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Background: Chest X-ray (CXR) interpretation is critical in diagnosing various

lung diseases. However, physicians, not specialists, are often the first ones

to read them, frequently facing challenges in accurate interpretation. Artificial

Intelligence (AI) algorithms could be of great help, but using real-world data is

crucial to ensure their e�ectiveness in diverse healthcare settings. This study

evaluates a deep learning algorithm designed for CXR interpretation, focusing

on its utility for non-specialists in thoracic radiology physicians.

Purpose: To assess the performance of a Convolutional Neural Networks

(CNNs)-based AI algorithm in interpreting CXRs and compare it with a team of

physicians, including thoracic radiologists, who served as the gold-standard.

Methods: A retrospective study from January 2021 to July 2023 evaluated an

algorithm with three independent models for Lung Abnormality, Radiological

Findings, and Tuberculosis. The algorithm’s performance was measured using

accuracy, sensitivity, and specificity. Two groups of physicians validated the

model: one with varying specialties and experience levels in interpreting chest

radiographs (Group A) and another of board-certified thoracic radiologists

(Group B). The study also assessed the agreement between the two groups on

the algorithm’s heatmap and its influence on their decisions.

Results: In the internal validation, the Lung Abnormality and Tuberculosismodels

achieved an AUC of 0.94, while the Radiological Findings model yielded a mean

AUC of 0.84. During the external validation, utilizing the ground truth generated

by board-certified thoracic radiologists, the algorithm achieved better sensitivity

in 6 out of 11 classes than physicianswith varying experience levels. Furthermore,

Group A physicians demonstrated higher agreement with the algorithm
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in identifying markings in specific lung regions than Group B (37.56% Group A

vs. 21.75% Group B). Additionally, physicians declared that the algorithm did not

influence their decisions in 93% of the cases.

Conclusion: This retrospective clinical validation study assesses an AI algorithm’s

e�ectiveness in interpreting Chest X-rays (CXR). The results show the algorithm’s

performance is comparable to Group A physicians, using gold-standard analysis

(Group B) as the reference. Notably, both Groups reported minimal influence of

the algorithm on their decisions in most cases.

KEYWORDS

chest X-rays, artificial intelligence, deep learning, clinical validation, convolutional

neural network

1 Introduction

Chest X-rays (CXR) are critical in screening and monitoring

respiratory diseases. However, their interpretation can be

challenging due to factors such as overlapping anatomical

structures (e.g., ribs, clavicles, thoracic spine, pulmonary vessels,

heart, mediastinum, and diaphragm), difficulties in visual

search and lesion recognition, frequent interruptions, observer

inexperience, and poor image quality. These challenges contribute

to reading errors, particularly among non-specialists in thoracic

imaging (Tack and Howarth, 2019; Del Ciello et al., 2017). In

response to these challenges, there has been increasing interest

in using artificial intelligence (AI) tools for medical imaging,

particularly convolutional neural networks and deep learning

(Khan et al., 2021). Significant advancements have been made

in developing algorithms to detect pulmonary abnormalities,

offering promising solutions to support diagnostic decision-

making (Chartrand et al., 2017; Kohli et al., 2017). For example,

CXR-based automated systems have been proposed to rapidly

detect pneumonia and characterize incidental pulmonary nodules

(Mathew et al., 2020).

As with any medical device or health technology, proper

validation of AI algorithms is essential for their adoption in

clinical practice. This ensures patient safety, maximizes benefits,

and mitigates risks of inadvertent harm (de Hond et al.,

2022). Validation requires evaluating an algorithm’s diagnostic

performance across a spectrum of disease manifestations and

demographic variations, ensuring bias is minimized (Park andHan,

2018; Park and Kressel, 2018). Thus, prior to clinical adoption, AI

algorithmsmust undergo rigorous validation processes that include

internal and clinical validation. Internal validation assesses an

algorithm’s reliability and generalization in controlled conditions.

In contrast, clinical (or external) validation evaluates its efficacy in

real-world settings, spanning diverse populations, environments,

and imaging equipment (Altman and Royston, 2000). Clinical

validation must also reflect the target population, analyzing

performance across subgroups defined by age, ethnicity, sex,

socioeconomic status, and geographic location (Kelly et al., 2019).

This two-phased approach enhances confidence in AI-supported

diagnostics, transitioning them from experimental applications to

patient-centered practices (Vasey et al., 2022).

Several studies exemplify successful clinical validation efforts.

For instance, Hosny et al. (2022) validated a deep learning model

for segmenting tumors and lymph nodes in CT images of non-

small cell lung cancer, optimizing radiotherapy planning. Ueda

et al. (2021) demonstrated the effectiveness of AI-assisted software

in improving lung cancer detection in chest X-rays, particularly

enhancing general practitioners’ accuracy. Similarly, Cid et al.

(2024) validated open-source neural networks using extensive

datasets from UK hospitals, showcasing robust generalization.

Blake et al. (2023) conducted external validation of a CE-marked AI

tool, qXR, for stratifying CXRs as normal or abnormal, confirming

its high sensitivity and highlighting its potential to reduce reporting

delays. Nam et al. (2023) underscored AI’s efficacy in lung nodule

detection through a randomized clinical trial, while Nguyen et al.

(2022) and Thian et al. (2021) emphasized the importance of

external validation in deploying AI systems for real-world use.

Despite significant advancements in artificial intelligence, a

critical gap persists in validating AI algorithms for tuberculosis

(TB) detection in conjunction with other radiological findings,

particularly in scenarios involving physicians with varying levels of

expertise. While many AI systems are designed to identify multiple

conditions on chest radiographs, TB is often under-represented

or not prioritized as a primary outcome. Furthermore, in real-

world clinical settings, chest radiographs are frequently interpreted

by non-specialist physicians or practitioners from other specialties

due to the limited availability of board-certified radiologists. This

gap-insufficient focus on TB and the reliance on non-specialist

evaluations–highlights the urgent need for innovative solutions.

Addressing this gap, the present study develops and validates

an AI algorithm tailored to classify TB and various radiological

findings, leveraging input from physicians with diverse expertise

in chest radiograph interpretation. This approach underscores

the importance of integrating AI into broader clinical workflows,

making this work timely and essential.

This study addresses the gap described above by incorporating

physicians’ expertise, from non-specialists to radiologists,

pulmonologists, and infectious disease experts, to validate

an artificial intelligence algorithm designed to analyze chest

radiographs, including TB and other radiological findings. The

algorithm detects pulmonary abnormality, tuberculosis, and

other radiological findings, providing a comprehensive evaluation
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across diverse clinical perspectives. Its inclusive design addresses

the reliance on non-specialist physicians due to a shortage of

radiologists, enhancing real-world applicability. By fostering

interdisciplinary collaboration, this study strengthens algorithm

validation. It highlights the effective integration of AI into patient

care, paving the way for robust, inclusive strategies in diagnosing

and managing complex diseases like tuberculosis.

Based on the information presented, the following hypothesis

is formulated: if efficient external validation processes have been

applied to artificial intelligence algorithms for the analysis of chest

radiographs, then it is feasible to apply the external validation

technique for the identification of pulmonary abnormality,

tuberculosis, and nine other radiological findings with the support

of physicians from various specialties. This process will increase

the robustness and clinical applicability of artificial intelligence

algorithms and ensure that the algorithm can be effectively used in

a real clinical environment, where the diversity of interpretations

and the complexity of cases reflect the multidisciplinary nature of

medical diagnosis.

Few studies have clinically validated AI algorithms in medical

imaging using external data that accurately reflect real-world

scenarios, particularly involving physicians from various specialties

(Kim et al., 2019). Therefore, the main objective of this work

is to develop and clinically validate an AI algorithm comprising

three models to classify: (i) Tuberculosis, (ii) Radiological Findings,

and (iii) Pulmonary Abnormality from chest radiographs. By

initiating an innovative approach to clinical validation, this

work seeks to assist in interpreting CXRs and serve as a guide

for researchers to enhance AI algorithms for broader clinical

applications. The specific objectives are (i) datasets’ separation, (ii)

models’ construction, (iii) training and internal validation, and (iv)

retrospective clinical validation of the proposed models.

The paper is structured as follows: (i) Section 2 presents the

methodology used to develop algorithms and clinical validation,

(ii) Section 3 brings the results and some analyses, and (iv) Section

4 presents the conclusions and future direction about the clinical

validation of AI algorithms with physicians of different specialties.

2 Materials and methods

This section presents the main methodological aspects of this

study and some theoretical aspects (Artificial Intelligence, Model

Development, and Clinical Validation) to serve as a basis for

understanding the methodology of this work.

2.1 Artificial intelligence model
development

Convolutional Neural Networks (CNNs) were utilized to

develop the algorithm, which consists of three models that work

independently of each other: (i) the Lung Abnormality Model

(LAM) to classify the lung parenchyma image as normal or

abnormal, (ii) the Radiological Findings Model (RFM) to classify

specific findings on CXR into nine classes (consolidation, lung

opacity, lung injury, atelectasis, edema, pneumothorax, pleural

effusion, cardiomegaly, and mediastinal widening), and (iii)

Tuberculosis Model (TBM) to determine whether the CXR is

compatible with pulmonary tuberculosis or not.

The architecture of these models consists of a pre-trained

backbone (DenseNet-121 for LAM and TBM, and DenseNet-

169 for RFM, with ImageNet weights) and a dense convolution

layer for classification, with weights initialized using the normal

distribution (Deng et al., 2009). Weakly supervised learning

associated with the Probability Class Activation Map is applied

to strengthen the models’ ability to localize the radiological

findings (Zhou, 2018; Ye et al., 2020). The input images were

resized to a 512 × 512 matrix size. When resizing was necessary,

zero-filling was used in conjunction with linear interpolation to

maintain the image’s original aspect ratio. The exclusion criteria

employed during the model training phase were the same as

those approved by the ethics committee for the external validation

phase. This uniformity ensures that the entire study complies with

the established ethical guidelines, guaranteeing the integrity and

reliability of the results obtained.

Regarding hyperparameters, the optimizer used was Lookahead

Adam, and the loss function was binary cross-entropy. The

Tuberculosis and Radiological Findings models were trained for 30

epochs with an initial learning rate of 0.0005 and 0.001, respectively.

The batch size of the TBM was 16 and of the RFM was 32. The

Lung Abnormality model, on the other hand, was trained for 15

epochs with an initial learning rate of 0.0005 and a batch size of

16. Additionally, a learning rate scheduler was employed: for the

TBM, it was multiplied by 0.05 every 5 epochs; for the LAM, it

was multiplied by 0.8 every 3 epochs; and for the RFM, it was

multiplied by 0.95 every 2 epochs. The learning rate and the number

of epochs were empirically adjusted to optimize performance and

avoid overfitting. To address the class imbalance in the dataset, loss

weights were applied (Japkowicz and Stephen, 2002).

Each model’s training, validation, and test subsets were

randomly selected at the patient level to prevent data leakage. For

each of the three models, the training subset consisted of 70%

of the original dataset, while the remaining 30% was allocated

to the internal validation subset (20% for validation and 10% for

test). The area under the receiver operating characteristic curve

(AUC) metric was calculated on the validation and test subsets

to evaluate the performance of the three models. Each algorithm

provide a classification score and generates a heatmap to enhance

the explainability of the results.

PyTorch 1.5.0 was used for algorithm development in Python

(version 3.6, Python Software Foundation) (Paszke et al., 2019).

2.1.1 Datasets used for the AI development
The development of the algorithm employed a total of

252,721 selected images from the CheXpert, Tuberculosis Portals,

PadChest, NIH ChestX-ray8, Montgomery, and Shenzhen

datasets (Irvin et al., 2019; Rosenthal et al., 2017; Bustos et al., 2020;

Wang et al., 2017; Jaeger et al., 2014). Table 1 shows a summary of

class distribution, original image resolution, and post-processing

techniques. To ensure consistency, the patient exclusion criteria

used during the model training phase were the same as those

approved by the ethics committee for the external validation

phase. Patients over 18 years old were excluded, as were images

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2025.1512910
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


de Camargo et al. 10.3389/frai.2025.1512910

acquired with projections other than frontal. Additionally, images

of unacceptable quality–such as those not encompassing the entire

thorax or those overexposed to X-rays, which limit diagnostic

capability–were excluded.

The original database labels were used, with the exception of

the PadChest dataset for the TB model, in which the following

labels were considered positive for tuberculosis: (i) tuberculosis,

(ii) sequelae tuberculosis, (iii) cavitation, (iv) calcified adenopathy,

(v) granuloma, (vi) calcified granuloma, and (vii) apical

pleural thickening.

For the Lung Abnormality model, the PadChest and the

Tuberculosis Portals datasets were not used, resulting in a

total of 51,879 images from 30,204 patients (male-to-female

ratio 1,916/6,593; mean age 52.88 years ± 18.77 [standard

deviation (SD)]. The ratio of positive to negative cases was

25,879/26,000, respectively.

For the Radiological Findings model, only the multilabel

CheXpert dataset was used, comprising a total of 191,211

images from 64,540 patients (male-to-female ratio 13,953/30,259;

mean age 60.67 years ± 17.82 SD). The number of positive

cases for each class was as follows: consolidation (16,900),

atelectasis (29,793), lung opacity (111,707), lung lesion (7,041),

edema (49,716), pneumothorax (17,700), pleural effusion (76,958),

cardiomegaly (23,450), mediastinal widening (7,391), and 30,007

images showed no findings. It is pertinent to note that the

possibility of encountering multiple findings within a single image

exists, highlighting the complexity of radiological diagnosis and

the comprehensive nature of the CheXpert dataset in capturing

such diversity.

All datasets except NIH ChestX-ray8 were used for the TBM,

resulting in a dataset of 2,554 images from 2,292 patients (male-to-

female ratio 82/207; mean age 59.56 years± 17.48 SD). The ratio of

positive to negative cases was 67/605, respectively.

All images underwent preprocessing steps including histogram

equalization, Gaussian blur, and normalization. Regarding some

ethical aspects and patient privacy for datasets used during model

training, validation, and testing, all images from these public

datasets are anonymized from their origin. Some datasets share

information related to gender and age (for example, CheXpert), but

not all of them.

2.2 Validation study design

Clinical validation involves rigorously testing a new medical

technology or method against established clinical benchmarks and

standards. In the case of AI algorithms in radiology, this would

mean comparing the algorithm’s diagnostic accuracy, reliability,

and safety against current best practices or gold standards in

radiology (Briganti and Le Moine, 2020). The process often

includes statistical analysis of the algorithm’s performance in

various clinical scenarios, assessment of its usability in real-world

settings, and evaluation of its impact on patient outcomes (Park,

2019).

Recent advances have shown that AI algorithms can help

radiologists improve their performance in detecting certain

diseases in radiologic images (Li et al., 2021). However, challenges

TABLE 1 Summary of class distribution, original resolution, and

post-processing techniques for the datasets used.

Class distribution Original
resolution

Post-
processing
steps

ChestX-ray8 Atelectasis: 11,559

Cardiomegaly: 2,776

Pneumothorax: 5,329

Lung opacity: 19,990

Lung lesion: 6,326

Pleural effusion: 13,649

Others: 49,319

2,000× 3,000

pixels

Not mentioned

CheXpert Atelectasis: 29,333

Cardiomegaly: 23,002

Mediastinal widening: 9,020

Pneumothorax: 17,313

Lung opacity: 92,669

Lung lesion: 6,856

Pleural effusion: 75,696

Others: 34,427

372× 325

(mean)

Automatic labels

with NLP rules

PadChest Tuberculosis: 308

Tuberculosis sequelae: 1,070

Cavitation: 620

Calcified adenopathy: 647

Granuloma: 732

Calcified granuloma: 3,198

Apical pleural thickening:

3,625

Other: 319,917

High

resolution, not

dimensioned

Pre-processing

with DICOM

window

Montgomery

(MC)

TB Positive: 58

TB Negative: 80

4,020× 4,892

and

4,892× 4,020

Manually

segmented masks

Shenzhen TB Positive: 336

TB Negative: 326

Approximately

3,000× 3,000

pixels

Not mentioned

TB Portals TB Positive: 1,129

TB Negative: 170

2,568× 2,352

(mean)

Not mentioned

such as algorithm bias, data privacy, and integration into clinical

workflows still need to be addressed (Saw and Ng, 2022).

The validation study was managed as a retrospective study.

The retrospective validation stage was conducted with the objective

of comparing the performance of physicians with varying levels

of experience in interpreting chest radiographs with that of the

algorithms. Among those physicians, there were pulmonologists,

infectious disease specialists, neurologists, and radiology residents.

These physicians were referred to as Group A (GA) physicians for

ease of writing and understanding. This group represents many

real-world settings because chest radiographs are often interpreted

by non-specialist physicians or physicians with other specialties

due to the lack of board-certified radiologists. Therefore, involving

Group A mirrors the actual clinical environments where the AI

algorithm is intended to be used to support the clinical decision.

Radiologists specialized in thoracic image interpretation were

designated as the gold standard. These physicians are responsible

for generating the ground truths of the images evaluated in

the retrospective phase. They were referred to as Group B

(GB) physicians.

The Group A team individually analyzed a set of CXR and

classified the exams as “normal” or “abnormal.” When the image

was abnormal, they classified the radiographic alterations into nine
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Proposed retrospective clinical validation workflow

Start Physician analysis

Clinical validation workflow (Group A)

Final physician

opinion

Clinical validation workflow (Group B)

Thoracic

Radiologist #1

analysis

Thoracic

Radiologist #2

analysis

Disagreement?

Thoracic

Radiologist #3

analysis

Final opinion

decided

No

Yes

Final opinion

decided

End

End

Questionnarie 1:

Independent analysis

(without AI)

Questionnarie 2:

Agreement with

algorithm (with AI)

End

Questionnarie 1:

Independent

analysis (without AI)

Questionnarie 2:

Agreement with

algorithm (with AI)

Questionnarie 1:

Independent

analysis (without AI)

Questionnarie 2:

Agreement with

algorithm (with AI)

Start

Questionnarie 1:

Independent

analysis (without AI)

Questionnarie 2:

Agreement with

algorithm (with AI)

FIGURE 1

Clinical validation study design. The flow highlights the assessment of agreement between the algorithm results and the evaluations conducted by

Group A and board-certified thoracic radiologists, Group B, as well as the Group A personal analysis collection and the ground truth construction by

Group B. To access the questionnaire, please see Supplementary material.

classes: consolidation, lung opacity, lung injury, atelectasis, edema,

pneumothorax, pleural effusion, cardiomegaly, and mediastinal

widening. The evaluator also predicted the chance of the image

being compatible with tuberculosis. Lastly, the scientists signaled

the abnormality’s position using an anatomical approach shown

in Figure 1. At this point, neither clinical nor laboratory data

were available.

Following their own evaluations, physicians could consult

the results of three AI models that supported the chest x-

ray interpretation. This assessment was conducted using a

questionnaire administered through the Open Health Image

Foundation (OHIF) visualization platform (Ziegler et al., 2020) and

Google Forms. To avoid influence bias, physicians were trained to

consult the AI’s decision only after doing their personal readings.

The next step involved assigning two radiologists with

specialized training in cardiothoracic radiology to interpret every

image (also detailed in Figure 1). They classified each CXR as

“normal” or “abnormal,” categorized the radiographic findings

into those nine patterns, and determined whether the image was

compatible with tuberculosis. A third, more senior radiologist (≤5

years of experience), was consulted to break any ties in the analyses

if there was any disagreement between the two experts. In addition

to classifying the images, the experts manually marked them with

bounding boxes to identify where changes occurred in the CXR.

The platform used for this task was the CARPL Platform, as

illustrated in Figure 2 (CARPL.AI PVT LTD., Delhi, India).

As demonstrated, radiologists specializing in cardiothoracic

imaging served as Group B. The images used in this retrospective

phase were provided from public databases available on the

web [BRAX (Reis, 2022), PadChest (Bustos et al., 2020), and

Tuberculosis Portals (Rosenthal et al., 2017) datasets]. The

exclusion criteria cited in Section 2.1.1 was the same used in

this validation process. Regarding some ethical aspects and

patient privacy for datasets used during the validation process,

all images from these public datasets are anonymized from their

origin. Moreover, it was ensured that a proportional standard

was maintained in the number of cases relative to each finding.

This methodological choice aimed at preserving the integrity

and the representativeness of the sample, guaranteeing that

the analysis mirrors the real-world distribution of thoracic

conditions. The idea of this validation is to check (in general) if

the AI algorithm can help physicians who are non-specialists

in chest radiograph interpretation to make good clinical

decisions together.
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FIGURE 2

Annotation and questionnaire presentation example on CARPL Platform. Bounding boxes delineate Pleural E�usion and Cardiomegaly.

2.3 Statistical analysis

The statistical analysis of the retrospective study consisted

of two main analyses. Firstly, the classification performance of

Group A and the algorithm was compared. This comparison

involved assessing accuracy, sensitivity, specificity, and positive

and negative predictive values (PPV and NPV, respectively).

All metrics were calculated using the Group B analysis as

the reference standard, and the Group A image classification

results were collected through questionnaire responses.

Confidence intervals for specificity, sensitivity, and accuracy

were calculated using the Clopper-Pearson methodology (Clopper

and Pearson, 1934), while confidence intervals for PPV and

NPV were computed using the Mercaldo’s Logit Method

(Mercaldo et al., 2007).

Secondly, this study utilized descriptive statistics to assess

the agreement between Group A and Group B concerning the

algorithm’s heatmap. Physicians were asked to indicate their

level of agreement, whether they agreed, partially agreed, or

disagreed with the heatmap’s findings. Additionally, the impact

of the algorithm on physicians’ perspectives was evaluated, with

participants being asked if the algorithm had influenced their

diagnostic opinions.

3 Results

This section aims to present the main results of the article,

from the model’s internal validation process to the retrospective

validation process.

3.1 Artificial intelligence model
development results

The Lung Abnormality model (LAM), a binary model (0:

normal; 1: abnormal), tested on the CheXPert, NIH, Montgomery,

and Shenzhen datasets using a different subset from the training

set, achieved an AUC of 0.94. The Tuberculosis model (TBM), also

a binary model (0: normal for TB; 1: abnormal for TB), tested on

the Tuberculosis Portals, PadChest, Montgomery, and Shenzhen

datasets using a different subset from the training set, also achieved

an AUC of 0.94. The mean AUC for the Radiological Findings

model (RFM), tested on a different subset of the CheXpert training

set, was 0.84, and Table 2 displays the AUC and accuracy for each

of the nine identified labels, besides the LAM and the TBM results

too. Figure 3 shows the traning and validation learning curves for

the three models.

Figure 4 presents a visual representation of the model’s

performance for Lung Abnormality classification and Radiological

Findings classification. The chest radiograph (posteroanterior

view) shows heterogeneous opacities/consolidations in both upper

lung areas. In addition, a slightly nodular opacity is observed in

the left hilum. The LAM returns a high prediction score (0.96),

indicating an abnormal radiograph. The RFM correctly classified

the abnormalities present in the chest X-ray, with probability scores

for opacity, consolidation, and lung lesion respectively of 0.77,

0.92, and 0.93. The heatmap also accurately highlighted the regions

of interest.

Figure 5 visually represents the model’s performance for

Tuberculosis classification. Posteroanterior chest radiograph shows

heterogeneous consolidative opacities and possible cavities in the

bilateral upper lung fields, more extensive and confluent on the
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TABLE 2 Accuracy and area under the receiver operating characteristic

curve (AUC) metrics results for each label of the three models.

Model Label Accuracy (%) AUC (%)

LAM Lung abnormality 89.10 [78.80, 99.30] 93.82 [91.08, 96.56]

TBM Tuberculosis 88.12 [86.16, 90.16] 94.05 [92.66, 95.44]

RFM Atelectasis 85.30 [82.29, 88.05] 74.60 [74.15, 74.99]

RFM Consolidation 89.30 [86.53, 91.59] 79.30 [78.69, 79.84]

RFM Pleural effusion 86.80 [83.87, 89.38] 91.00 [90.74, 91.21]

RFM Cardiomegaly 90.10 [87.42, 92.32] 88.20 [87.82, 88.62]

RFM Edema 85.50 [82.47, 88.19] 84.90 [84.53, 85.20]

RFM Pneumothorax 85.00 [81.94, 87.75] 86.90 [86.34, 87.43]

RFM Lung opacity 74.30 [70.62, 77.68] 79.90 [79.64, 80.19]

RFM Lung lesion 88.60 [85.82, 91.00] 81.90 [81.23, 82.53]

RFM Mediastinal widening 88.80 [85.99, 91.15] 81.50 [80.95, 82.04]

left. The radiographic findings were suggestive of an infectious

pulmonary process, and a granulomatous etiology was suspected.

The patient underwent two sputum smears and culture, with a

confirmed diagnosis of pulmonary tuberculosis. The TBM correctly

classifies the image (probability score of 0.96). However, the

heatmap does not accurately identify the altered areas, as the

involvement is predominantly in the upper lung fields.

3.2 Validation study results

Group A consisted of two 1st-year radiology residents, three

2nd-year radiology residents, one 3rd-year radiology resident,

eight 4th-year radiology residents, one thoracic radiologist (<4

years of experience), four pulmonologists, one infectiologist,

one intensivist, two family physicians, two pediatricians, one

neurologist, and one general practitioner. Group B consisted of six

thoracic radiologists with more than 2 years of experience.

In total, 586 images from 529 patients were completely analyzed

by Group A and Group B (≤ 2 years of experience). The patient

sample had a male-to-female ratio of 222/283, with a mean age of

51.97 years± 20.03 SD. The number of positive cases for the classes

is 164 for consolidation, 136 for Atelectasis, 403 for lung opacity,

298 for lung lesion, 32 for edema, 11 for pneumothorax, 172 for

pleural effusion, 80 for cardiomegaly, 31 for mediastinal widening,

and 113 for Tuberculosis, and 165 images had no findings.

Tables 3, 4 provide a comprehensive comparison of the results

obtained by Group A and the models, using the ground truths

determined by Group B. The evaluation metrics used include

accuracy, sensitivity, specificity, PPV, and NPV.

Both physicians and the models exhibited statistical differences

in terms of accuracy across specific labels: lung abnormality,

tuberculosis, consolidation, pneumothorax, and lung lesion

(Table 3).

In each case, physicians achieved superior results.

Conversely, for the other six findings (atelectasis, pleural

effusion, cardiomegaly, edema, lung opacity, and mediastinal

widening), statistical equivalence was observed. Concerning

sensitivity, differences were observed only for lung abnormality

and atelectasis, with physicians achieving higher results. For the

remaining nine findings, the results were statistically equivalent.

Regarding specificity, statistical differences emerged in seven

findings, with physicians outperforming the model in four

(tuberculosis, consolidation, pneumothorax, and lung lesion),

while the model excelled in three others (lung abnormality,

atelectasis, and lung opacity). Results were statistically equivalent

to the remaining four findings.

Regarding the PPV metric, Table 4 shows statistical differences

arose in ten findings, with physicians achieving higher results in

four (tuberculosis, consolidation, pneumothorax, and lung lesion)

and the model in the remaining six (lung abnormality, atelectasis,

and cardiomegaly). Notably, pleural effusion yielded statistically

equivalent results. Lastly, considering the NPV metric, disparities

were observed in four findings, with the physicians achieving

higher results in three (lung abnormality, atelectasis, and lung

opacity) and the model achieving a higher result for consolidation.

For the remaining seven findings, the results were statistically

the same.

Considering the level of agreement between Group A and

Group B with respect to the algorithm, Table 5 presents the

agreement with finding’s localization and the influence of themodel

on the physician’s interpretation, GroupA agreed to a higher degree

with the locations represented by the model (37.56%). Group B, on

the other hand, showed higher partial agreement with the location

of the findings (38.93%).

Group A exhibited higher agreement with the model in

identifying findings in the right lung apex region (13.75%), lower

right lung third (11.46%), and middle right lung third (9.77%).

In contrast, Group B showed a higher agreement rate in the

right lung apex region (14.03%), lower right lung third (11.84%),

and right lung apex region (10.72%). These findings indicate

variations in the specific areas of agreement between physicians

and the model, highlighting differences in their assessments of the

precise locations.

4 Discussion

In this retrospective study, it was observed that when utilizing

the labels generated by Group B, the algorithms performed well

for classifying certain findings, while Group A performed well for

others, in terms of accuracy, sensitivity, specificity, PPV, and NPV.

Upon identifying and analyzing patterns within the retrospective

clinical validation process of an artificial intelligence algorithmwith

GroupA in interpreting chest radiographs, it is noted that this study

provides a basis to guide future research. However, larger results

gap exists, particularly for the Lung Abnormality label. Overall, in

terms of metrics, statistically, Group A outperformed the model

in more cases – 17 compared to the algorithm’s 11 cases (with 26

cases showing statistically equivalent results), Tables 3, 4. Despite

the alternation between Group A and AI in the potential to detect

some findings, it was noteworthy that both Group A and Group B

declared that the algorithm hadminimal influence on their opinion

in most cases (Table 5).
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FIGURE 3

Training and validation loss curves for the LAM (A), the RFM (B), and the TBM (C) models.

In terms of comparing the results between the internal and

external validation of the models, the Lung Abnormality Model

exhibited the most substantial results decline among the three

models that constitute the algorithm. As for the Tuberculosis

Model, its results decrease from internal to external validation was

observed, yet it remains comparable to the results of Group A

during clinical validation.

To address the inherent label errors associated with

automatically labeled datasets, a rigorous annotation process

was implemented, enhancing our external validation methodology

by establishing a trustworthy ground truth with the collaboration

of the board-certified radiologists (Group B) (Irvin et al., 2019;

Bustos et al., 2020; Reis, 2022).

Regarding sensitivity, the models demonstrated equal or higher

predictive power than Group A in 8 out of the 11 classes, including

tuberculosis, consolidation, and lung lesions. Similarly, in terms of

specificity, the models exhibited equal or higher predictive power

than Group A in 6 out of the 11 classes, such as cardiomegaly,

edema, and lung opacity. Considering the positive predictive values

metric, the models were comparable or superior to Group A in

7 out of the 11 classes. Lastly, for the negative predictive values

metric, Group A was comparable or superior to the model in

6 out of the 11 classes, including cardiomegaly, pneumothorax,

and pleural effusion. In terms of accuracy, the models exhibited

equivalent or superior classification capacity compared to Group

A in 5 out of the 11 possible classes, as highlighted in

Table 3. Notably, this was observed for cardiomegaly, edema, and

lung opacity.

Our study revealed low agreement between both physician

groups and the models’ results. This is particularly evident

when evaluating the model for the classification of pulmonary

abnormalities, indicating the need for further investigation and

potential retraining of the model. Additionally, Group A showed

a tendency to agree more with the model’s heatmaps compared

to the experts, but it is important to acknowledge that the

model utilized in this study is a classification model and not

a detection model. Therefore, the generated heatmaps should

be interpreted as a general indication of the contributing

areas for classification rather than precise localization maps for

specific abnormalities.

It is worth noting that most physicians agreed that the

models did not significantly impact or alter their interpretation of
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FIGURE 4

True positive sample for the Lung Abnormality and the Radiological Findings Models. (A) Shows original chest-x-ray, (B) shows the LAM result, and

(C–E) show the result for three findings for RFM.

chest radiographs. This suggests that, despite the model’s outputs,

physicians believe that they maintained independent decision-

making processes in diagnosing and interpreting medical images,

which does not entirely align with previous literature studies that

often report the augmentation of physicians’ decision-making skills

through AI-supported analysis (Hosny et al., 2022; Ueda et al.,

2021; Nam et al., 2019; Sim et al., 2020). However, further research

and exploration are necessary to fully understand the potential

benefits and limitations of incorporating AI models into clinical

practice and to address any concerns or challenges that may arise

in the future.

Due to the algorithm’s specific focus on supporting general

practitioners within the public health system, we emphasized

addressing geographic variation and considering local patient

characteristics and manifestations. To ensure the algorithm’s

applicability in this context but also in countries with

similar demographics and healthcare systems, we deliberately

incorporated a Brazilian dataset [BRAX (Reis, 2022)] during the

validation process.

Additionally, as the algorithm was specifically designed to

support generalist physicians in their diagnostic process, we

assessed agreement among physicians with varying experience

levels in interpreting chest radiographs. This analysis aimed to

provide valuable insights into the algorithm’s results and potential

impact on clinical practice across different medical specialties

and healthcare scenarios. Therefore, our clinical validation sought

to evaluate the agreement between physicians (including board-

certified thoracic radiologists, Group B, and Group A) and the

algorithm, using the Group B analysis as the ground truth.

There are some limitations to this study. First, external

validation posed significant challenges, particularly the complexity

of the ground truth generation in this study through the board-

certified radiologists. Furthermore, it is important to acknowledge

that physicians’ perception of AI as a tool for diagnostic imaging

may not be universally positive. While the potential benefits

of AI in healthcare are highly promising, there exist certain

apprehensions that have fostered a cautious stance toward its

adoption. These concerns may include issues related to sharing
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FIGURE 5

True positive sample for the Tuberculosis Model. (A) Shows the original chest x-ray and (B) shows the TBM result.

sensitive data, the inherent challenge of elucidating the internal

mechanisms of AI models, and apprehensions regarding potential

effects on the doctor-patient relationship (Sarwar et al., 2019;

Oh et al., 2019; Wadhwa et al., 2020; Huang et al., 2021).

Second, the timing of the display of the AI algorithm’s results.

The AI result is instantly delivered to the reader in the current

validation procedure, and despite the team’s training, there are no

guarantees that the observer will only check this result after his

interpretation. This practice can generate biases such as a change

of opinion by the physician, persuaded after viewing the AI results

(Bernstein et al., 2023). Third, regarding the algorithm’s results, the

models’ classification paradigm poses challenges when attempting

to qualitatively generalize the specific patterns underlying the

algorithm’s errors. This challenge stems primarily from the

limitations of using heatmaps, which provide insights into the

regions that contributed most to the classification score but lack

the comprehensive information offered by detection bounding

boxes. Consequently, drawing firm conclusions regarding the

reasons behind the algorithm’s errors becomes more challenging

in comparison to utilizing detection bounding boxes. Fourth,

regarding the low number of epochs used during the training

and other hyperparameters, they were empirically adjusted to

optimize performance and avoid overfitting of models. Fifth,

the performance analysis across different physician subgroups–

including residents, pulmonologists, infectious disease specialists,

and thoracic radiologists–was not comprehensively explored,

limiting insights into subgroup-specific variations and their

comparative diagnostic accuracy.

Another limitation of this study is the low PPV observed for

the Pneumothorax class in the retrospective validation phase. This

finding is primarily attributed to the low prevalence of confirmed

pneumothorax cases in the retrospective dataset, with only 8 out

of 586 cases being true positives. It is well-established that PPV is

highly influenced by the prevalence of the target condition in the

test population, and low prevalence can lead to disproportionate

rates of false positives even in models with high sensitivity and

specificity. This limitation is not unique to this study, as previous

research has demonstrated similar challenges when evaluating AI

models for unusual conditions in general/healthy populations (Ball

et al., 2015).

Despite the challenges and limitations discussed, the next steps

involve refining the algorithm to achieve more accurate and reliable

results. Furthermore, a prospective validation phase is essential,

wherein data will be collected in real-time to evaluate the model

within the routine of both doctors and patients. By continuously

improving the algorithm and conducting prospective validation,

we aim to ensure its effectiveness and seamless integration into the

regular practice of healthcare professionals. Following this, the next

phase will involve clinical trials, during which a fairness analysis

will be conducted to evaluate the algorithm’s performance across

diverse demographic and clinical subgroups, ensuring equitable

applicability and effectiveness.

5 Conclusion

This retrospective clinical validation study aimed to assess the

effectiveness of an AI algorithm in aiding the interpretation of

chest X-rays (CXRs) by comparing its performance with physicians

of varying levels of experience, using ground truth analyses as

references. Although the models used are based on previously

established architectures, the innovation of this study lies in the

validation methodology that integrates evaluations from physicians

of different specialties. By applying the proposed methodology, we

compared the interpretations of chest radiographs by physicians

in Group A and the predictions of the AI models with the ground
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TABLE 3 Comparison of accuracy, sensitivity, and specificity metrics between Group A and Algorithm for each label (according to the ground truth of

Group B).

Model Label Accuracy (%) Sensitivity (%) Specificity (%)

Lung abnormality

LAM Group A 88.86 [86.65, 90.83] 91.86 [89.58, 93.77] 79.17 [73.13, 84.38]

Algorithm 51.20 [47.91, 54.48] 36.29 [32.72, 39.97] 99.54 [97.45, 99.99]

Tuberculosis

TBM Group A 65.43 [62.20, 68.56] 68.52 [58.88, 77.12] 65.00 [61.54, 68.35]

Algorithm 51.13 [47.78, 54.46] 73.15 [63.76, 81.22] 48.08 [44.52, 51.65]

Atelectasis

RFM Group A 82.53 [79.25, 85.48] 40.00 [30.98, 49.55] 92.59 [89.89, 94.76]

Algorithm 82.20 [78.9, 85.17] 13.04 [7.49, 20.60] 98.56 [97.05, 99.42]

Consolidation

RFM Group A 84.19 [81.03, 87.02] 61.90 [51.91, 71.21] 88.91 [85.81, 91.54]

Algorithm 71.21 [67.41, 74.81] 80.00 [71.07, 87.17] 69.35 [65.09, 73.39]

Pleural e�usion

RFM Group A 90.68 [88.07, 92.88] 63.87 [54.55, 72.47] 97.30 [95.43, 98.56]

Algorithm 91.18 [88.62, 93.32] 65.55 [56.28, 74.02] 97.51 [95.69, 98.71]

Cardiomegaly

RFM Group A 92.85 [90.48, 94.77] 54.69 [41.75, 67.18] 97.39 [95.66, 98.57]

Algorithm 94.51 [92.37, 96.19] 54.69 [41.75, 67.18] 99.26 [98.10, 99.80]

Edema

RFM Group A 94.68 [92.57, 96.33] 34.78 [16.38, 57.27] 97.06 [95.33, 98.28]

Algorithm 95.17 [93.14, 96.74] 39.13 [19.71, 61.46] 97.40 [95.76, 98.54]

Pneumothorax

RFM Group A 98.50 [97.18, 99.31] 25.00 [3.19, 65.09] 99.49 [98.53, 99.90]

Algorithm 86.02 [82.99, 88.70] 87.50 [47.35, 99.68] 86.00 [82.95, 88.70]

Lung opacity

RFM Group A 73.21 [69.48, 76.71] 63.42 [57.21, 69.32] 80.52 [75.94, 84.58]

Algorithm 73.88 [70.17, 77.35] 50.58 [44.3, 56.85] 91.28 [87.78, 94.04]

Lung lesion

RFM Group A 79.20 [75.73, 82.38] 67.32 [60.44, 73.69] 85.35 [81.48, 88.69]

Algorithm 70.88 [67.07, 74.49] 72.20 [65.53, 78.21] 70.20 [65.43, 74.67]

Mediastinal widening

RFM Group A 92.51 [90.11, 94.49] 19.35 [7.45, 37.47] 96.49 [94.63, 97.84]

Algorithm 92.51 [90.11, 94.49] 29.03 [14.22, 48.04] 95.96 [94.01, 97.43]

The values in brackets represent the 95% confidence interval. Results in bold represent the best performance between physicians and models, considering mean results.

truths generated by Group B. This work addresses the gap by

involving non-specialist and specialist physicians with varying

levels of chest radiograph interpretation expertise in validating

an AI algorithm designed to predict pulmonary abnormalities,

primarily focusing on tuberculosis and other radiological findings.

The presented quantitative and qualitative results support

the validation.

The results corroborated this study’s hypothesis. The

evidence and analyses demonstrate that it is feasible to conduct

validation studies involving physicians of different specialties

alongside artificial intelligence algorithms for chest X-ray analysis.

This confirmation strengthens current understanding and

contributes to the existing body of knowledge within the area

of clinical validation, particularly in the context of applying

AI algorithms.

Both Group A and Group B reported minimal influence of

the algorithm on their opinions in most cases. This situation

might be a consequence of the need for further refinement of the
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TABLE 4 Comparison of Positive Predictive Value (PPV) and Negative

Predictive Value (NPV) between Group A and the Algorithm for each label

(according to the ground truth of Group B).

Model Label PPV (%) NPV (%)

Lung abnormality

LAM Group A 94.41 [94.40, 94.43] 72.53 [72.58, 72.51]

Algorithm 98.93 [98.87, 98.95] 56.85 [56.90, 56.83]

Tuberculosis

TBM Group A 21.66 [21.63, 21.69] 72.53 [72.58, 72.51]

Algorithm 22.36 [22.33, 22.38] 89.56 [89.53, 89.53]

Atelectasis

RFM Group A 35.79 [35.61, 35.88] 93.74 [93.75, 93.74]

Algorithm 22.25 [22.13, 22.25] 97.28 [97.27, 97.29]

Consolidation

RFM Group A 44.65 [44.61, 44.72] 94.01 [93.99, 94.02]

Algorithm 39.16 [39.12, 39.23] 93.48 [93.45, 93.49]

Pleural E�usion

RFM Group A 79.03 [78.96, 79.11] 94.28 [94.27, 94.29]

Algorithm 81.12 [81.01, 81.22] 94.42 [94.40, 94.43]

Cardiomegaly

RFM Group A 58.41 [58.31, 58.53] 96.94 [96.93, 96.95]

Algorithm 82.82 [82.63, 82.96] 97.05 [97.04, 97.06]

Edema

RFM Group A 14.44 [14.30, 14.55] 99.04 [99.04, 99.04]

Algorithm 19.43 [19.34, 19.50] 99.00 [98.99, 99.00]

Pneumothorax

RFM Group A 14.35 [14.32, 14.67] 99.74 [99.74, 99.74]

Algorithm 08.07 [08.05, 08.15] 99.80 [99.79, 99.80]

Lung opacity

RFM Group A 65.91 [65.84, 65.96] 79.26 [79.24, 79.29]

Algorithm 71.01 [70.93, 71.07] 81.98 [81.96, 82.01]

Lung lesion

RFM Group A 64.94 [64.90, 65.00] 99.74 [99.74, 99.74]

Algorithm 56.49 [56.45, 56.56] 82.86 [82.83, 82.89]

Mediastinal widening

RFM Group A 05.86 [05.77, 05.92] 99.09 [99.09, 99.09]

Algorithm 10.90 [10.85, 10.94] 98.80 [98.80, 98.80]

The values in brackets represent the 95% confidence interval. Results in bold represent the

best performance between physicians and models, considering mean results.

models, particularly in terms of interpretability. Additionally, some

physicians are hesitant to adopt AI because it is a relatively new tool,

and they may be reluctant to integrate it into their practice, even

though its purpose is to support their decision-making process.

Moreover, this study underscores the significance of incorporating

real-world data in the clinical validation of AI algorithms,

TABLE 5 Agreement level of physicians in Group A and Group B based on

their observations of the AI results.

Agreement options Group A Group B

Agreement with findings’ localization

Yes 37.56% 21.75%

No 13.19% 14.67%

Partial agreement 24.37% 38.93%

NA 24.87% 24.63%

Influence of the model on the physician’s interpretation

No 93.15% 94.54%

Yes (localization) 1.61% 1.31%

Yes (classification) 4.02% 3.13%

Yes (complete) 1.20% 1.00%

ensuring their robustness and adaptability in diverse healthcare

settings. Further investigations are pivotal to establishing the

algorithm’s viability within the public health system and enhancing

its outcomes.
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