundary_5 = 691.8988 Figure 9 No.5.

3.1.9 Output of the Learning Phase
For the example at hand, the output of the Learning Phase is

as follows:

The position of Class 1 is inside the decision

boundary (C1_IN = 0).

Learning attributes: 7,451, 7,220, 7,299, 7,355,

7,389 (Boundary = 5).

Vector of spherical boundaries: [49, 367.4421, 579.4759,

621.0160, 691.8988].

3.1.10 Output of the Learning Phase
• Step 1: Generate progressive sets from the learning attributes.

• Step 2: Project the test pattern onto the progressive

attribute sets.

• Step 3: Calculate the spherical norm in each of the projections

from Step 2.

• Step 4: Compare the spherical norms from Step 3 with the

corresponding spherical boundaries.

• Step 5: Based on the value of C1_IN, decide the class of the

test pattern.

◦ 5.1: C1_IN = 1 (correct Class 1 position is inside the

spherical boundary).

5.1.1 If spherical norm < spherical boundary→ assign

Class 1 to the test pattern.

5.1.2 If spherical norm > spherical boundary→ assign

Class 2 to the test pattern.

◦ 5.2: C1_IN = 0 (correct Class 1 position is outside the

spherical boundary).

5.2.1 If spherical norm > spherical boundary→ assign

Class 1 to the test pattern.

5.2.2 If spherical norm < spherical boundary→ assign

Class 2 to the test pattern.

• Step 6: Assign the class to the test pattern by voting on the

results from Step 5.

Example. -

For the example at hand, the input to the Classification Phase

is: Test pattern X = D1(1,:).

Since C1_IN = 0, the correct position for Class 1 is: outside the

decision boundary.

Learning attributes: 7,451, 7,220, 7,299, 7,355, 7,389.

Spherical boundary vector: [49, 367.4421, 579.4759, 621.0160,

691.8988].

Votes for Class 1: 5.

Votes for Class 2: 0.

Class 1 is assigned to the test pattern X = D1(1,:) see Table 3.

3.2 N-Spherical MML model pseudocode
and computational cost

The pseudocode for the N-Spherical MML model consists of

three main phases:

• Learning Phase.

• Parameter Self-Adjustment using Metaheuristics.

• Classification Phase.

3.2.1 Learning Phase
Signature: Learn (Y , att,Boundary)

Inputs:

• Y : Training set with instances described by n+ 1 attributes.

• att: Percentage of attributes to select.

• Boundary: Maximum limit for sets of attributes used in

spherical radii.

Outputs:

• C1_IN: Boolean value indicating the spatial position of

the classes.

• Edic_esf : Dictionary of ordered attributes.

• R1: Vector of spherical radii.

• e: Training error.

Steps:

1. Divide the training set Y into two subsets Y1 and Y2, where

Y1 ← {y ∈ Y : y[n] = 1} and Y2 ← {y ∈ Y : y[n] = 2}.
The value of the vector y at position n denotes the class of the

pattern. O(m) .

Frontiers in Artificial Intelligence 11 frontiersin.org

https://doi.org/10.3389/frai.2025.1521063
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Jimenez-Cruz et al. 10.3389/frai.2025.1521063

FIGURE 9

Decision spherical boundary 1, boundary 2, boundary 3, boundary 4, boundary 5.

TABLE 3 Class assigned.

Progressive sets Projections at X Spherical norms Spherical boundaries Vote

{7,451} X’=[108] 108.0000 49.0000 Class 1

{7,451, 7,220} X’=[108 425] 438.5077 367.4421 Class 1

7,451, 7,220, 7,299 X’=[108 425 797] 909.6692 579.4759 Class 1

{7,451, 7,220, 7,299, 7,355} X’=[108 425 797 255] 944.7344 621.0160 Class 1

{7,451, 7,220, 7,299, 7,355,

7,389}

X’=[108 425 797 255 83] 962.2952 691.8988 Class 1

2. Let t1 and t2 represent the number of instances in Y1 and

Y2, respectively.

3. Create five arrays of size n− 1:m1,m2,Tm,E1, and E2. O(1) .

4. For i = 0 . . . n− 1 (for each attribute) O(n) .

(a) m1[i]← mean(Y1[i]). (Calculates the mean of the values in

column i of matrix Y1). O(m) .

(b) m2[i]← mean(Y2[i]). O(m) .

(c) Tm[i]← (m1[i]+m2[i])/2. O(1) .

(d) E1[i] ← sum(Y1[i] > Tm[i]) + sum(Y2[i] < Tm[i]).

O(m) . (The total number of errors committed is counted,

considering that class 1 is BELOW class 2) O(m).

(e) E2[i] ← sum(Y1[i] < Tm[i]) + sum(Y2[i] > Tm[i]). (The

total number of errors committed is counted, considering

that class 1 is ABOVE class 2) O(m) .

5. C1_IN ← (mean(E1) < mean(E2)) (decides if class 1 is

BELOW (C1_IN = 1) or ABOVE (C1_IN = 0) in spherical

coordinates). O(1).

6. If C1_IN = 1, create a sorted dictionary Edic (key = position,

value = error count) using E1, ordered by ascending error

counts. O(1).

7. Else, create Edic using E2, ordered by ascending error

counts. O(1).

8. Calculate c← (att× n)/100. O(1).

9. Remove the last n-c records from Edic, retaining only the

selected attributes. O(n).

10. Generate new matrices Y1′ and Y2′ using attributes

in Edic:

• For i = 0 . . . t1− 1, j = 0 . . . c− 1: O(n · m).

Frontiers in Artificial Intelligence 12 frontiersin.org

https://doi.org/10.3389/frai.2025.1521063
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Jimenez-Cruz et al. 10.3389/frai.2025.1521063

◦ Y1′[i][j]← Y1[i][Edic.Key[j]].

◦ Y1′[i][c]← 1.

• For i = 0 . . . t2− 1, j = 0 . . . c− 1: O(n · m).

◦ Y2′[i][j]← Y2[i][Edic.Key[j]].

◦ Y2′[i][c]← 2.

11. Convert Y1′ and Y2′ to spherical coordinates

(Y1′e,Y2′e). O(n · m).

12. Create two vectors r1, r2 of size t1 and t2, respectively. O(1) .

13. For i = 0 . . . c − 1 (for each attribute to calculate spherical

radii): O(n).

• For j = 0 . . . t1− 1: O(m)

◦ r1[j]←
√

∑i
k=0(Y1

′e[j][k])2.

• For j = 0 . . . t2− 1:

◦ r2[j]←
√

∑i
k=0(Y2

′e[j][k])2.

14. If C1_IN = 1:

• Compute R_frontier[i] ← (max(r1[i]) + min(r2[i]))/2.

O(n) .

• Calculate substitution errors:

errors[i]← sum(r1[i] > R_frontier[i])+ sum(r2[i]

< R_frontier[i]).O(n · m).

15. Else:

• Compute R_frontier[i]← (min(r1[i])+max(r2[i]))/2.

• Calculate substitution errors:

errors[i]← sum(r1[i] < R_frontier[i])+ sum(r2[i]

> R_frontier[i]).

16. Create a sorted dictionary Edic_esf (key = position, value = error

count) using errors, ordered by ascending error counts. O(1) .

17. Assign e← errors[0] (minimum error). O(1).

18. For i = 0 . . .Boundary− 1: O(n).

• Create attribute subset SET with the first i attributes.

• Update r1[j], r2[j] for each instance in Y1′e,Y2′e.O(n · m).

19. Return C1_IN,Edic_esf ,R1, e.

Total cost: The complexity is cubic, assuming n≫m.

Approximated as

O(2n2m + 4mn + m + n) ≈ O(2n3 + 4n2 + 2n).

Note: Terms with O(1) are not considered in the calculation,

since the focus is on the upper bound, representing the

worst-case cost.

3.2.2 Parameter self-adjustment using
metaheuristics

Signature: AutoLearn(Y , np, F, pR).

Inputs:

• Y : Training set with instances described by n+ 1 attributes.

• np: Population size.

• F: Mutation factor.

• pR: Recombination probability.

• G: Number of generations.

Outputs:

• C1_IN,Edic_esf ,R1, e : Optimal parameters and

training results.

• [att,Boundary]: Adjusted parameter values.

Steps:

1. Create an empty dictionary P to store the population and

fitness of individuals (Key = individual, Value = optimization

value). O(1).

2. For i = 0 . . . np− 1 (for each individual): O(np).

(a) Create a two-dimensional integer vector xi with values

bounded by n. O(1).

(b) Add the vector xi to P.Key. O(1).

(c) Evaluate the vector xi by assigning it an optimization value

fi = Learn(Y , xi[1], xi[2]). O(2n
3
+ 4n2 + 2n).

(d) Add the optimization value to P.Value. O(1).

3. For gen = 1 . . .G (for each generation): O(G).

• For i = 0 . . . np− 1 (for each individual): O(np).

(a) Randomly select three vectors, denoted as xa, xb, xc, such

that a 6= b 6= c 6= i. O(1).

(b) Create a new individual ni = xc + F(xa − xb). O(1).

(c) If rand(0, 1) < pR:

i. Calculate f ′i = Learn(Y , ni[1], ni[2]).

O(2n3 + 4n2 + 2n).

ii. If f ′i .e > fi.e, replace xi with ni in the list P. O(1).

4. Sort the dictionary P in ascending order of optimization values

(since these are errors, smaller values come first). O(np2).

5. Return the optimization value of the first individual in the

population (C1_IN,Edic_esf ,R1, e) and the first individual’s

vector (parameter values [att,Boundary]).

Total cost:The complexity remains cubic, as the previous phase

was also cubic.

Approximated as

O(np(2n3 + 4n2 + 2n)) + O(G · np(2n3 + 4n2 + 2n)) + O(np2)

≈ O(np(2n3 + 4n2 + 2n)(1 + G) + np2).

Assumptions: Since np ≪ n and G ≫ 1, the complexity is

bounded as follows:

O(n(2n3 + 4n2 + 2n) · G + n2) ≈ O(2Gn4 + 4Gn3 + n2(G + 1)).

Frontiers in Artificial Intelligence 13 frontiersin.org

https://doi.org/10.3389/frai.2025.1521063
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Jimenez-Cruz et al. 10.3389/frai.2025.1521063

Note: Terms with O(1) are disregarded in the calculation as we

focus on the upper bound, representing the worst-case cost.

3.2.3 Classification phase
Signature: Classif (p)

Inputs:

• p: Instance to classify, described by n+ 1 attributes.

Outputs:

• class: Assigned class label for the instance.

Steps:

1. Obtain a new instance p′, considering the attributes present in

Edic_esf , in the order they appear in the dictionary, as follows:

• For i = 0 . . . c− 1 (for each attribute to consider): O(n).

◦ p′[i]← p[Edic_esf .Key[i]].

2. Create a boolean vector votes of size Boundary, initialized to

False. O(1).

3. For i = 0 . . .Boundary − 1 (for each attribute to

consider): O(n).

(a) Create the attribute set SET with the first i attributes.

(b) Initialize temp← 0.

(c) For j = 0 . . . i (to compute the spherical radius): O(n).

• temp← temp+ (p′[j])2.

(d) r1[i]←
√
temp.

(e) If R1[i] < r1[i] ∧ C1_IN, then: O(1).

• votes[i]← True.

4. Count the votes for class 1 as votes_c1 = |{votes[i] =
True : i = 1 . . .Boundary}|. O(n).

5. If votes_c1 ≥ Boundary/2, then:

• class← 1.

6. Otherwise:

• class← 2.

7. Return class.

Total cost: Quadratic in the worst case where att =
Boundary = n.

Approximated as

O(n) + O(n2) + O(n) ≈ O(n2) + O(2n).

3.3 Balance accuracy

To verify the usability of the proposed model on imbalanced

datasets, balanced accuracy results were reviewed, as shown in

Table 4.

With the Balanced Accuracy performance metric:

• The proposed N-Spherical MML model ranks first in

ten datasets.

• SMO ranks first in three datasets.

• IB1, MLP, and J48 each rank first in only one dataset.

To investigate whether there are significant differences in

performances, the Friedman test was employed. The ranking

obtained is as follows, demonstrating that the proposed Spherical

MML model ranks first with a value of 1.5 compared to the

remaining six algorithms. This establishes it as the best model for

the classification task described in this article document.

Conversely, the Naïve Bayes algorithm ranks last in the

Friedman test ranking table, with a value of 4.6154 see Table 5.

The Friedman test results indicate that the null hypothesis is

rejected with a confidence level of 95% and a p-value of 0.0000287.

Therefore, significant differences exist between the classifiers. The

Holm post-test was applied to identify which classifiers exhibit

statistically significant differences. The test rejects the hypothesis

with an adjusted p-value of ≤ 0.05 see Table 6.

The proposed model in this article, the Spherical MML, is

significantly better than Logistic, SVM-SMO, Naïve Bayes, J48, IB1,

and MLP.

4 Discussion

The N-Spherical MML classifier, developed within the

Minimalist Machine Learning (MML) paradigm, introduces a

novel approach to tackling challenges in pattern classification. This

model has demonstrated significant effectiveness and robustness

when applied to complex datasets, particularly those characterized

by high dimensionality and class imbalance. By leveraging its

minimalist design, the N-Spherical MML classifier achieved

substantial improvements in balanced accuracy, consistently

outperforming state-of-the-art classifiers in various scenarios.

When evaluated across 13 datasets, the N-Spherical MML

ranked first in 10 cases, showcasing its ability to generalize and

adapt across diverse datasets, particularly in the domain of disease-

related data. Statistical analyses, including the Friedman and Holm

tests, confirmed that the model provides statistically significant

advantages over widely adopted classifiers such as Naïve Bayes,

J48, Logistic Regression, SVM-SMO, IB1, and MLP. These findings

underscore the potential of N-Spherical MML as a robust and

reliable tool for classification tasks, particularly in challenging

scenarios involving imbalanced and high-dimensional datasets.

Despite its promising results, the proposed model has several

limitations that must be addressed in future research. Currently, it

is restricted to binary classification tasks, which significantly limits

its applicability in real-world scenarios where multi-class datasets

are prevalent. Additionally, while the model effectively handles

numerical data, it does not support categorical or mixed data types,

Frontiers in Artificial Intelligence 14 frontiersin.org

https://doi.org/10.3389/frai.2025.1521063
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Jimenez-Cruz et al. 10.3389/frai.2025.1521063

TABLE 4 Balanced accuracy.

Naive bayes MLP J48 Logistic SMO IB1 N-spherical

AP endometrium

kidney

0.9860 0.5000 0.9334 0.9884 0.9860 0.9860 0.9961

AP lung kidney 0.9748 0.5042 0.9194 0.9707 0.9765 0.9626 0.9763

AP endometrium

prostate

0.9691 0.4373 0.9845 0.9845 0.9855 0.9918 0.9927

AP breast uterus 0.9462 0.5000 0.9327 0.9528 0.9410 0.9356 0.9567

AP breast ovary 0.9615 0.4907 0.9254 0.9627 0.9671 0.9245 0.9414

AP ovary lung 0.9101 0.5129 0.9216 0.9249 0.9155 0.9057 0.9260

Brain cancer kaggle 0.8888 0.9722 0.8888 0.9722 0.9722 0.9444 1.0000

Lung 0.6612 0.4966 0.3911 0.6350 0.5604 0.5147 0.8534

Lymphoma 0.9327 0.9555 0.8248 0.9337 0.9327 0.7288 0.9772

Leukemia 0.8636 1.0000 0.9359 0.9359 1.0000 1.0000 1.0000

Nutt 0.7500 0.7857 0.8214 0.8928 0.9285 0.6071 0.9642

Diabetic mellitus 0.9031 0.8806 0.9945 0.9238 0.8958 0.5981 0.9366

Covid-19 kaggle 0.9309 0.9745 0.9812 0.9454 0.9189 0.9727 0.9911

TABLE 5 Balanced accuracy friedman ranking.

Algorithm Ranking

Naive bayes 4.6154

MLP 5.3462

J48 4.8077

Logistic 3.2308

SMO 3.4315

IB1 5.0385

N-spherical 1.5

which are common in many application domains. Addressing these

limitations is critical for extending the model’s applicability and

ensuring its relevance across a broader range of datasets.

In terms of computational complexity, the model has been

analyzed with respect to memory usage and execution time. While

the N-Spherical MML is scalable for datasets of moderate size,

its performance on larger datasets could benefit from further

optimization. Exploring alternative metaheuristic algorithms and

transformations represents another opportunity for enhancing the

model’s performance and efficiency.

4.1 Conclusions

The N-Spherical MML classifier represents a significant

advancement within the Minimalist Machine Learning paradigm,

providing a robust and effective solution for binary classification

tasks involving high-dimensional and imbalanced datasets. By

achieving first-place performance in 10 out of 13 datasets and

demonstrating statistically significant advantages over widely used

TABLE 6 Balanced accuracy holm post-test.

I Algorithm z =
(R0 − Ri)/SE

p Holm

6 MLP 4.539206 0.000006 0.008333

5 IB1 4.17607 0.00003 0.01

4 J48 3.903718 0.00095 0.0125

3 Naive Bayes 3.676757 0.000236 0.016667

2 SMO 2.314995 0.020613 0.025

1 Logistic 2.042643 0.041088 0.05

classifiers, the model has established its potential as a powerful tool

in machine learning.

However, the model’s limitations—its current restriction to

binary classification and its lack of support for categorical or

mixed data types—highlight important areas for future work.

Additionally, further optimization of computational complexity

and the exploration of alternative metaheuristic algorithms could

enhance its scalability and efficiency for larger datasets.

In summary, the N-Spherical MML classifier delivers strong

classification performance and demonstrates the versatility of the

minimalist approach to machine learning. By addressing its current

limitations, this model could evolve into a more comprehensive

solution applicable to a broader range of real-world problems,

further solidifying its contribution to the field of machine learning.

4.2 Future work

To further improve the N-Spherical MML classifier, several

avenues of future research are proposed:

Frontiers in Artificial Intelligence 15 frontiersin.org

https://doi.org/10.3389/frai.2025.1521063
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Jimenez-Cruz et al. 10.3389/frai.2025.1521063

1. Enhanced transformations: Develop a transformation

method that surpasses the effectiveness of T-means, potentially

improving the model’s adaptability to diverse datasets.

2. New classification criteria: Propose alternative criteria to

replace C1_IN, which determines the spatial positioning of

classes, to increase classification accuracy.

3. Multi-class support: Extend the model to handle datasets with

more than two classes, increasing its applicability in real-world

multi-class classification problems.

4. Support for categorical data: Enhance the model’s capabilities

to process both numerical and categorical data, enabling its use

in mixed-type datasets.

5. Exploration of metaheuristics: Investigate and incorporate

metaheuristic algorithms beyond Differential Evolution to

further optimize the parameter selection process.

These improvements will address the current limitations of the

N-Spherical MML model, enabling it to tackle a broader range

of classification problems and datasets with higher complexity. By

following these directions, the model can become a more versatile

and powerful tool for machine learning practitioners.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

RJ-C: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Resources, Software, Validation,

Writing – original draft, Writing – review & editing. CY-M: Formal

analysis, Methodology, Supervision, Validation, Writing – review

& editing. YV-R: Formal analysis, Methodology, Supervision,

Validation, Writing – review & editing. MG-M: Funding

acquisition, Investigation, Supervision, Validation, Writing –

review & editing. RM-B: Funding acquisition, Supervision,

Validation, Writing – review & editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. The authors

would like to thank the financial support from Tecnologico

de Monterrey through the “Challenge-Based Research Funding

Program 2022”. Project ID # E120 - EIC-GI06 - B-T3 - D, and the

FAP 3144 support.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Abdulrahman, S. (2019). Diabeticmellitus. Dataset. Available at: https://www.
openml.org/d/41430 (accessed November 20, 2024).

Aha, D. W., Kibler, D., and Albert, M. K. (1991). Instance-based
learning algorithms. Mach. Learn. 6, 37–66. doi: 10.1007/BF0015
3759

Anton, H., Bivens, I., and Davis, S. (2010). Cálculo: Trascendentes tempranas.
México: Limusa Wiley.

Blumenson, L. E. (1960). A derivation of n-dimensional spherical coordinates. Am.
Mathem. Monthly 67, 63–66. doi: 10.2307/2308932

Cortes, C., and Vapnik, V. (1995). Support-vector networks. Mach. Learn. 20,
273–297. doi: 10.1007/BF00994018

Das, S., Datta, S., and Chaudhuri, B. B. (2018). Handling data irregularities in
classification: foundations, trends, and future challenges. Pattern Recognit. 81, 674–693.
doi: 10.1016/j.patcog.2018.03.008

Dua, D., and Taniskidou, E. K. (2017). UCI machine learning repository. Available
at: http://archive.ics.uci.edu/ml (accessed November 20, 2024).

García-calvo, R., Guisado, J. L., Diaz-del-rioand, F., Córdobaand, A., and Jiménez-
morales, F. (2018). Graphics processing unit - enhanced genetic algorithms for solving
the temporal dynamics of gene regulatory networks. Evolut. Bioinform. 14, 1–16.
doi: 10.1177/1176934318767889

Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.
P., et al. (1999). Molecular classification of cancer: class discovery and class prediction
by gene expression monitoring, trends, and future challenges. Science 286, 531–537.
doi: 10.1126/science.286.5439.531

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I. H., et al.
(2009). The weka data mining software: an update. SIGKDD Explor. Newsl. 11, 10–18.
doi: 10.1145/1656274.1656278

Harikrishnan, H. (2020). Symptoms and covid presence (may 2020 data).
Dataset. Available at: https://www.kaggle.com/datasets/hemanthhari/symptoms-and-
covid-presence (accessed November 20, 2024).

Hu, J., Yang, H., Lyu, M. R., King, I., and Man-Cho So, A. (2018). Online nonlinear
AUCmaximization for imbalanced data sets. IEEE Trans. Neural Netw. Learn. Syst. 29,
882–895. doi: 10.1109/TNNLS.2016.2610465

Kurzyński, M. W. (1988). On the multistage bayes classifier. Pattern Recognit. 21,
355–365. doi: 10.1016/0031-3203(88)90049-0

Liu, J., Liao, X., Huang, W., and Bo Yang, J. (2018). A new decision-making
approach for multiple criteria sorting with an imbalanced set of assignment examples.
Eur. J. Oper. Res. 265, 598–620. doi: 10.1016/j.ejor.2017.07.043

Maldonado, S., and López, J. (2018). Dealing with high-dimensional class-
imbalanced datasets: embedded feature selection for SVM classification. Appl. Soft
Comput. J. 67, 94–105. doi: 10.1016/j.asoc.2018.02.051

Frontiers in Artificial Intelligence 16 frontiersin.org

https://doi.org/10.3389/frai.2025.1521063
https://www.openml.org/d/41430
https://www.openml.org/d/41430
https://doi.org/10.1007/BF00153759
https://doi.org/10.2307/2308932
https://doi.org/10.1007/BF00994018
https://doi.org/10.1016/j.patcog.2018.03.008
http://archive.ics.uci.edu/ml
https://doi.org/10.1177/1176934318767889
https://doi.org/10.1126/science.286.5439.531
https://doi.org/10.1145/1656274.1656278
https://www.kaggle.com/datasets/hemanthhari/symptoms-and-covid-presence
https://www.kaggle.com/datasets/hemanthhari/symptoms-and-covid-presence
https://doi.org/10.1109/TNNLS.2016.2610465
https://doi.org/10.1016/0031-3203(88)90049-0
https://doi.org/10.1016/j.ejor.2017.07.043
https://doi.org/10.1016/j.asoc.2018.02.051
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Jimenez-Cruz et al. 10.3389/frai.2025.1521063

Molina, E. V. (2020). Computational methodology for neuromyelitis optica
classification for mexican population. PhD thesis, CIC-IPN.

Nutt, C. L., Mani, D. R., Betensky, R. A., Tamayo, P., Cairncross, J. G., Ladd, C., et
al. (2003). Gene expression-based classification of malignant gliomas correlates better
with survival than histological classification. Cancer Res. 63, 1602–1607.

Rodner, E., and Denzler, J. (2011). Learning with few examples for binary and
multiclass classification using regularization of randomized trees. Pattern Recognit.
Lett. 32, 244–251. doi: 10.1016/j.patrec.2010.08.009

Rumelhart, D., Hinton, G., and Williams, R. (1986). Learning representations by
back- propagating errors. Nature 323, 533–536. doi: 10.1038/323533a0

Stiglic, G., and Kokol, P. (2010a). Ap_breast_ovary. Dataset. available at: https://
www.openml.org/d/1165 (accessed November 20, 2024).

Stiglic, G., and Kokol, P. (2010b). Ap_breast_uterus. Dataset. Available at: https://
www.openml.org/d/1148 (accessed November 20, 2024).

Stiglic, G., and Kokol, P. (2010c). Ap_endometrium_kidney. Dataset. Available at:
https://www.openml.org/d/1157 (accessed November 20, 2024).

Stiglic, G., and Kokol, P. (2010d). Ap_lung_kidney. Dataset. Available at: https://
www.openml.org/d/1163 (accessed November 20, 2024).

Stiglic, G., and Kokol, P. (2010e).Ap_ovary_lung. Dataset. Available at: https://www.
openml.org/d/1140 (accessed November 20, 2024).

Storn, R., and Price, K. (1997). Differential evolution - a simple and efficient
heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359.
doi: 10.1023/A:1008202821328

Sun, S., Peng, Q., and Shakoor, A. (2014). A kernel-based multivariate
feature selection method for microarray data classification. PLoS ONE 9:e102541.
doi: 10.1371/journal.pone.0102541

Tang, B., and He, H. (2017). Gir-based ensemble sampling approaches for
imbalanced learning. Pattern Recognit. 71, 306–319. doi: 10.1016/j.patcog.2017.06.019

Wolpert, D. (2002). “The supervised learning no-free-lunch theorems,” in Soft
Computing and Industry, eds. R. Roy, M. Köppen, and H. F. Osft (London: Springer),
25–42. doi: 10.1007/978-1-4471-0123-9_3

Wolpert, D., and Macready, W. (1997). No free lunch theorems for optimization.
IEEE Trans. Evolut. Comput. 1, 67–82. doi: 10.1109/4235.585893

Wong, G. Y., Leung, F. H. F., and Ling, S. H. (2018). A hybrid evolutionary
preprocessing method for imbalanced datasets. Inf. Sci. 454, 161–177.
doi: 10.1016/j.ins.2018.04.068

Yelghi, A., and Köse, C. (2018). A modified firefly algorithm for global minimum
optimization. Appl. Soft Comput. J. 62, 29–44. doi: 10.1016/j.asoc.2017.10.032

Zhang, X., Kang, Q., Cheng, J., andWang, X. (2018). A novel hybrid algorithm based
on biogeography-based optimization and grey wolf optimizer. Appl. Soft Comput. J. 67,
197–214. doi: 10.1016/j.asoc.2018.02.049

Frontiers in Artificial Intelligence 17 frontiersin.org

https://doi.org/10.3389/frai.2025.1521063
https://doi.org/10.1016/j.patrec.2010.08.009
https://doi.org/10.1038/323533a0
https://www.openml.org/d/1165
https://www.openml.org/d/1165
https://www.openml.org/d/1148
https://www.openml.org/d/1148
https://www.openml.org/d/1157
https://www.openml.org/d/1163
https://www.openml.org/d/1163
https://www.openml.org/d/1140
https://www.openml.org/d/1140
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1371/journal.pone.0102541
https://doi.org/10.1016/j.patcog.2017.06.019
https://doi.org/10.1007/978-1-4471-0123-9_3
https://doi.org/10.1109/4235.585893
https://doi.org/10.1016/j.ins.2018.04.068
https://doi.org/10.1016/j.asoc.2017.10.032
https://doi.org/10.1016/j.asoc.2018.02.049
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	Spherical model for Minimalist Machine Learning paradigm in handling complex databases
	1 Introduction
	2 Materials and methods
	2.1 Metaheuristics
	2.2 Class imbalance
	2.3 Minimalist Machine Learning paradigm
	2.4 Spherical coordinates in N dimensions
	2.5 Datasets
	2.6 State-of-the-art classifiers for comparison

	3 Results
	3.1 N-Spherical MML model
	3.1.1 Algorithm
	3.1.2 First iteration of leave-one-out (example)
	3.1.3 Training phase. Step 1: T-Means
	3.1.4 Learning Phase. Step 2: E1 y E2
	3.1.5 Learning Phase. Step 3: means of E1 and E2
	3.1.6 Learning Phase. Step 4.1: C1_IN criterion
	3.1.7 Step 4.2: two values of the criterion C1_IN 
	3.1.8 Learning Phase. Step 5: C1_IN = 0 
	3.1.8.1 Resubstitution error in the training set

	3.1.9 Output of the Learning Phase
	3.1.10 Output of the Learning Phase

	3.2 N-Spherical MML model pseudocode and computational cost
	3.2.1 Learning Phase
	3.2.2 Parameter self-adjustment using metaheuristics
	3.2.3 Classification phase

	3.3 Balance accuracy

	4 Discussion
	4.1 Conclusions
	4.2 Future work

	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


