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A security inspection system exemplifies human-machine collaboration, and 
enhancing its safety and reliability through advanced technology remains a key 
research priority. While deep learning has incrementally improved the autonomous 
capabilities of security inspection equipment for automatic contraband detection, a 
gap persists between current technological capabilities and practical implementation. 
Recognizing that humans excel at learning, reasoning, and collaborating, while 
artificial intelligence offers normative, repeatable, and logical processing, we propose 
a human-in-the-loop hybrid augmented intelligence approach. This approach 
addresses the practical needs of security inspection systems by introducing a hybrid 
decision-making method that leverages two distinct strategies: “Reject-priority” 
and “Clear-priority.” These strategies play complementary roles in bolstering the 
decision-making process’s overall performance. Comparative experiments on a 
dataset from a specific security inspection site confirmed the hybrid method’s 
effectiveness, drawing several conclusions. This “Hybrid decision-making” 
method not only enhances risk perception, thereby widening the safety margin 
of the security inspection system, but also reduces the need for human labor, 
leading to increased efficiency and reduced labor costs. Additionally, it is less 
time-consuming, further improving the system’s overall efficiency. By integrating 
human and machine intelligence, this method significantly boosts decision-making 
effectiveness. Tailored to their unique characteristics, the method based on “Reject-
priority” strategy is particularly well-suited for security inspection scenarios that 
demand stringent safety protocols, while the “Clear-priority” method is ideal for 
scenarios with high-volume traffic flow, where efficiency is paramount. As the 
volume of collected data grows, this approach will enable seamless adaptation 
of the method to evolving application needs.
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1 Introduction

The security inspection system plays a crucial role in the public social security framework. 
Its primary function is to identify and intercept potentially dangerous and prohibited items 
that might be introduced into the security area with malicious intent, thus preventing security 
threats. Any errors in the security inspection process could compromise the entire system, 
placing it in a vulnerable position. In the event of a terrorist attack, such failures could lead to 
severe consequences, including loss of life and significant societal impacts. Consequently, 
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researchers are dedicated to continuously improving the safety and 
reliability of the security inspection system by integrating advanced 
technological solutions to enhance its capability to detect hazardous 
individuals and objects.

As a mission-critical system, a security inspection system is a 
paradigmatic human-machine collaboration system. In this setup, the 
security inspection device captures perceptual information (e.g., 
visual images, auditory sounds) by scanning passengers’ luggage or 
bodies, and assists the security inspector in determining whether it is 
safe, resulting in decisions of either “clear for passage” (“Clear”) or 
“reject for passage” (“Reject”). This type of system places high 
demands on the security inspector’s work attitude and abilities. 
During inspections, the security inspector must maintain sustained 
attention over extended periods to detect occasional security risks. 
Continuous vigilance is essential, emphasizing the need for 
prolonged, unwavering attentiveness. Detecting risks accurately and 
swiftly in a cluttered environment presents a significant challenge. 
Additionally, the unpredictable nature of potential threats can 
significantly impact security inspectors’ attitudes, potentially leading 
to decreased performance and resulting in an elevated missed 
detection rate (Tian, 2011) directly. Therefore, enhancing the safety 
and reliability of the security inspection system through advanced 
technological solutions remains an ongoing research priority. As early 
as 2001, the U.S. Department of Transportation released a survey of 
airport security inspections. The missed detection rate of contraband 
in U.S. airport security inspection was 68% in those years (Gerald, 
2001). It underscores the significance of addressing human error in 
the security inspection system. For over two decades, the reliability 
of security inspectors has remained a persistent concern for 
researchers (Kierzkowski and Kisiel, 2015; Yu et  al., 2017). 
Researchers have conducted extensive studies to analyze root causes 
and develop effective solutions. For instance, some investigations 
have examined the impact of psychological stress on performance 
and explored the underlying psychological factors contributing to 
work-related stress (Cheng and Liang, 2011). Several studies have 
highlighted the relatively low educational requirements and skill 
demands for security inspectors, coupled with high job mobility and 
repetition. These factors contribute to a lack of enthusiasm among 
young people for this profession (Tian, 2011). From an ergonomic 
perspective, researchers have analyzed security screening using X-ray 
images as a typical visual search task. They have identified key 
influencing factors and developed visual search training methods to 
enhance the performance of security inspectors (Wang and Zhang, 
2008; Jin et  al., 2014; Liu et  al., 2017; Airport Security Screener 
Competency, 2013).

Increasing numbers of researchers believe that security screeners 
face greater psychological stress and labor intensity due to their crucial 
role (Wang et  al., 2016). Beyond scientific visual search training, 
automated assistance from machines may represent another viable 
path to enhance security performance. Early studies revealed that 
employing direct cue guidance to indicate target locations can aid in 
training security inspectors to improve their ability to identify 
contraband (Goh et al., 2005). Consequently, numerous subsequent 
investigations have focused on leveraging artificial intelligence to 
augment the automatic detection capabilities of machines.

The widespread adoption of deep learning in machine vision has 
led to gradual improvements in the self-execution capabilities of 
security inspection equipment for automatic contraband detection. 

Researchers have developed various contraband recognition network 
models specifically designed for X-ray imaging (Yang, 2021; Ding 
et  al., 2019). These models have demonstrated significant 
enhancements in key performance indicators on test datasets, 
including accuracy, recall, and detection efficiency. The advancement 
of machine intelligence has enabled the integration of automatic 
detection technologies into practical security inspection systems. 
Leveraging the quantifiable, durable, and uniformly standardized 
specifications of machine intelligence can compensate for human 
limitations in several aspects, thereby enhancing the safety and 
reliability of security inspection systems. However, this emerging 
research area remains in its exploratory and optimization phase. The 
gap between current technological capabilities and practical 
implementation persists due to several factors:

 1) Regarding universality, the model’s generalization capacity is 
insufficient. Its exceptional performance in numerous 
experiments is limited to specific item types. The model 
demonstrates excellent accuracy only on test images of 
comparable quality to the training set. This restricts the 
comprehensive evaluation of these methods in practical  
applications.

 2) In terms of practicality, achieving a balance between the 
model’s accuracy and computational efficiency is challenging. 
High-accuracy models with complex architectures are 
frequently employed to produce outstanding recognition 
results, but these come with substantial computational 
demands. This approach necessitates devices with high 
processing power, which can be  resource-intensive. In the 
context of actual security inspection processes, computational 
efficiency is equally crucial as accuracy for the method to 
be  practically useful. Simply increasing costs to boost 
computing power is not an optimal strategy for real-world  
applications.

 3) From an ergonomic perspective, replacing human decision-
making with automated models may introduce risks and 
hidden dangers. Some researchers have commented on the use 
of automatic machine detection to assist security inspectors in 
making decisions. For instance, this highly human-dependent 
visual inspection task need to explore what can be partially 
replaced by a machine firstly (Goh et al., 2005). However, there 
is still a significant gap between the capabilities of machines 
and humans. This disparity can lead to excessive false positives, 
potentially interfering with security inspectors and affecting 
the efficiency of the security inspection system. Additionally, if 
security inspectors rely heavily on machines for decision-
making tasks, it may cause a decline in their alertness, 
compromising the safety margin of the system. Furthermore, 
for novice security inspectors, relying on machine-assisted 
functions may weaken their ability to acquire knowledge and 
hinder the enhancement of their operational capabilities.

Given the growing reliance on human-machine collaboration in 
security inspection, machine automatic detection serves as a valuable 
decision-making tool to support security inspectors. While its 
potential benefits to the security system are promising, but further 
research is needed to comprehensive demonstrate its reliability 
and effectiveness.
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2 Related works

2.1 Application of artificial intelligence in 
security inspection

Over the years, contraband identification based on deep learning 
technology has evolved and been implemented in practical 
applications. Recent research focuses on addressing challenges such 
as limited training samples, item occlusion, and complex background 
interference. Several researchers have proposed improved models, 
including YOLO-CID, Material-Aware Path Aggregation Network, 
and FSVM. These models have been tested on publicly available X-ray 
baggage image datasets.

YOLO-CID (Gan et al., 2023) is an enhanced variant of the classic 
YOLO object detection algorithm, designed to improve detection 
performance in complex scenarios by incorporating contextual 
information. By integrating contextual cues, YOLO-CID can better 
interpret image content, particularly when dealing with intricate 
backgrounds, occluded targets, blurry edges, or small-sized objects. 
Experimental results on the PIDray public dataset demonstrate 
YOLO-CID’s efficacy, having an average accuracy of 82.7% and a recall 
rate of 81.2%, representing increases of 4.9 and 3.2% over YOLOv7, 
respectively. On the CLCXray dataset, YOLO-CID achieves an mAP 
of 80.2%. Furthermore, it enables real-time detection at 43 frames per 
second in actual scenarios.

Material-Aware Path Aggregation Network (Xiang et al., 2023) is 
an enhanced variant of the YoloX-based material-aware path 
aggregation network, specifically designed to address the challenges 
of multi-scale and occlusion in X-ray contraband detection. This 
approach effectively mitigates the obscuring problem by emphasizing 
distinctive material characteristics. The network also implements a 
shape-decoupled SIoU (SD-SIoU) loss function, which balances the 
effects of long-short sides by integrating a category decoupling module 
and a long-short side decoupling module. This innovative combination 
of techniques enables the detection of challenging samples in extreme 
cases, such as small objects and occluded items. Experimental results 
on the OPIXray and SIXray datasets demonstrate the effectiveness of 
this approach, with average accuracies of 92.65 and 91.31%, 
respectively. The model’s parameter scale is 109.46 M, and its 
computational requirement is 256.86 G.

FSVM (Fang et al., 2023) is a contraband detection model that 
leverages minimal sample support vector machine constraints to 
achieve remarkable performance with limited labeled data. This 
approach is designed to detect contraband using only a handful of 
annotated samples, making it particularly effective for scenarios with 
scarce training data. To generate an informative embedded space, the 
model incorporates an SVM-embedded module for end-to-end 
training. This module allows for the propagation of oversight 
information from the fine-tuning phase back to earlier layers, enabling 
the model to learn from subtle patterns in the data. For training, a 
subset of the SIXray dataset should be  selected, focusing on the 
desired small sample category. The method demonstrates superior 
performance compared to other approaches in both 10-shot and 
30-shot experiments.

Xu et al. (2023) introduce innovative concepts of whole-process 
feature fusion and local–global semantic dependency interaction, 
aiming to enhance the automatic detection of prohibited items. They 
conducted experiments on the challenging Security Inspection X-ray 

(SIXray), Occluded Prohibited Items X-ray (OPIXray), Cutters and 
Liquid Containers X-ray (CLCXray), and Prohibited Item Detection 
X-ray (PIDray) datasets. The results demonstrate that the PIXDet 
detector family achieves significant detection performance, with mean 
average precision (mAP) scores of 91.2% for PIXDet-S.

An end-to-end weakly supervised correction (WSC) method with 
three modules for denoising and rectifying ambiguous labels is 
proposed. Experimental validations show that WSC increases the 
average precision (AP) by 3.3 and 4.5% on the EDXray and PIDray 
datasets (Wang et al., 2024).

Wang et  al. propose an efficient background learning (EBL) 
method with three modules: mixed foreground and background 
learning (MFB), hierarchical balanced hard negative example (HBHE) 
sampler and prime background mining with voting (PBMV). 
Experiments show that EBL can reduce false positives while 
maintaining high recall. When applied to Faster R-CNN, AP50 
increases by 5.8% on benchmark X-ray datasets, including 2.3% on 
OPIXray and 3.7% on SIXray (Wang et al., 2023).

Ren et al. (2022) present LightRay, a lightweight object detection 
framework that builds upon the YOLOv4 algorithm. The experimental 
results show that the mAP of the lightRay model is 87.28% on the 
SIXray data set, while the FLOPs of the model are reduced to the 
original 1/5, and Params is reduced to 1/3 of the original. In addition, 
some ablation experiments confirm the ability of the LightRay model 
the detection of prohibited items with small sizes.

2.2 Human-in-the-loop hybrid-augmented 
intelligence method

As artificial intelligence enters the era of large-scale application, 
inherent challenges in specific scenarios are gradually surfacing. This 
has prompted many researchers to explore the interplay between 
artificial intelligence and human cognition. Some argue that machine 
learning struggles to comprehend practical environments, particularly 
when dealing with incomplete information and complex 
spatiotemporal tasks. There exists a significant gap between machine 
learning algorithms and human brain function in processing 
ambiguous situations and nuanced contextual information. The 
human brain’s understanding of non-cognitive factors relies heavily 
on intuition, which can be influenced by experience and long-term 
knowledge accumulation. Despite the availability of vast or unlimited 
data resources for artificial intelligence systems, human intervention 
remains essential in intelligent systems. This is particularly evident in 
critical application domains such as industrial risk management, 
medical diagnostics, and criminal justice systems. To mitigate the risks 
and potential harm associated with artificial intelligence, addressing 
its limitations is a critical challenge for its advanced development. 
Therefore, the future of artificial intelligence should not be  an 
independent, isolated, self-circulating academic system, but a part of 
human evolution. The rational and efficient use of artificial intelligence 
can promote value innovation and enhance the capabilities of humans 
and machines.

Studies have shown that humans are better at learning, reasoning, 
collaborating and other advanced intelligence activities. While 
artificial intelligence is normative, repeatable and logical. Repetitive 
work does not reduce the efficiency or accuracy of the machine, so 
artificial intelligence is better at handling discrete tasks rather than 
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discovering or breaking rules on its own. Artificial intelligence and 
human intelligence each have advantages and are highly 
complementary. Researchers believe that introducing human 
supervision, human-computer interaction and manual verification 
into artificial intelligence systems increases the confidence of systems, 
build human-in-the-loop hybrid augmented intelligence and better 
utilize human knowledge. In hybrid augmented intelligence systems, 
human intelligence is a component within the loop. The predictions 
and interventions by humans enhance the accuracy and credibility of 
the system. By integrating human perception and cognitive abilities 
with machine computation and storage capabilities, the system can 
handle large-scale, incomplete, and unstructured knowledge 
information. To prevent the risks of out of control associated with 
artificial intelligence, manual intervention will be implemented when 
the confidence of machine decision-making is low, the system’s 
knowledge base will also be automatically updated subsequently. In 
fact, the hybrid learning model of intelligence can greatly expand the 
scale and efficiency of tasks that humans can accomplish (Zheng 
et al., 2017).

Leveraging the concept of hybrid augmented intelligence, 
Researchers have already embarked on cutting-edge research across 
various domains. In the military domain, for instance, where the 
environment is characterized by high complexity, blurred boundaries, 
intense confrontation, need for rapid real-time responses, and sparse 
data samples. It is believed that effective military applications require 
intricate human-computer interactions and interdependencies that 
neither simple artificial intelligence nor human intelligence alone can 
achieve optimally. Thus, the integration of human and machine 
intelligence represents a pivotal direction for advancement (Zhang 
and Zhang, 2021; Cheng et al., 2020).

In the realm of intelligent power system management, the 
proliferation of data accessible through an open intelligent analysis 
platform presents significant challenges. Traditional intelligent 
analysis methods struggle with the complexity of data acquisition 
settings and are prone to lengthy, time-consuming model creation and 
analysis processes. These inefficiencies hinder the system’s ability to 
meet user demands promptly, which is detrimental to the seamless 
operation of various application functions. By integrating human-
computer intelligence technology, the system can semantically 
interpret user requests to define analytical objectives, enabling precise 
knowledge mapping. Guided by this knowledge, the system selectively 
collects the necessary data for analysis, obtaining a relevant data 
subset that avoids overwhelming the system with excessive data scope. 
This approach not only alleviates the pressure on system analysis but 
also accelerates the analysis process, thereby reducing the operational 
complexity of the intelligent analysis platform (Lin, 2020).

In intelligent transportation systems, merely enhancing the 
intelligence of vehicles and infrastructure to alleviate traffic congestion 
is insufficient, as it overlooks the critical human factors. While 
intelligent transportation aims to minimize the driver’s role, effectively 
liberating them from conventional driving, this approach often results 
in a system with suboptimal reliability and low safety margin due to 
the absence of driver input in decision-making processes. This can 
lead to inadequate responses to complex roadway scenarios. 
Integrating human decision-making into the system’s control loop 
creates a human-in-the-loop hybrid augmented intelligence traffic 
system. This integration leverages the strengths of both human logic 
and the execution capabilities of intelligent vehicles, forming a 

complementary and cohesive system. By adopting a human-vehicle 
integration model, the system can achieve faster response times. 
Human intelligence compensates for the limitations of autonomous 
vehicle operation, thereby enhancing the control performance of the 
entire intelligent traffic system. This approach not only improves the 
reliability and flexibility but also significantly bolsters the safety of 
intelligent transportation systems (Qian et al., 2019).

In the field of industrial robotics, researchers have introduced 
hybrid augmented intelligence to the research of grab algorithms in 
collaborative robots (Fu et al., 2019). At present, the ability derived 
from deep learning training with limited model data is the most basic 
capability, which can only achieve very limited grabbing, while actual 
scenarios vary greatly. Robots that rely solely on model data collected 
or generated by humans are unlikely to achieve satisfactory outcomes, 
particularly in dynamic environments where the cost to humans is 
high and the applicability is limited. To address the issue of adapting 
to varying environments while in motion, researchers have integrated 
a human-in-the-loop cognitive input model. In the event of a failed 
grabbing attempt by the robot (indicated by low confidence), human 
intervention is employed. This allows the robot to construct a 
knowledge base informed by human strategies and to engage in self-
learning, thereby equipping it to handle unfamiliar and complex work 
scenarios effectively.

2.3 Hybrid-augmented intelligence in 
security systems

The primary function of a security system is fundamentally a 
visual cognitive task. Security inspectors visually examine X-ray 
images of luggage and combine prior knowledge to identify the 
presence of prohibited items. However, X-ray images are perspective 
representations, and the overlapping and projection distortions 
between items in luggage significantly complicate cognitive 
processing. This complexity renders it challenging for intelligent 
algorithms to independently execute the intricate process of image 
comprehension, reasoning, and decision-making, especially when 
faced with limited training data.

Cao et al. (2019) presented a human-in-the-loop framework for 
luggage inspection. This framework employs a deep-learning 
algorithm to detect contraband in X-ray images of luggage, opting for 
manual review when the algorithm is uncertain about the safety of an 
item. The benefits of this inspection process include the ability to 
capture new sample images for incremental training of the detection 
model and the enhancement of detection intelligence through human-
computer collaboration. Preliminary experimental results indicate 
that the human-in-the-loop approach, which combines the cognitive 
abilities of human inspectors with the capabilities of intelligent 
algorithms, significantly boosts the accuracy of contraband detection 
in baggage security screening.

However, Cao’s research focused on enhancing deep learning 
models’ capabilities, potentially overlooking the significance of 
human-in-the-loop approaches. This limitation may result in 
suboptimal performance in certain security screening environments, 
leading to less efficient security inspections.

Based on the aforementioned issues, in conjunction with 
practical scenarios in the security inspection, this paper concentrates 
on the application of human-in-the-loop hybrid augmented 
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intelligence methods in security inspection systems. It analyzes 
typical security inspection practical requirements, which the recall 
rate of contraband recognition is the primary metric of concern. A 
higher recall rate indicates a greater safety margin, suggesting that 
the security inspection system is more reliable and secure. Therefore, 
the primary objective of hybrid augmented intelligence is to enhance 
the recall rate of contraband recognition. By introducing machine 
intelligence for automatic contraband detection, it alleviates part of 
the workload for human inspectors, thereby reducing the risk of 
decreased vigilance due to fatigue. At the same time, leveraging the 
computational advantages of machine intelligence can improve 
operational efficiency in low-complexity, high-repetition 
interception decisions, and assist human inspector to check for 
omissions. Thereby increasing the safety margin of security 
inspection system.

3 Methods

3.1 Fundamental consideration for 
application of method in security 
inspection

While most technical literature focuses on improving the 
performance of contraband recognition using deep learning models 
(Richard et al., 2021), there is a lack of guidance on how to assess and 
evaluate methods in practical scenarios. To address this gap, 
we introduce the concept of appropriateness, which examines how 
well an intelligence method aligns with the specific context of 
security inspection.

Analyzing the core concerns of security inspection, contraband 
identification emerges as the most critical ability. Higher 
“Contraband recall rates” correlate directly with increased safety 
margins, indicating a more reliable security inspection system. 
Consequently, the primary objective of hybrid augmented 
intelligence is to enhance contraband detection accuracy by 
introducing machine intelligence to automate contraband 
identification and reduce manual labor. This approach aims to 
decrease errors resulting from fatigue and distraction. Furthermore, 
leveraging high-computing capabilities, machine intelligence can 

improve the effectiveness of intercepting low-complexity and high-
repetitive common contraband.

3.2 Method description

The proposed human-in-the-loop hybrid augmented intelligence 
approach encompasses a novel hybrid decision-making method. This 
method comprises two sequential steps:

Step 1: Initial Machine Intelligence Identification.
Machine intelligence assumes the initial decision-making role, 

leveraging its strengths in identifying low-complexity and high-
repetitive common contraband at high speeds. The process begins 
with undifferentiated global detection across entire X-ray images and 
preliminary screening.

Step 2: Human-Informed Secondary Screening.
Based on optimization objectives, select images for human review 

through various strategies. Conduct secondary screening based on 
preliminary screening results, utilizing human expertise in identifying 
high-complexity and rare contraband. The final decision is formed by 
merging results from both preliminary and secondary screenings 
in sequence.

Two distinct strategies correspond to different optimization 
objectives: “Reject-priority” and “Clear-priority.” Flowcharts for both 
strategies are provided below.

3.2.1 “Reject-priority” strategy
“Reject-priority” means believing in the machine’s preliminary 

decision of “Reject,” decisions of “Clear” is pushed to human doing 
secondary decision. Through the human decision-making process, 
machine’s wrong decision of “Clear” (i.e., Missed detection) is 
corrected by human as the final decision of “Reject.” Only the 
decisions of “Clear” confirmed by human can be the final decision of 
“Clear.” The schematic diagram of strategy is shown in Figures 1, 2 
shows the flowchart of the “Reject-priority” strategy.

The “Reject-priority” strategy operates as follows:
Machine intelligence initiates the decision-making process by 

screening X-ray images automatically.
If the machine determines “Reject,” this decision stands as the 

final outcome.

FIGURE 1

“Reject-priority” strategy.
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If the machine suggests “Clear,” the image is flagged for 
human review.

Upon human examination, incorrect “Clear” decisions (Missed 
detections) are corrected to “Reject.”

Only images confirmed as “Clear” by human inspection become 
the final “Clear” decision.

3.2.2 “Clear-priority” strategy
The schematic diagram of strategy is shown in Figures 3, 4 shows 

the flowchart of the “Reject-priority” strategy.
The “Clear-priority” strategy operates as follows:
Machine intelligence initiates the decision-making process by 

examining X-ray images.
If the machine determines “Clear,” this decision stands as the 

final outcome.
If the machine suggests “Reject,” the image is flagged for 

human review.
Upon human examination, incorrect “Reject” decisions (False 

alarms) are corrected to “Clear.”
Only images confirmed as “Reject” by human inspection become 

the final “Reject” decision.
This approach ensures that potential threats are not 

overlooked while minimizing unnecessary human intervention 
for clear cases.

3.2.3 Model for contraband detection
We previously proposed an XMC R-CNN model for contraband 

detection (Zhang et al., 2020). Most deep learning-based contraband 
detection algorithms utilize RGB images, failing to leverage the rich 
information present in X-ray high and low energy data. Consequently, 
these methods often neglect to fully utilize material-specific 
information during detection. The challenge of contraband detection 
within X-ray baggage imagers remains understudied in the machine 
vision community due to the scarcity of publicly available X-ray image 
datasets. Given the complexity of this problem, detection models that 
incorporate X-ray high and low energy data are notably limited in the 
existing literature.

As shown in Figure 5, the XMC R-CNN model is composed of 
two modules. The Priority module is X-ray Material Classifier (XMC) 
that strips organic and inorganic, and the second module is the Faster 
R-CNN detector that uses the proposed regions. The main 
contribution of the XMC R-CNN model is having solved the problem 
of contraband detection in overlapped X-ray baggage images. The 
detection rate and miss rate that meet the requirements of practical 
scenarios are achieved. It was verified that the detection rate is greater 
than 95%, and the miss rate is less than 5%. In some applications, it 
has exceeded the level of security inspectors.

Figure 5 illustrates the XMC R-CNN model proposed by Zhang 
et al., comprising two key modules:

 1) The Priority module: X-ray Material Classifier (XMC)
Distinguishes between organic and inorganic materials; Performs 

initial screening of X-ray images.
 2) The Detection module: Faster R-CNN

Utilizes regions proposed by the XMC; Performs subsequent 
detailed analysis.

The primary contribution of the XMC R-CNN model lies in 
solving the complex problem of contraband detection in overlapped 
X-ray baggage images. Notably, it achieves detection rates exceeding 
95% and miss rates below 5%, meeting practical scenario requirements. 
In some applications, its performance surpasses that of human 
security inspectors.

In practical security inspection settings, where efficient 
throughput is paramount, machine intelligence plays a crucial role in 
rapidly identifying contraband within the “human-in-the-loop hybrid 
augmented intelligence” framework.

Our research aims to address the practical requirements of 
security inspection systems. While the performance of contraband 
detection based on the XMC R-CNN model represents capability in 
ideal conditions, we  acknowledge that performance in practical 
security inspection scenarios requires further verification. This paper 
does not focus on the contraband detection model itself, which is 
excluded from further discussion.

4 Validation

The evaluation objective of the hybrid augmented intelligence 
method is to assess its practical value for security inspection. 
Specifically, a dedicated security inspection dataset is utilized to 
validate the proposed method. The validation process primarily 
focuses on comparing the decision-making precision and efficiency 
between human-machine hybrid intelligence and human intelligence.

FIGURE 2

Flowchart of “Reject-priority” strategy.
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4.1 Test dataset

The dataset was collected from primary hub airport security 
checkpoints, providing a realistic representation of security 
screening processes. It comprises 33,819 X-ray baggage images 
captured over 11,928 min of continuous operation at high 
throughput levels. Unlike existing datasets (e.g., PIDray, OPIXray, 

SIXray, and CLCXray), the proposed dataset exhibits uneven 
distribution of contraband categories, potentially limiting deep 
learning model performance. However, it accurately reflects the 
practical status of on-site security inspection systems. 
Furthermore, the dataset incorporates actual decision outcomes 
from over 100 security inspectors, enabling assessment of their 
decision-making abilities. Consequently, this dataset is suitable for 
validating human-in-the-loop hybrid augmented intelligence  
methods.

4.2 Test scheme

Actual decision outcomes from security inspectors includes 
“Reject” or “Clear” for passage. The dataset will be sub-divided in 
accordance with the following steps:

 • Step 1: According to the actual decision (“Reject”/“Clear” for 
passage) made by the security inspector, the dataset is divided 
into two subsets which are named “Human-reject” and 
“Human-clear”;

 • Step 2: Utilizing the contraband detection model outlined in 
Section 2.2, we can ascertain whether to categorize each image in 
the dataset as “Reject” or “Clear.” Consequently, the dataset is 
bifurcated into two distinct subsets, designated as “Machine-
reject” and “Machine-clear”;

 • Step 3: Adopting the “Reject-priority” strategy as described in 
Section 3.2.1, the “Machine-reject” subset is treated as the set of 
decisions that require unconditional trust in the human-machine 
hybrid-decision process. This subset serves as the basis for the 
“Hybrid-reject” set. Meanwhile, the “Machine-clear” subset 
undergoes a secondary judgment through “Human-decision.” 
The secondary subset that is “Human-reject” is integrated back 
into the “Hybrid-reject” subset, whereas the “Human-clear” 
subset is recognized as the “Hybrid-clear” subset.

 • Step 4: Following the “Clear-priority” strategy detailed in Section 
3.2.2, the “Machine-clear” subset is deemed the set of decisions 
that are trusted unconditionally in the human-machine hybrid-
decision framework. This subset lays the groundwork for the 
“Hybrid-clear” subset. In contrast, the “Machine-reject” subset is 
subjected to a secondary judgment through “Human-decision.” 

FIGURE 3

“Clear-priority” strategy.

FIGURE 4

Flowchart of “Clear-priority” strategy.
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The secondary subset identified as “Human-clear” is merged into 
the “Hybrid-clear” subset, while the “Human-reject” subset is 
designated as the “hybrid-reject” subset.

4.3 Data analysis

4.3.1 Human intelligence performance
There are 9,011 images in the “Human-reject” subset, and 24,808 

images in the “Human-clear” subset. The details are shown in Table 1.
“Rare categories” that only take 1.6% proportion in the “Human-

reject” subset include alcohol, knives, tools, mercury, and other rare 
contraband. The categories that account for the majority of the dataset 
are power banks, cosmetics, liquid, lighter and lithium batteries. This 
manifest the actual scenario where routine security inspections at 
airports are focused on detecting these specific categories 
of contraband.

 1) Indicators related to efficiency
 a) Average time consuming per image, it represents speed of 

decision-making;
 b) Proportion of the “Human-clear” subset, it represents the 

first-time pass rate.
 2) Indicators related to safety margin

Proportion of the “Human-reject” subset, it represents the rate of 
decision that open the package for inspection during the security 
inspection process.

4.3.2 Machine intelligence performance
The contraband detection model proposed in Section 3.2.3 is sensitive 

to the major categories of contraband in Table 1. There are 13,240 images 
in the “Human-reject” subset, and 20,579 images in the “Human-clear” 
subset. The details are shown in Table 2.

The detection model’s ability to identify rare contraband is less 
effective compared to a security inspector. Consequently, the 
composition of the “Machine-reject” subset differs from the 

“human-reject” subset. This disparity leads to varying 
performance levels between machine intelligence and human 
intelligence on the same dataset. A comprehensive comparison of 
efficiency-related indicators and safety margins follows in the 
subsequent section.

4.3.3 Performance comparison between human 
and machine

A respected security screening expert was invited to review 
the images within the dataset, providing additional assessments 
on the decisions rendered by both the security inspectors and the 
contraband detection model. Utilizing these secondary 
judgments, the decision-making outcomes of humans and 
machines have been recompiled and are presented in Table 3.

It can be extendedly summarized from Table 3 as follows:
 1) The total number of images that should be made decision of 

“reject” was the sum of cases “1,” “2” and “5,” which amounts 
to 7,448 + 339 + 840, totaling 8,627 images.

And the total number of images that should be made decision of 
“clear” was the sum of cases “3,” “4,” “6” and “7,” which amounts to 
745 + 479 + 4,473 + 19,495, totaling 25,192 images.

 2) Indicator representing the accuracy of “Reject” decisions was 
referred to as the “Contraband recall rate.” This rate was the 
proportion of “Correct ‘reject’ decisions” to the “Total number 
of cases that should be ‘rejected’“. The capacity for accurate 
“Reject” decisions is directly proportional to the “contraband 
recall rate.”

 • For human decision-making, the “contraband recall rate” was 
(7,448 + 339)/8,627*100% = 90.3%.

 • For machine decision-making, the “contraband recall rate” 
was (7,448 + 840)/8,627*100% = 96.1%.

Comparison conclusion 1: The machine decision-making had 
higher “contraband recall rate” than that of human 
decision-making.

 3) Indicators representing the precision of “Reject” decisions 
could be gauged by two indicators: “Contraband Detection 
Precision” and “False Alarm Rate.”

FIGURE 5

XMC R-CNN model (Zhang et al., 2020).
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The “Contraband detection precision” was the proportion of the 
“Correct decision of ‘reject’” to the “Total numbers of that be decided 
as ‘reject’”.

 • For human decision-making, the “Contraband detection 
precision” was (7,448 + 339)/9011*100% = 86.4%.

 • For machine decision-making, the “Contraband detection 
precision” was (7,448 + 840)/13240*100% = 62.6%.

The “False alarm rate” was the proportion of “Incorrect decision 
of ‘reject’” to the “Total numbers of that be decided as ‘reject’”. The 
“False alarm rate” was inversely proportional to the “Contraband 
detection precision.”

 • For human decision-making, the “False alarm rate” was 
(745 + 479)/9,011*100% = 13.6%

 • For machine decision-making, the “False alarm rate” was 
(479 + 4,473)/13,240*100% = 37.4%.

Comparison conclusion 2: Human decision-making exhibits a 
higher “Contraband detection precision” compared to machine 
decision-making. Conversely, machine decision-making results in a 
higher “False alarm rate” than human decision-making.

 4) The safety margin can be  assessed using the “Contraband 
missed detection rate,” which is the ratio of “Incorrect ‘clear’ 
decisions” to the “Total number of cases that should 

be ‘rejected’“. The safety margin is inversely proportional to the 
“Contraband missed detection rate.”

 • For human decision-making, the “Contraband missed detection 
rate” was 840/8,627*100% = 9.7%.

 • For machine decision-making, the “Contraband missed detection 
rate” was 339/8,627*100% = 3.9%.

Comparison result 3: Machine decision-making boasts a lower 
“Contraband missed detection rate” compared to human 
decision-making.

 5) The indicator that represents the credibility of machine 
decision-making, reflecting the consistency between 
human and machine decisions, is known as the 
“Agreement rate.”

 • The “Agreement rate” was the ratio of “All consistent decisions of 
‘reject’ and ‘clear’” to the “Whole dataset,” 
(7,448 + 19,495)/33,819*100% = 79.7%.

Comparison result 4: The machine decision-making based on the 
selected contraband detection model is considered credible.

All comparative analyses of the indicators are categorized by 
evaluation objectives and compiled in Table 4.

Table  4 presents various viewpoints for discussion. Machine 
intelligence offers rapid decision-making capabilities, reducing the 

TABLE 1 Decision-making results of security inspector.

Duration (min) 11,928

Average time 

consuming per 

image(s)

21.2

Numbers of images 33,819

Subset (Human-reject) 9,011
(Human-clear) 

24,808

Proportion of subset 

(%)
26.6 73.4

Contraband category Power banks Cosmetics Liquid Lighter Lithium Batteries Rare categories

Numbers of 

contraband images
7,400 814 309 246 98 144

Proportion of 

contraband category 

(%)

82.1 9.1 3.4 2.7 1.1 1.6

TABLE 2 Decision-making results of the contraband detection model.

Duration (min) 56

Average time consuming 

per image(s)
0.1

Numbers of images 33,819

Subset (Machine-reject) 13,240 (Machine-clear) 20,579

Proportion of subset (%) 39.2 60.9

Contraband category Power banks Cosmetics Liquid Lighter Lithium Batteries

Numbers of contraband 

images
11,241 1,101 430 374 94

Proportion of contraband 

category (%)
84.9 8.3 3.3 2.8 0.7
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average processing time per image to 1/200th of human decision-
making speed. This significantly enhances inspection efficiency. 
However, machine intelligence exhibits heightened sensitivity to 
common contraband, resulting in lower contraband detection 
accuracy and first-time pass rate compared to human intelligence. The 
decreased accuracy may compromise overall system efficiency.

Secondly, machine intelligence demonstrates superior contraband 
recall rates, potentially increasing the safety margin in security 
inspections. Consequently, machine intelligence presents both benefits 
and drawbacks for security inspection systems. To maximize its 
potential, practical applications should focus on effectively leveraging 
machine intelligence’s advantages. Evaluations of hybrid human-
machine approaches should prioritize balancing improved safety 
margins with maintaining system efficiency.

4.3.4 Performance of human-in-the-loop hybrid 
augmented intelligence method

To validate the proposed human-in-the-loop hybrid augmented 
intelligence method, compare indicators related to efficiency and 
safety margins against those of human and machine intelligence. 
Different indicators are valued in various practical scenarios. 
Indicators from the “Reject-priority” strategy method are suitable for 
scenarios prioritizing safety, while those from the “Clear-priority” 
strategy method are suited for scenarios emphasizing efficiency.

 1) Performance of the method based on the “Reject-priority” 
strategy

Following the procedure outlined in Section 3.2.1, the contraband 
detection model initially processed all images in the dataset to make 
decisions. Consequently, the dataset was divided into two subsets: 
“Machine-reject” and “Machine-clear.” Subsequently, images from the 
“Machine-clear” subset were sent to human decision-making review. 

As a result, the subsets were reorganized into “Hybrid-reject” and 
“Hybrid-clear,” as depicted in Table 5.

There were 14,324 images in the “Hybrid-reject” subset, and 
19,495 images in the “Hybrid-clear” subset. The total number of 
images that should be made decision of “Reject” was the sum of cases 
“Rp-1” and “Rp-3,” namely 8,288 + 339 = 8,627. The total number of 
images that should be made decision of “Clear” was the sum of cases 
“Rp-2,” “Rp-4” and “Rp-5,” namely 4,952 + 745 + 19,495 = 25,192.

 a) Indicators related to efficiency
 o The “Average time consuming per image” was (7,328*60)/

(33,819 + 20,579) = 8.1 s
 o The “Rate of making ‘Clear’ decision” was 

19,495/33819*100% = 57.6%
 o The “Contraband detection precision” was 

(8,288 + 339)/14324*100% = 60.2%
 o The “False alarm rate” was (4,952 + 745)/14324*100% = 39.8%

 b) Indicators related to safe margin
 o The “Contraband recall rate” was 

(8,288 + 339)/8,627*100% = 100%
 o The “Contraband missed detection rate” was 

0/8,627*100% = 0%
 2) Performance of the method based on the “Clear-priority” 

strategy.
According to the procedure detailed in Section 3.2.2, after the 

initial phase, images from the “Machine-reject” subset were forwarded 
to the human decision-making review. Consequently, the subsets were 
reorganized into “Hybrid-reject” and “Hybrid-clear,” as illustrated in 
Table 6.

There were 8,767 images in the “Hybrid-reject” subset, and 25,052 
images in the “Hybrid-clear” subset. The total number of images that 

TABLE 4 Indicators comparison classified by evaluation objectives.

Performance Data resource

Classification Indicator
Human decision-

making
Contrast  

relationship
Machine decision-

making

Efficiency

Average time consuming per image(s) 21.2 > 0.1

Rate of making “Clear” decision (%) 73.4 > 60.9

Contraband detection precision (%) 86.4 > 62.6

False alarm rate (%) 13.6 < 37.4

Safe margin
Contraband recall rate (%) 90.3 < 96.1

Contraband missed detection rate (%) 9.7 > 3.9

TABLE 3 Reorganization of decision-making results based on secondary judgments.

Case Description of secondary judgment Numbers of images

1 Human and machine made consistent correct decision of “reject” 7,448

2 Human made correct decision of “reject” & Machine made incorrect decision of “clear” 339

3 Human made incorrect decision of “reject” & Machine made correct decision of “clear” 745

4 Human made correct decision of “clear” & Machine made incorrect decision of “reject” 4,473

5 Human made incorrect decision of “clear” & Machine made correct decision of “reject” 840

6 Human and machine made consistent incorrect decision of “reject” 479

7 Human and machine made consistent correct decision of “clear” 19,495

Total 33,819

https://doi.org/10.3389/frai.2025.1518850
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Huang et al. 10.3389/frai.2025.1518850

Frontiers in Artificial Intelligence 11 frontiersin.org

should be made decision of “Reject” was the sum of cases “Cp-1” and 
“Cp-3,” namely 8,288 + 339 = 8,627. The total number of images that 
should be made decision of “Clear” was the sum of cases “Cp-2,” 
“Cp-4” and “Cp-5,” namely 479 + 20,240 + 4,473 = 25,192.

 a) Indicators related to efficiency
 o The “Average time consuming per image” was (4,734*60)/

(33,819 + 13,240) = 6.0 s
 o The “Rate of making ‘Clear’ decision” was 

25,052/33819*100% = 74.1%
 o The “Contraband detection precision” was 

8288/8767*100% = 94.5%
 o The “False alarm rate” was 479/8767*100% = 5.5%

 b) Indicators related to safe margin
 o The “Contraband recall rate” was 8288/8627*100% = 96.1%
 o The “Contraband missed detection rate” was 

339/8627*100% = 3.9%
 3) General comparison of performances between different 

decision-making methods
It is recommended that a human-machine hybrid decision-

making method can compensate for the weaknesses inherent in both 

human and machine intelligence. This method is not only more 
efficient but also more reliable. The indicators related to efficiency, 
safety margins and staff workload are summarized in Table 7.

The hybrid decision-making method based on both strategies 
significantly reduces “average time consuming per image” and “staff 
workload” compared to human decision-making across all indicators. 
For other metrics, the performance varies depending on the 
underlying strategy. Specifically, the “Hybrid decision-making based 
on ‘Reject-priority’” strategy yields “False alarm rate” and “Contraband 
recall rate,” but lower “Rate of making ‘Clear’ decision,” “Contraband 
detection precision” and “Contraband missed detection rate.” 
Conversely, the “Hybrid decision-making based on ‘Clear-priority’ 
strategy” exhibits improved “Rate of making ‘Clear’ decision,” 
“Contraband detection precision” and “Contraband recall rate,” along 
with reduced “False alarm rate” and “Contraband missed 
detection rate.”

The proposed hybrid decision-making method exhibits unique 
characteristics based on each strategy. While the “Reject-priority” 
method excels in safety margin related indicators, its efficiency is 
suboptimal. Conversely, the “Clear-priority” method offers a more 
balanced distribution of indicators across various metrics.

TABLE 5 Subset classification for validation of the “Reject-priority” strategy method.

Duration (min) 7,328

Numbers of images 33,819

Machine decision subset (Machine-reject) 13,240 (Machine-clear) 20,579

Human decision subset (Hybrid-reject) 14,324 (Hybrid-clear) 19,495

Proportion of subset (%) 42.4 57.6

Case number Rp-1 Rp-2 Rp-3 Rp-4 Rp-5

Subsets of different hybrid-

decision

Machine first made 

correct decision of 

“Reject”

Machine first made 

incorrect decision of 

“Reject”

Machine first made 

incorrect decision of 

“Clear,” and then human 

made correct decision of 

“Reject”

Machine first made 

correct decision of 

“Clear,” but then human 

made incorrect decision 

of “Reject”

Human and machine made 

consistent correct decision 

of “Clear”

Numbers of images in 

hybrid-decision subset
8,288 4,952 339 745 19,495

TABLE 6 Performance of method based on “Clear-priority” strategy.

Duration (min) 4,734

Numbers of images 33,819

Machine decision subset (Machine-reject) 13,240 (Machine-clear) 20,579

Human decision subset (Hybrid-reject) 8,767 (Hybrid-clear) 25,052

Proportion of subset (%) 25.9 74.1

Case number Cp-1 Cp2 Cp-3 Cp-4 Cp-5

Subsets of different hybrid-

decision

Human and machine 

made consistent correct 

decision of “Reject”

Human and machine 

made consistent incorrect 

decision of “Reject”

Machine first made 

incorrect decision of 

“Clear”

Machine first made 

correct decision of 

“Clear”

Machine first made 

incorrect decision of 

“Reject,” and then 

human made correct 

decision of “Clear”

Numbers of images in 

hybrid-decision subset
8,288 479 339 20,240 4,473
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5 Discussion

To evaluate the practical value for security inspections, we employ 
five attributes for a comprehensive assessment of the decision-making 
method outlined earlier. Certain indicators in Table 7 correspond to 
specific attributes of the “decision-making” method, which is further 
elaborated upon in Table 8.

Using the attributes in Table  8 as the axis, a “Radar chart” is 
created for each decision-making method, as depicted in Figure 6. 
Each coordinate point’s value is derived from sorting the 
corresponding indicator’s value for that particular method. The 
specific sorting rules are based on the deviation of the indicator’s 
actual value from its theoretical value. Indicators positively correlated 
with the attributes receive higher rankings for higher numerical 
values, while those negatively correlated receive higher rankings for 
lower numerical values. All the above values are summarized in 
Table 9.

Figure  6A illustrates the “Human decision-making” method, 
which excels in anti-interference and reliability in decision-making 
processes. However, this approach comes at the cost of human labor 
and the efficiency reduction. Furthermore, human error contributes 
to a relatively lower recall rate of contraband, thereby impacting the 
ability to perceive security risks effectively.

Figure 6B demonstrates that the speed of the “Machine decision-
making” process is the fastest, completely liberating human labor. This 
contrasts sharply with the traditional “Human decision-making” 
approach. While the latter exhibits strong security risk perception 

capabilities, it remains sensitive to interference, resulting in 
frequent interruptions.

The characteristics of the “Hybrid decision-making based on 
‘Reject-priority’” method are illustrated in Figure  6C. This 
approach exhibits several notable advantages in security 
risk perception:

 • It integrates the contraband detection abilities of both humans 
and machines.

 • On the proposed dataset, the recall rate for contraband 
achieves 100%.

However, there are significant drawbacks to this method:

 • Its ultimate performance in security risk perception comes at a 
substantial cost.

 • The system is highly sensitive to interference, making it 
less robust.

 • The overall performance of the method is relatively  
conservative.

This conservatism translates to an extremely cautious approach in 
security inspection scenarios with high safety standards. While this 
ensures maximum safety, it may also lead to unnecessary delays or 
false positives in certain situations.

The “Hybrid decision-making based on ‘Clear-priority’” method 
illustrated in Figure  6D exhibits superior and well-balanced 

TABLE 7 Comparison of performances between different decision-making methods.

Performance Data resource

Classification Indicator
Human decision-

making
Machine 

decision-making

Hybrid decision-making

Reject-priority Clear-priority

Efficiency

Average time consuming per 

image(s)

21.2 0.1
8.1

6.0

Rate of making “Clear” decision 

(%)

73.4 60.9
57.6

74.1

Contraband detection precision 

(%)

86.4 62.6
60.2

94.5

False alarm rate (%) 13.6 37.4 39.8 5.5

Safe margin

Contraband recall rate (%) 90.3 96.1 100 96.1

Contraband missed detection rate 

(%)

9.7 3.9
0

3.9

Staff workload
Total amount of images for human 

inspecting (images)
33,819 0 20,579 13,240

TABLE 8 Correlations between “Attributes” and “Indicators.”

Attributes Corresponding Indicator Correlation

Speed of decision-making Average time consuming per image Negative

Ability of making correct decision Rate of making “Clear” decision Non-linear

Capability of anti-interference False alarm rate Negative

Ability of security risk perception Contraband recall rate Positive

Ability of reducing labor intensity The total amount of images for human inspecting Positive
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performance. This approach not only boasts an almost flawless 
capacity for accurate decision-making but also significantly reduces 
dependence on human labor. Furthermore, it achieves comparable 
performance in security risk perception to machine-based decision-
making while demonstrating enhanced resistance to interference. In 
essence, this hybrid method addresses the limitations of both human 

and machine approaches, effectively combining their respective 
strengths. It is particularly well-suited for security inspection scenarios 
that demand high timeliness and handle substantial volumes 
of transactions.

Comparing the actual effects of the two strategies, it can be seen 
that the “Reject-priority” strategy has reached the ultimate level in the 

FIGURE 6

Performance comparison on five aspects for each method. (A) Human decision-making. (B) Machine decision-making. (C) Hybrid decision-making 
(Reject-first). (D) Hybrid decision-making (Clear-first).

TABLE 9 “Radar chart” coordinate value overview.

Indicator Theoretical ideal 
value

Deviation from ideal value (rank)

Human decision-
making

Machine 
decision-making

Hybrid decision-making

Reject-priority Clear-priority

Average time consuming 

per image(s)
→0 21.2 (4) 0.1 (1) 8.1 (3) 6.0 (2)

Rate of making “Clear” 

decision (%)
74.5 (25,192/33,819) 1.1 (2) 13.6 (3) 16.9 (4) 0.4 (1)

False alarm rate (%) 0 13.6 (2) 37.4 (3) 39.8 (4) 5.5 (1)

Contraband recall rate 

(%)
100 9.7 (4) 3.9 (2) 0 (1) 3.9 (2)

Total amount of images 

for human inspecting 

(images)

0 33,819 (4) 0 (1) 20,579 (3) 13,240 (2)
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“Safe Margin,” but at the expense of efficiency. While it may cause 
some inconvenience to passengers from the perspective of security 
service experience. However, it appropriately reduces the workload of 
security inspectors.

The “Reject-priority” strategy is particularly suitable for security 
scenarios with high safety standards, such as: Important security 
venue inspections, Major event inspections, Civil aviation passenger 
inspections and Border checkpoint inspections.

On the other hand, the “Clear-Priority” strategy has been 
significantly optimized in terms of efficiency and labor intensity. It has 
also been optimized to a certain extent in the “Safety Margin” 
indicator. This strategy is well-suited for security scenarios with high 
requirements for inspection timeliness and large business flow 
throughput, such as: Express logistics inspections, Urban rail transit 
inspections during peak periods, Railway inspections during the 
Spring (Summer) transportation period.

Certainly, there are still some limitations in the practical 
implementation of the security screening system based on human-
machine hybrid decision-making. The “Reject-priority” strategy 
is relative sensitive, resulting in a higher “Reject rate,” which 
causes inconvenience to the inspected individuals and leads to a 
decrease in system usability. Additionally, while the “Clear-
priority” strategy greatly reduces the workload of security 
inspector, it may lead to decreased vigilance and over-reliance on 
machines, potentially resulting in vulnerabilities in identifying 
rare contraband.

6 Conclusion

In this paper, we propose a human-in-the-loop hybrid augmented 
intelligence approach tailored to address the practical requirements of 
security inspection systems. This methodology manifests itself as a 
hybrid decision-making method that incorporates two distinct 
strategies: “Reject-priority” and “Clear-priority.” These strategies serve 
complementary roles in enhancing the overall performance of the 
decision-making process.

On the dataset from a specific practical security inspection site, 
comparative experiments were conducted to validate the performance 
of the hybrid decision-making method. Initially, the differences of 
capabilities between human inspector and machine intelligence were 
compared across some indicators. Several findings emerged, revealing 
that machine decision-making exhibits higher safety margins and 
efficiency but lower confidence in decision-making compared to 
human decision-making. Consequently, a further validation with more 
indicators of performance metrics was employed to validate the 
proposed “Hybrid decision-making” method. Subsequently, 
evaluations are transformed into a side-by-side comparison of relative 
differences in terms of multidimensional capabilities 
among “Human,” “Machine,” and “Hybrid” decision-making 
method. Based on these comparisons, several conclusions were drawn.

 1) “Hybrid decision-making” method based on strategies both 
exhibit superior “contraband recall rates” compared to 
traditional “Human decision-making.” This enhanced 

capability for risk perception contributes to a broader safety 
margin in the security inspection system.

 2) “Hybrid decision-making” method based on strategies both 
can reduce human labor requirements compared to “Human 
decision-making.” This leads to increased efficiency and lower 
labor cost for the security inspection system.

 3) “Hybrid decision-making” method based on strategies both 
methods are less time-consuming than “Human decision-
making” resulting in a higher speed of decision-making that 
improves the overall efficiency of the security 
inspection system.

 4) “Hybrid decision-making based on ‘Clear-priority’” has more 
balanced performance than “Hybrid decision-making based on 
‘Reject-priority.’” It complements the strengths of humans and 
machines separately while reflecting both simultaneously. In 
comparison, “Hybrid decision-making based on ‘Reject- 
priority’” demonstrates superior performance in risk 
perception, integrating the contraband detection capabilities of 
both humans and machines.

 5) Hybrid decision-making method with basis of either 
strategy can enhance decision-making effectiveness by 
integrating human and machine intelligence. Various 
strategies support different levels of method enhancement. 
Each method is tailored to specific practical scenarios 
based on its characteristics. “Reject-priority” is particularly 
suitable for security inspection scenarios requiring 
stringent safety protocols, such as: security checks at 
critical facilities, major event security screenings, civil 
aviation passenger security inspections, border checkpoint 
security screenings. “Clear-priority” is ideal for security 
inspection scenarios characterized by high-volume traffic 
flow and demanding efficiency, including express luggage 
security screening, peak-hour security checks in urban rail 
transit systems, large-scale event security screenings.

In the future, research will continue on how to fuse multi-
hybrid intelligence strategies based on dynamic allocation of 
efficiency and workload. The goal is to select the optimal strategy 
considering instantaneous traffic flow in practical sites. 
Furthermore, as the scale of collected data continues to grow, the 
approach will enable seamless adaptation of the method to the 
actual needs of the application.

Simultaneously, the results of the security inspector not only 
allow for correcting incorrect machine decisions but also facilitate 
the collection of machine incremental learning samples 
spontaneously. These samples serve as a data source for the self-
evolution machine intelligence. As machine capabilities continue 
to advance, the scope of work that can be  automated increase  
gradually.

This method systematically enhances the effectiveness of 
security inspections while reducing labor costs. By optimizing 
both efficiency and safety margins, it provides a comprehensive 
solution for various security scenarios, ranging from high-safety 
standard venues to high-throughput situations requiring 
rapid processing.
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