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Riding a motorcycle involves risks that can be minimized through advanced

sensing and response systems to assist the rider. The use of camera-

collected images to monitor road conditions can aid in the development

of tools designed to enhance rider safety and prevent accidents. This paper

proposes a method for developing deep learning models designed to operate

e�ciently on embedded systems like the Raspberry Pi, facilitating real-time

decisions that consider the road condition. Our research tests and compares

several state-of-the-art convolutional neural network architectures, including

E�cientNet and Inception, to determine which o�ers the best balance between

inference time and accuracy. Specifically, we measured top-1 accuracy and

inference time on a Raspberry Pi, identifying E�cientNetV2 as the most suitable

model due to its optimal trade-o� between performance and computational

demand. The model’s top-1 accuracy significantly outperformed other models

while maintaining competitive inference speeds, making it ideal for real-time

applications in tra�c-dense urban settings.

KEYWORDS

advanced driving assistance, electric motorcycles, road surface classification, deep

learning, gravel detection

1 Introduction

Integrating advanced safety features in urban mobility solutions, particularly within

the context of electric motorcycles, is critical for fostering efficient, comfortable, and

environmentally sustainable urban transportation. The project “A-MoVeR—Mobilizing

Agenda for the Development of Products & Systems toward an Intelligent and Green

Mobility” addresses this challenge by promoting advancements in greenmobility solutions.

A pivotal goal of this agenda is the development of a new electric motorcycle with extended

autonomy tailored for urban environments. This motorcycle seeks to minimize emissions

and incorporates intelligent systems to enhance rider safety and comfort.
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Safety in urban mobility involves diverse technologies designed

to identify and adapt to dynamic environmental conditions.

These systems encompass collision avoidance, pedestrian detection,

traffic sign recognition, and evaluating road surface conditions,

including detecting hazardous materials like gravel and assessing

asphalt quality. These features are indispensable in densely

populated urban settings, where diverse road conditions and traffic

scenarios complicate rider safety. The complexity of urbanmobility

underscores the necessity for advanced road surface analysis

technologies, a focal point of this study.

The significance of road surface analysis has been well-

established in the literature. For example, the dataset introduced by

Zhao andWei (2022) provides detailed annotations of road surface

images, enabling the development and evaluation of machine

learning models for road condition assessment. This dataset

encompasses a diverse range of surface types and conditions,

organized into 27 classes based on material (e.g., asphalt, concrete,

gravel), friction (e.g., dry, wet, snow, ice), and surface quality

(e.g., smooth, slight, severe). Such diversity ensures that machine

learning models trained on this dataset are robust to varying

road conditions, making it highly relevant for gravel detection,

which is critical for motorcycle safety as loose gravel significantly

reduces tire traction and control. Building on this, the work of

Lee et al. (2021) demonstrates the potential of intelligent sensor

systems, such as accelerometers embedded in tires, to classify road

surfaces in real time, showcasing the effectiveness of deep learning

approaches in such contexts.

A comprehensive review by Botezatu et al. (2024) further

underscores the importance of deep learning in road surface

analysis. This study highlights state-of-the-art convolutional

neural network (CNN) architectures for detection road damage

and classifying surfaces based on material and environmental

conditions. The review emphasizes the balance between real-time

processing and classification accuracy, mainly through innovations

like YOLO and hybrid models. These contributions align closely

with the objectives of this work, which seeks to address similar

challenges in gravel detection for electric motorcycles.

While significant progress has been made in road damage

detection and surface classification, as evidenced by the studies

above, gaps remain in the practical implementation of these

technologies for motorcycles. To the best of our knowledge, this

study represents the first effort to develop a driving assistance

framework tailored explicitly for motorcycles, addressing critical

safety concerns in urban mobility. By leveraging the “Road Surface

Image Dataset with Detailed Annotations” (Zhao and Wei, 2022),

we implemented and validated deep learning models on an

embedded system, the Raspberry Pi, as a prototype for eventual

integration into a test motorcycle. To address the challenge of

class imbalance in the dataset, which includes rare but hazardous

conditions such as gravel or ice, we employed Focal Loss (Lin

et al., 2018), a technique that enhances model performance

by focusing on underrepresented classes. This approach focuses

on selecting models, such as ConvNeXt, EfficientNet, and

Inception, that balance performance and inference time, ensuring

feasibility for real-time applications. Unlike prior studies, this work

uniquely targets the enhancement of motorcyclist safety in urban

environments, offering a novel contribution to the field.

The remainder of this paper is structured as follows. Section 2.1

covers the data collection, preprocessing, and augmentation

methods employed, along with the categorization and labeling

processes for different road surface conditions, which are vital

for training effective deep learning models. Then, Section 2.2

introduces the deep learning architectures evaluated in this study,

including EfficientNetV2, ConvNeXt, and others. Section 2.3

discusses initial training (before refinement) procedures and

results, focusing on their potential to detect road surface anomalies

such as gravel. Due to the unbalanced nature of the classes in

our dataset, this section also discusses the application of fine-

tuning and focal loss to improve model performance. In Section 3,

the results are presented and analyzed. The evaluation metrics,

including top-1 accuracy, inference time, and the effectiveness of

focal loss, are analyzed. This section underscores the enhancements

from fine-tuning and focal loss with a comparative accuracy

and computational efficiency analysis. Section 4 summarizes the

main contributions of our research and discusses avenues for

future investigations.

2 Materials and methods

2.1 Dataset

The dataset published by Zhao and Wei (2022) contains

∼960 thousand training images, 50 thousand test images, and 20

thousand validation images.

This dataset contains six major classes, consisting of different

road surface materials such as asphalt, concrete, gravel, mud, snow

and ice. Asphalt and concrete classes are further sub-categorized

within two parameters: humidity and road defect severity, each of

which has three categories: dry, water, and wet for humidity, and

severe, slight, smooth for road defect severity. As such, asphalt and

concrete have nine classes each.Gravel andmud, on the other hand,

are only sub-categorized based on humidity. As such, it only has

three sub-classes: dry, water, and wet. Snow is categorized based

on whether it is melted or fresh. Ice has no sub-categories. When

considering every subclass as independent, this dataset contains 27

classes in total.

To account for different weather conditions such as differences

in brightness during the day, data augmentation techniques

were utilized by applying transformations to the dataset before

training. Such transformations consist of randomly altering image

brightness and contrast by 30%, and randomly mirroring the image

with a chance of 50%. This process was done dynamically, as part

of the data loading routine in the model training scripts.

2.2 Model selection

The development of Deep CNNs was significantly influenced

by the proliferation of large-scale classification datasets, such as

ImageNet (Krizhevsky et al., 2012), which led to the emergence of

modern model architectures designed and benchmarked for their

performance on datasets that are several orders of magnitude larger

than the dataset described in Section 2.1. This and the performance
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limitations imposed by embedded systems, such as the ones used in

Advanced Rider Assistance Systems (ARAS), were considered when

selecting the model architectures. To study the impact of embedded

system limitations onmodel inference time, a Raspberry Pi 4Model

B, with 4GB of RAM and a quad-core ARM Cortex-A72 CPU

clocked at 1.5Ghz, running Debian GNU/Linux 12 (bookworm)

was used to evaluate the performance of the different architectures.

To reduce computational costs both on training and inference,

we have decided to select the models that have a relatively

high performance-to-inference time trade-off. In particular, the

EfficientNet (Tan and Le, 2019), and EfficientNetV2 (Tan and Le,

2021) architectures were designed with this aspect in mind. The

MobileNetV3 (Howard et al., 2019) architecture was developed

with the primary goal of having small inference speeds and

high accuracy when compared to other models of similar

size. To compare these highly efficient architectures with more

traditional ones, we chose the InceptionV3 (Szegedy et al., 2015)

architecture, and we chose ConvNeXt (Liu et al., 2022) for

comparison to more recent CNN architectures. The MobileNet

architecture (Howard et al., 2017) established the basis for

achieving faster inference speeds in CNNs through its use of depth-

wise and pointwise convolution filters. Through the replacement

of standard convolutional layers by these simpler operations, a

reduction of computational cost was achieved while maintaining

comparable accuracy to popular models at the time. In the

MobileNetV2 architecture (Sandler et al., 2018), this concept was

further explored, giving rise to the MBConv block, where a 1 × 1

pointwise convolution filter is followed by a depth-wise 3 × 3

convolution, and finally another 1× 1 pointwise convolution filter

with a linear activation function is used and the result from the

previous layer is then added to the inputs for the block. With this

block, an even higher efficiency is achieved when compared to

the results of the original MobileNet architecture. Thus, the main

design principle of these architectures relies mostly on achieving

high speed, without greatly compromising accuracy in return, and

since such metrics are trivially measured after training, a cost

function can be used to estimate the efficiency of a given neural

network architecture. This concept was then exploited during

MobileNetV3’s design, which resulted from optimizing inference

speed and accuracy of the MBConv blocks.

The EfficientNet-B0 architecture (Tan and Le, 2019) was

designed as a baseline model using Neural Architecture Search

(NAS) techniques (Tan et al., 2018) by setting a fixed FLOPs

target of 400M and optimizing for both accuracy and FLOPs,

which in turn yielded a highly efficient baseline model that uses

MobileNet’s MBConv block as a base and squeeze-and-excitation

optimization (Hu et al., 2018).

Similarly, the EfficientNetV2 was also designed using NAS, but

it also reduces the computational costs by using a variant of the

previous MBConv block where two of the initial layers are fused

into a single operation. The training time was also improved in

the EfficientNetV2 architecture by including it in the cost function

during the NAS.

After the introduction of the attention mechanism in

Transformer architectures (Vaswani et al., 2017) and its

applications in the field of Natural Language Processing, the

Visual Transformer architecture (Dosovitskiy et al., 2020) explored

possible uses for Transformer-based architectures in computer

vision, resulting in superior results when compared to the CNN

architectures. Using the ResNet architecture (He et al., 2015)

as a base architecture and using similar techniques to both the

Swin Transformer (Liu et al., 2021) such as layer normalization,

as well as inverted residual bottlenecks and depthwise separable

convolutions introduced by the MobileNet architectures, the

ConvNeXt-T architecture achieves comparable results to that of

Vision Transformer architectures while maintaining the simplicity,

efficiency, and convenience of well-established CNN networks.

We’ve chosen the versions of these architectures with the least

number of trainable parameters and FLOPs as to prioritize lower

inference times. Specifically, the EfficientNet-B0, EfficientNetV2-

B0, MobileNetV3-Small, and ConvNeXt-T models were used, with

5.3M, 7.4M, 2.49M, 24M, and 29M trainable parameters, and 0.39B,

0.7B, 0.1B, 5.7B, and 4.5B FLOPs respectively.

To address the risk of overfitting, we have chosen to train

these models through transfer learning. To do this, we appended

a global average pooling layer to the model, followed by a dense

layer, flattened, and then another dense layer.

2.3 Training procedures

We have chosen to design, evaluate, and train these models

using the Keras framework with TensorFlow as its backend. To

reduce training time we have decided to do so on a computer

equipped with an NVIDIA R© GeForce R© RTX 3090 GPU (24GB),

an Intel R©Core
TM

i9-12900KF CPU clocked at 3.20GHz, and

32GB of RAM. Training was performed using the Windows

Subsystem for Linux 2 feature in Windows 11 to ensure proper

use of the aforementioned GPU, as officially recommended by the

TensorFlow documentation.

The initial training stage used a Cross-Entropy (CE) loss

function, which is defined, based on a single the probability

predicted by the model (pi) and its expected value (yi) as:

CE(pi, yi) =

{

− log(pi) if yi = 1

− log(1− pi) if yi 6= 1
(1)

For the probabilities on every class, this becomes:

CE(p, y) =

C
∑

i=1

CE(pi, yi) (2)

Where C is the amount of classes in the dataset, which in this

case is 27, as mentioned in Section 2.1. In the case of transfer

learning this suffices, as the main goal is to first train the additional

components of the network on the first epochs, and then adapt the

pre-trained layers to the new dataset.

Since that the amount of samples for the classes in the dataset

varies from approximately four thousand to eighty thousand

images, we addressed class imbalance by further training each

model for eight more epochs with a focal loss (Lin et al., 2018).

This loss function introduces a balancing factor for each class (αi ∈

[0, 1]), which can be used to attribute a higher weight for under-

represented classes, and a lower weight for over-represented classes.
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TABLE 1 Optimization parameters during each training phase.

Parameters Training phase

First 4
epochs

Next 2
epochs

Fine
tuning

Optimizer Adam SGD Adam

Batch size 32 32 64

Learning rate 0.001 0.0001 –

β1 0.9 – 0.999

β2 0.999 – 0.999

Momentum – 0.9 –

Schedule – – Exponential

decay

Initial learning rate – – 0.0001

Decay rate – – 0.8

Furthermore, a constant (γ ∈ [0, 5]) is also introduced to modulate

the impact of correctly classified training examples on the loss. On

incorrect classifications, the loss is multiplied by (1 − αi), and on

correct classifications, the loss is multiplied by αi. Hence, if we were

to apply this factor to the Cross-Entropy loss of a single example we

would get:

CE(pi, yi,αi) =

{

−αi log(pi) if yi = 1

−(1− αi) log(1− pi) if yi 6= 1
(3)

Similarly, to smoothly decrease the loss on correct

classifications this loss is then multiplied by (1 − pi)
γ , and

on incorrect classifications the loss is multiplied by p
γ
i , to which

we end up with what was used for the fine-tuning stage, that is, the

α-balanced variant of the focal loss function:

FL(pi, yi,αi) =

{

−αi(1− pi)
γ log(pi) if yi = 1

−(1− αi)p
γ
i log(1− pi) if yi 6= 1

(4)

For our experiments, we chose γ = 2 and αi =
Stot
C×Si

, where

Stot is the total number of samples in the training dataset, and Si is

the number of samples present in the given class.

In the initial training phase, each model was initialized

with weights pre-trained on the ImageNet dataset. In the first

four epochs, we trained the last four layers, which correspond

to the additional layers added as described in Section 2.2. To

increase model accuracy, we then trained the entire model for

two more epochs. Optimization hyper-parameters and algorithms

for all training stages are listed in Table 1. To monitor each

model’s performance during training, we collected on each batch

its Categorical Cross-Entropy (CE), top-1, and top-5 categorical

accuracy. Such metrics were then plotted in Figure 1.

The fine-tuning training stage was done in the same

environment as the initial training, and the optimization hyper-

parameters are listed in Table 1. Due to the higher number of

training steps, we have chosen to only optimize the last third of

each model to reduce computational costs. We used the same data

augmentation techniques as in the previous training stage, both for

the training dataset and the validation dataset.

To ensure reproducibility, the source code and datasets for the

training and evaluation process have been made publicly available

at https://github.com/himalayo/gravel-classification.

3 Results and discussion

As shown in Table 2, the resulting models have a high top-

5 accuracy. To further inspect its performance in each class, we

have calculated the confusion matrix on every model. Since the test

dataset is uneven, we have normalized the confusion matrix based

on the number of samples present in the test dataset for each class

(Figure 2C).

As shown in the resulting confusion matrix for the best model

in terms of top-1 categorical accuracy, its performance is greatly

impacted by the subtle differences between each sub-category of a

given material. This could be explained by the proportion between

each sub-category in the dataset. To analyze this possibility, we

plotted a graph consisting of the top-1 accuracy of each category

on the Y-axis and the number of samples for each category on

the X-axis (Figure 2D). As we can see, most classes that contribute

to lower performance on the model have <10 thousand training

samples each.

As shown in Figure 1B, there was a significant improvement of

the top-1 accuracy for each model in the validation dataset after

fine-tuning, with some models reaching close to 90% accuracy.

This is confirmed in Figure 1F, as the resulting focal loss for every

model was lower than 1, indicating significant improvement over

the categories that were lowering the model’s accuracy in the last

training phase.

After training, we evaluated each model’s performance on the

test dataset, as shown in Table 2.

As indicated by the validation accuracy data collected during

training, most models reached close to 90% top-1 accuracy. To

further inspect the improvements on individual classes done by the

fine-tuning procedures, we have calculated the confusion matrix

for EfficientNetV2-B0 (Figure 2A), as it was the model with the

lowest validation loss during training and the confusion matrix

for the ConvNeXt-T model, for comparison with the previous

training phase. Similarly to Figure 2C, these confusion matrices

were normalized based on the number of samples for each class on

the test dataset.

As indicated by the higher top-1 accuracy in Table 2, the fine-

tuning training phase greatly improved the model’s performance in

every class in the ConvNeXt-T model. This is shown in Figure 2B,

where lower values on the main diagonal are mostly related tomiss-

classification within the same material. More specifically, after the

initial training phase∼18% of the images labeled as wet gravel were

classified as wet asphalt with severe damage, but after fine-tuning

the model with a focal loss function, the accuracy when classifying

wet gravel increased from 47% to 81% and the percentage of this

miss-classification was reduced to 6%. Similarly, the percentage

of miss-classifications of wet gravel as concrete road with a water

puddle was reduced from 15% to 4%, and miss-classifications of

wet gravel as ice or wet concrete with slight damage were reduced to

∼0%. The average accuracy in classifying gravel classes improved
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FIGURE 1

Top-1 accuracy, top-5 accuracy, and loss during fine-tuning for every epoch: 1st column, (A, C, E) During initial training: 2nd column (B, D, F).

TABLE 2 Classification results on the overall test dataset before and after the fine-tuning phase, and average inference time in seconds.

Model Before After Inference time

CE Top-1 Top-5 FL Top-1 Top-5

EfficientNetB0 0.65 77.29% 97.7% 0.31 89.4% 99.7% 0.49

EfficientNetV2B0 0.56 80.1% 98.4% 0.32 88.9% 99.7% 0.46

MobileNetV3-S 0.71 75.5% 97.4% 0.45 84.6% 99.4% 0.08

InceptionV3 0.52 81.2% 98.7% 0.35 87.8% 99.6% 0.96

ConvNeXt-T 0.51 81.73% 98.8% 0.26 91% 99.8% 7.50

from ∼76% in the ConvNeXt-T model after the initial training

phase to ∼89% after correcting for class imbalance, and ∼90%

in the EfficientNetV2-B0 model. This increase in accuracy when

classifying gravel after using a focal loss function in subsequent

training can be attributed to the effect of class imbalance shown in

Figure 2D, where classes that are underrepresented in the training

dataset show relatively low accuracy in all models.

Similarly to the results achieved by the ConvNeXt-T model,

our proposed EfficientNetV2-B0 model adequately classifies all

classes. We can also observe in Figure 2A that similarly to the

results obtained by the ConvNeXt-T, most miss-classification

cases occurred within the same material class, and with similar

significance to rider’s safety.

To measure every model’s performance when classifying

gravel under a limited resource environment, we measure

inference time on every gravel class in the test dataset

on a Raspberry Pi 4 Model B, and calculated the

resulting average.
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FIGURE 2

Confusion matrices of the best-performing models when evaluated on the test dataset. (A) Confusion matrix from evaluating the E�cientNetV2-B0

model after the fine-tuning phase. (B) Confusion matrix from evaluating the ConvNeXt-T model after the fine-tuning phase. (C) Confusion matrix for

the ConvNeXt-T model after initial training. (D) Performance of the models after the initial training phase depending on the number of samples for

each class in the dataset.

From the results presented in Table 2, we can observe that the

fastest model in terms of inference time was MobileNetV3-S, with

an average of 0.08 seconds per frame. On the other hand, the

EfficientNetV2 can perform inferences ∼15 times faster than the

ConvNeXt-T model despite having similar top-1 accuracy.

4 Conclusion and future work

This research presents significant advancements in the

deployment of deep learning models on embedded systems for

enhancing the safety features of electric motorcycles in urban

settings, specifically in detecting hazardous conditions like gravel

on roads. Through comprehensive testing and evaluation, we

identified EfficientNetV2 as the superior model, demonstrating

an optimal trade-off between inference time and performance

accuracy on the Raspberry Pi. This model’s capability to deliver

high computational efficiency alongside robust performance

underscores its suitability for real-time applications in safety-

critical environments.

Moreover, our findings also highlighted the impressive

capabilities of the ConvNeXt-T model, which achieved the highest

top-1 accuracy among the models tested. This underscores its

potential for scenarios where maximum predictive accuracy is
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paramount, despite its relatively higher computational demands

compared to EfficientNetV2.

An important aspect of our methodology was addressing class

imbalance within the training dataset through targeted adjustments

in model training approaches. This not only improved the overall

accuracy of the models but also proved vital in enhancing

their reliability in detecting gravel, a key concern for urban

motorcycle safety.

The implications of this study are twofold. Firstly, it confirms

the viability of using advanced deep-learning models on low-power

devices without compromising essential performance metrics.

Secondly, it provides a methodological framework for further

research into AI-driven safety enhancements in the burgeoning

field of intelligent and sustainable urban mobility.

Looking ahead, the integration of these AI models into

actual urban transport systems will be crucial in shaping future

strategies for urban mobility. The practical application of our

findings can facilitate the development of more robust and

scalable intelligent transport solutions, essential for addressing

the growing demands of urban environments. This research not

only pushes the boundaries of what is technologically possible

within the constraints of low-power computing but also sets

the stage for future collaborative efforts that could transform

urban transportation infrastructures globally. Engaging with these

challenges and opportunities will be critical as we strive to enhance

the efficacy and safety of urban mobility through continued

innovation in AI.

To promote transparency and facilitate reproducibility

of our findings, we have made the source code, datasets,

and detailed instructions publicly available in a GitHub

repository. This resource is intended to support further

research and the development of innovative AI-driven safety

solutions for urban mobility. The repository can be accessed at

https://github.com/himalayo/gravel-classification.
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