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It is generally understood that wound areas appear smaller when calculated using 
2D images, but the factors contributing to this discrepancy are not well-defined. 
With the rise of 3D photography, 3D segmentation, and 3D measurement, more 
accurate assessments have become possible. We developed an application called 
the Burn Evaluation Network (B.E.N.), which combines a deep learning model 
with LiDAR technology to perform both 2D and 3D measurements. In the first 
part of our study, we used burn wound templates to verify that the results of 3D 
segmentation closely matched the actual size of the burn wound and to examine 
the effect of limb curvature on the 3D/2D area ratio. Our findings revealed that 
smaller curvatures, indicative of flatter surfaces, were associated with lower 3D/2D 
area ratios, and larger curvatures corresponded to higher ratios. For instance, the 
back had the lowest average curvature (0.027 ± 0.004) and the smallest 3D/2D 
area ratio (1.005 ± 0.055). In the second part of our study, we applied our app to 
real patients, measuring burn areas in both 3D and 2D. Regions such as the head 
and neck (ratio: 1.641) and dorsal foot (ratio: 1.908) exhibited significantly higher 
3D/2D area ratios. Additionally, images containing multiple burn wounds also 
showed a larger ratio (1.656) and greater variability in distribution. These findings 
suggest that 2D segmentation tends to significantly underestimate surface areas 
in highly curved regions or when measurements require summing multiple wound 
areas. We recommend using 3D measurements for wounds located on areas like 
the head, neck, and dorsal foot, as well as for cases involving multiple wounds 
or large areas, to improve measurement accuracy.
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1 Introduction

Accurate burn area measurement is crucial for effective care management. The Lund and 
Browder chart (1942) (Taylor et al., 1943) and the Wallace rule of nines (1947) (Knaysi et al., 
1968) became the most popular methods for estimating burn areas, with the Lund and 
Browder chart still widely used today. However, its accuracy depends on human judgment, 
and studies have shown significant discrepancies between estimates from referring units and 
burn centers (Harish et al., 2015; Baartmans et al., 2012). Interestingly, no evidence suggests 
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that specialists provide more accurate estimates, as Parvizi et al. (2014) 
demonstrated that even experts show variability when evaluating the 
same burn cases.

In recent years, deep learning, a subset of machine learning, 
has gained prominence for its ability to extract data features 
through multiple convolutional layers, and it is widely used in both 
industrial and medical fields (Litjens et al., 2017; Ker et al., 2017). 
With proper training and well-labeled data, deep learning models 
can accurately segment burn wounds, converting segmented areas 
into %TBSA burned using pixel-to-pixel methods (Chang et al., 
2021; Jiao et al., 2019; Chang et al., 2022), reducing the bias from 
human estimation. However, factors like photo conditions, wound 
distance, and obstructions (dressings, ointments, or hematomas) 
can affect segmentation accuracy, though these can be controlled. 
The primary challenge lies in the limitations of two-dimensional 
(2D) images, which generally underestimate wound areas 
compared to three-dimensional (3D) images. While some studies 
have used 3D imaging to estimate the area and volume of chronic 
ulcers, research on 3D imaging for burn wounds is limited, as burn 
wounds can take irregular shapes on convex surfaces, unlike 
chronic ulcers that are often elliptical or spherical on concave 
surfaces [an area formula 0.73 × L × W (L = length, W = width)] 
(Jørgensen et al., 2016).

Our initial goal was straightforward: given a 2D burn wound 
area (segmented from a 2D image) and the curvature of the 
extremities or trunk, what is the actual surface area in 3D? Since 
most practitioners rely solely on 2D images for burn wound 
documentation, our final aim is to develop a formula that 
accurately converts 2D wound areas to their corresponding 3D 
surface area measurements. We developed an application called the 
Burn Evaluation Network (B.E.N. in iOS), which combines a deep 
learning model with LiDAR technology to perform simultaneous 
2D and 3D wound measurements. Through this app, we aim to 
explore the relationship between 2D and 3D measurements.

2 Development of applications

This study builds upon our previous work on burn wound 
segmentation and 3D coordination with LiDAR (Chang et al., 2021; 
Chang et al., 2022).

2.1 Data collection and model training

In accordance with regulations from Taiwan’s Ministry of Health 
and Welfare (MOHW), it is mandatory to document burn injuries 
using images or videos, which are stored electronically in hospital 
medical records and uploaded to the MOHW for insurance 
reimbursement. Verbal consent is obtained from patients or their 
families to use these records for wound documentation and research 
purposes. Our AI models were trained using a retrospective image 
collection from the Division of Plastic Surgery at Far Eastern 
Memorial Hospital. The study, approved by the hospital’s Ethics 
Committee (Approval Number 109037-F), began on May 1, 2020, and 
is ongoing with annual review. Data for model training was collected 
from January 2016 to December 2021.

To enhance diversity and segmentation performance, images 
were taken under different conditions, such as outpatient clinics, 
operation theaters or wards. These images were also taken by 
various devices, including cell phones and digital cameras. Images 
were excluded if wounds were covered by ointments or dressings, 
had undergone interventions like debridement or skin grafts, or 
were taken within 48 h of injury. Burn wounds were labeled using 
polygons in Labelme (Python 3.7), with two out of three burn 
surgeons co-labeling the images. One surgeon performed the initial 
labeling, and other surgeons reviewed the labels to identify 
necessary revisions. If significant disagreement arose, the image was 
discarded—typically due to factors like poor lighting or slight 
out-of-focus conditions.

A dataset of 10,088 labeled images was split into training, 
validation, and testing sets in a 7:2:1 ratio with 3-fold validation. 
Image augmentations like rotation, shifting, scaling, and contrast 
normalization were applied. Training was conducted on a server with 
eight NVIDIA TESLA V100 GPUs. Over a dozen model architectures 
and encoders were tired, including Mask RCNN, U-Net, PsPNet, and 
Inception. Ultimately, we selected DeepLabV3+ with ResNet101 as the 
encoder (He et al., 2016)—not because it delivered the absolute best 
performance, but because it offered the most balanced performance 
for practical, real-world use. The model was further converted to 
TensorFlow Lite for mobile deployment.

2.2 Combining LiDAR

LiDAR and digital cameras have been widely used in fields 
like archaeology, agriculture, and automotive industries (Dai 
et al., 2022; Debnath et al., 2023). LiDAR (Light Detection and 
Ranging) creates depth maps, and Apple has integrated this 
technology into devices like the iPhone 12 Pro and iPad Pro. 
We  developed the Burn Evaluation Network (B.E.N.) app, 
available on the Apple Store, which uses our mentioned 
DeeplabV3+ with ResNet101 model for wound segmentation. 
Our app captures 2D images, segments them using the AI model, 
and integrates the 2D segmentation with the depth map to 
produce 3D segmentation results. With the 2D images from the 
camera and the depth data from LiDAR, we  can convert the 
information into 3D real-world coordinates using Equation 1, 
where imagem  is the 2D coordinate vector [u v l]T of the image and 
Mworld is the 3D coordinate vector [x y z l]T of the real world 
wound, K is the camera intrinsic matrix, and [R∣t] is the camera 
extrinsic matrix.

 [ ]image world| .=m K R t M
 (1)

The camera intrinsic matrix allows you to transform 3D camera 
coordinates to 2D image coordinates on an image plane using the 
pinhole camera model by Equation 2. The values fx and fy are the 
pixel focal lengths; ox and oy are offsets of the principal point from 
the top-left corner of the image frame. Since imagem  is known and 
the z value of Mcamera can be  replaced by the depth information 
acquired by LiDAR, the remaining x, y values of Mcamera can 
be resolved.
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The camera extrinsic matrix [R∣t] is a matrix relating to a camera’s 
position and orientation to a world or scene coordinate system, which 
is a matrix concatenation of a 3 × 3 rotation matrix R and 3 × 1 
column vector translation t. Once we obtain cameraM  we can use the 
camera extrinsic matrix to transfer from 3D camera coordinates into 
3D real world coordinates by Equation 3

 [ ]camera world| .=M R t M
 (3)

2.3 Calculation of 2D projection area

After the burn wound borders are segmented into polygons, the 
steps to calculate the projected area of the burn wounds are 
as follows:

 • Obtain the corresponding 3D coordinates of the wound area 
through real-world coordinate conversion.

 • Identify all contour points of the wound area in 3D space.
 • Apply Martin Newell’s method to find the best-fit 2D plane.
 • Project the contour points onto the 2D plane.
 • Calculate the area of the wound contours on the best-fit 2D plane 

using Heron’s formula.

Although the projected area is in 2D, the best-fit plane is 
determined by the normal vector of the 3D surface. This approach 
addresses the challenge that users may not always hold the camera’s 
CCD parallel to the burn wounds, especially when the wound surface 
is complex or uneven.

Unlike traditional 2D methods that require the camera to 
be  perpendicular to the wound bed, our approach only requires 
capturing the entire wound in a 3D view to derive the best-fit 2D plane.

2.4 Calculation of 3D surface area

It is important to note that the borders of the burn wound in 3D are 
identical to those in 2D, as they are segmented using the same model. 
However, while the 2D projection represents a flat surface, the 3D surface 
area accounts for the curvature of the actual burn wounds. To calculate 
the 3D surface area of a burn wound, we approximate the true curved 
surface using numerous small triangles (Figure 1). These triangles are 
formed by connecting three adjacent pixels within the wound area. The 
triangulation process involves scanning all 3D points of the wound from 
the top-left to the bottom-right. The total burn area is the integration of 
the areas of all small triangles. The steps are as follows:

 • Define the burn wound in the 2D image using the 
segmentation model.

 • Obtain the corresponding 3D coordinates of the wound area 
through real-world coordinate conversion.

 • Divide the wound area into small adjacent triangles to closely fit 
the actual wound surface.

 • Calculate the area of each triangle using Heron’s formula.
 • Sum the areas of all triangles.

When an image contains multiple burn wounds, our app sums the 
2D and 3D results separately.

In summary, for 2D areas measurements, the polygon areas were 
calculated using Heron’s formula. For 3D surface areas measurements, 
the depth map was integrated with the polygon data to create surfaces. 
These surfaces were divided into small triangles by connecting 
adjacent pixels in order. The total 3D surface area was then calculated 
by summing the areas of all the small triangles.

3 Method and results

3.1 Part I: simulation study

The gold standard for 3D area measurement involves placing a 
transparent film over a burn wound and marking its edges. However, 
this method is less tolerable for patients with acute burns, as it requires 
direct application solely for measurement purposes. To address this 
limitation, we employed a burn wound template as a substitute to 
mimic real burns. Crafted by a professional prop maker, the template 
underwent testing with over 40 materials to accurately simulate burn 
wounds and challenge our AI models.

Initial trials with single-tone cardboard and cellophane, mimicking 
superficial burns, lacked the texture required for precise segmentation. 
Body paint crayons offered some improvement but lacked consistency. 
Ultimately, scar wax with varied color combinations proved most 
effective, enabling reliable segmentation by the app. Scar wax, composed 
of microcrystal wax, silicone, petroleum, and iron oxides, demonstrated 
excellent reusability due to its pliability and slight transparency.

The burn wound template must not be  too large to require 
multiple images, avoiding issues with picture collaging. The 
template is round, sized at 1/400 of the average body surface area of 
an adult (17,000 cm2), approximately 43 cm2, allowing it to fit on 
any adult extremity and be  captured in a single image. Round 
templates (43 cm2) were placed on the extremities and trunk of 
healthy participants. The app was then used to capture images, 
segment the templates, and measure both 2D projection and 3D 
surface areas (Figure 2).

After confirming that the 3D segmentation results closely 
match the ground truth (43 cm2) across all anatomical locations, 
we  established that 3D segmentation can serve as a reliable 
surrogate for real wounds. Our next objective was to determine 
whether curvature affects the 3D-to-2D ratio for a given wound 
size using the same wound template. We gauged the diameters of 
the sites where the templates were placed, including various 
locations on the forearm, arm, leg, thigh, trunk, and neck. 
We hypothesized the cross-sections of these areas as ellipses and 
measured their long and short axes with a caliper  and tape 
measure. In Figure 3 the curvature of the volar side of the forearm 
(point 1) is b/a2 whereas the curvature of the volar side of the 
forearm (point 2) is a/b2. The volar side of the forearm is flatter and 
has smaller curvature. If the cross-section of the extremity is 
almost a circle, which means (a ≈ b = r), the curvature is 1/r.
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3.2 Results of simulation study

The simulation study has received approval from the Research 
Ethics Review Committee of Far Eastern Memorial Hospital (Number 
111084-E). This study included 10 female colleagues with normal BMI 
(18.3 to 22.4) and 11 male colleagues, including authors, with BMI 
(22.1 to 24.5). All participants provided written consent to measure the 

cross-sections of extremities, trunk, and neck, and to test burn 
templates. We measured the long and short axes of these anatomical 
locations and calculated their curvatures. A circular burn wound 
template (43 cm2) was placed on the measured locations, and images 
of the simulated wounds were captured 25–30 cm above the site using 
our app. The app also segmented the wounds, providing 3D surface 
area and 2D projection area measurements.

FIGURE 2

The segmentation of burn wound template on different anatomical locations.

FIGURE 1

This illustration shows the 2D projection area and 3D surface area. (A) The projection area is flat 2D plan. The area is calculated with Heron’s formula. 
(B) The surface area is 3D curvature of the actual burn wounds. The area is calculated by summation of the area of small triangles.
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Our final model (DeeplabV3+ with ResNet101) demonstrated robust 
performance across multiple test datasets, all of which consisted of images 
of real patients labeled by experienced plastic surgeons. The average 
performance metrics on the test datasets were as follows: precision 0.9076, 
recall 0.9006, accuracy 0.9846, F1 score 0.8938, IoU 0.8288, and Dice loss 
0.1063. These results were consistent across repeated evaluations.

Table 1 presents the ratio of the 3D result to 43 cm2, the ratio of 
the 3D area to the 2D area, and the curvature of the body’s cross-
section. For example, one author’s forearm had a cross-section with a 
long axis of 7.4 cm and a short axis of 7.0 cm. The calculated 
curvatures were 0.127 for the volar forearm and 0.151 for the radial 
forearm. The segmentation results for the volar forearm were 
43.68 cm2 (3D) and 39.42 cm2 (2D), while for the radial forearm, they 
were 43.59 cm2 (3D) and 34.64 cm2 (2D).

For all locations, the ratios of the 3D surface area to 43 cm2 
(ground truth) are very close to 1.0. In male participants, these ratios 
range from 0.988 to 1.077, while in female participants, they range 
from 0.982 to 1.084. This suggests that the 3D segmentation results 
can accurately represent the true size of a burn wound.

When examining the ratios of 3D to 2D area and the curvature of 
the limb and trunk, it is evident that curvature significantly influences 
the ratio. The results in Table 1 support our assumption that flatter 
surfaces yield ratios of 3D area/2D area closer to 1. Flatter surfaces 
correspond to smaller curvatures, with the back and abdomen 
exhibiting the flattest surfaces in both females and males. The smallest 
ratio is observed on the back (female: 1.005, male: 1.005). Conversely, 

locations with greater curvature, such as the radial forearm, show higher 
3D/2D ratios, indicating that 2D segmentation tends to underestimate 
the surface area more significantly in highly curved regions.

The order of curvature across different anatomical locations is 
consistent between females and males, and the ranking of 3D/2D 
ratios from smallest to largest is nearly identical for both genders. 
Additionally, male participants generally have smaller curvatures than 
females at the same locations, likely due to the larger diameters of their 
extremities and trunk, resulting in flatter surfaces.

3.3 Part II: study of real patients

Since its development, our app has been routinely integrated into our 
medical workflow for photo documentation and burn wound 
measurements. The app captures both 2D and 3D images of burn wounds, 
automatically segmenting and measuring the wound areas using an AI 
model. The absolute area (in square centimeters) can be converted to 
TBSA% by also segmenting the patient’s palm, which represents 0.5% of 
the TBSA. However, this functionality is not included in the current study.

Then, we categorize image sets into two groups: wounds affecting 
a single anatomical site and those involving multiple anatomical 
locations. Based on our experience, wounds spanning multiple sites 
tend to show a greater discrepancy between 2D and 3D segmentation 
results, highlighting the need for 3D measurement to ensure more 
accurate assessments in these cases.

FIGURE 3

The cross-sections of the forearm and other anatomic locations have hypothesized an ellipse. Point 1 (blue) has a difference in curvature from point 2 
(red). We gauged the long axis and short axis with a caliper. 
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3.4 Results of study of real patients

A total of 1,426 sets of images of acute burn wounds were 
collected since December 2021 to December 2022. Every set of 
images comprised Y.bin, CbCr.bin, depth.bin, and 2D and 3D 
segmentation results as .jpg.

3.4.1 Single location of burn wound
Among the group of a single site, we further classified image sets 

based on the anatomical locations of burn wounds as the simulation 
study. The number of images of different locations are listed as head 
& neck: 74 images, anterior trunk: 138 images, forearm & arm: 222 
images, hand: 68 images, thigh: 208 images, leg: 202 images, foot: 113 
images, posterior trunk: 56 images. In Figure 4, the collages presented 
images of burn wounds involving on single anatomic location. The 
segmentation results of the 3D surface area and 2D projection area by 
B.E.N. are adjacent to the original images.

According to different anatomical locations, we plotted the 2D 
projection area as X coordinate and the 3D surface area as Y 
coordinate. The linear regressions were calculated. The slope of the 
linear equation presents how many times the 3D surface area is to 
the 2D projection area average. The R squared (R2) suggests how 
good the relation of the 3D and 2D area could be explained by this 
linear equation. We listed the anatomic location by the order with 
small to large slopes in Figures 5, 6.

The burn wounds on the thighs show the smallest slope 
( 1.182y x=  + 44.946, 2 0.8292R = ). That suggests the burn wounds 
on the thigh only had a slight difference when they are measured 
either by the 2D or 3D method. The second smallest slope is bun 
wounds on the chest wall and abdomen, followed by the back 
(Figure 5). That can be partially explained by that thigh and trunk of 
humans are relatively flat surfaces over the whole body. The burn 
wounds on the forearm and arm also slow the small slope (1.3726). 
However, the R2 is only 0.578, which means the results are still 
variable. It may depend on the locations of burn wounds on the 

forearm and arm. For example, the volar side of the forearm is quite 
flat, whereas the radial side has much curvature.

In Figure  6, the greatest slope is the burn wound on the foot 
(1.9082), followed by the head and neck (1.6418). That may suggest 
when we use the 2D methods to measure the burn wounds on the 
foot, we might underestimate the real size of the burn wound by nearly 
50%. The great slope could be partially explained by the complex 
structure of the foot, head and neck. Moreover, the head and neck 
compose of so many unique structures, including the chin, submental, 
nose, and ears, which may not simplify as concave or convex. That 
further explained why the R2 of 3D area/2D area burn area on the head 
and neck is low (R: 0.4232).

3.4.2 Multiple locations of burn wounds
There are 345 sets of images collected in the group of multiple 

locations. In Figure 7, all images capture burn wounds involving multiple 
anatomic locations, and the segmentation results of 2D and 3D by B.E.N.

We also plotted the 3D surface areas and 2D projection areas as Y 
and X coordinates in Figure  8. The regression of the plot is 
(y = 1.6564x + 591.78, R2 = 0.405). The slope is 1.6564, which means 
the average 3D surface area is 1.65 times than 2D projection area. The 
results suggest that if the burn area is estimated via 2D images of the 
major burn patient, such as using ImageJ, the true area will be seriously 
underestimated. For example, when we took a picture of a major burn 
patient in Figure 7, the actual 3D surface area is 3 times more than the 
projection area on a 2D image.

In addition, we would like to know whether the larger the burn 
area, the ratio of the 3D surface to the 2D area also increases. 
We assumed the deviation between 3D and 2D methods will augment 
when the overall burn area is large. We plotted the 3D surface area of 
the burn wound and the ratios of 3D to the 2D area as XY coordinate 
in Figure  9. The regression of the plot shows a positive slope. It 
indicates that as the actual area is large, the ratios of 3D/2D also 
increase. Using areas of 2D projection may highly underestimate the 
real size of burn wound.

TABLE 1 The final result of the simulation study (mean ± SD).

Female group (n = 10) Male group (n = 11)

Location 3D area/GTa 3D areab/2D 
areac

Curvature 3D area/GT 3D area/2D 
area

Curvature

Forearm (volar) 1.075 ± 0.012 1.017 ± 0.306 0.138 ± 0.017 1.027 ± 0.052 1.055 ± 0.103 0.121 ± 0.020

Forearm (radial) 1.084 ± 0.023 1.220 ± 0.040 0.183 ± 0.021 1.077 ± 0.040 1.223 ± 0.345 0.154 ± 0.019

Arm (anterior) 1.018 ± 0.049 1.164 ± 0.078 0.154 ± 0.018 1.004 ± 0.076 1.119 ± 0.050 0.156 ± 0.015

Hand (dorsal) 0.982 ± 0.038 1.340 ± 0.087 0.037 ± 0.004 0.988 ± 0.060 1.402 ± 0.033 0.032 ± 0.004

Leg (anterior) 1.042 ± 0.014 1.113 ± 0.022 0.139 ± 0.028 1.031 ± 0.048 1.116 ± 0.035 0.105 ± 0.011

Leg (lateral) 0.999 ± 0.054 1.084 ± 0.039 0.077 ± 0.010 1.030 ± 0.052 1.064 ± 0.036 0.069 ± 0.007

Thigh (anterior) 1.077 ± 0.011 1.083 ± 0.010 0.099 ± 0.010 1.040 ± 0.046 1.100 ± 0.058 0.078 ± 0.009

Foot (dorsal) 1.078 ± 0.043 1.203 ± 0.035 0.104 ± 0.020 1.017 ± 0.055 1.135 ± 0.070 0.081 ± 0.009

Neck (nape) 1.011 ± 0.063 1.100 ± 0.053 0.114 ± 0.017 1.015 ± 0.046 1.108 ± 0.067 0.088 ± 0.006

Abdomen 1.056 ± 0.027 1.055 ± 0.031 0.027 ± 0.004 1.023 ± 0.051 1.062 ± 0.061 0.023 ± 0.003

Back (lower) 1.008 ± 0.046 1.005 ± 0.055 0.027 ± 0.004 0.992 ± 0.051 1.005 ± 0.050 0.023 ± 0.003

aGround truth, the size of the burn wound template is 43 cm2.
bSegmentation result of 3D surface area of the burn wound template.
cSegmentation result of 2D projection area of the burn wound template.
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4 Discussion

4.1 Mini review: from 3D photography to 
3D segmentation to 3D auto measurement

Three-dimensional (3D) measurement has become an 
important topic in wound management. Before the rise of 3D 
photography, 2D measurement methods like the ruler  

method, manual or digital planimetry, and computerized 
stereophotogrammetry were mainstream (Langemo et al., 1998). 
These methods were widely studied for ulceration, with the ruler 
method showing deviations of up to 40% from the true size for oval 
wounds (Rogers et al., 2010; Langemo et al., 2008). However, the 
deviation of 2D methods in burn wounds has been less explored, as 
burn areas are often expressed as %TBSA and typically deviate from 
simple oval shapes.

FIGURE 5

The XY plot of the 2D projection area and 3D surface area. These four locations show the small 3D/2D ratio (the slope of the regression). (A) Thigh: 
1.182. (B) Chest & abdomen: 1.2937. (C) Back: 1.3196. (D) Forearm & arm: 1.3726.

FIGURE 4

The collages of images of burn wounds on a single anatomical site with the segmentation result by B.E.N. (A) Head & neck; 3D area 729.27 cm2, 2D 
area 262.68 cm2. (B) Forearm & arm; 3D area 259.98 cm2, 2D area 133.57 cm2. (C) Hand; 3D area 16.10 cm2, 2D area 14.42 cm2. (D) Anterior trunk; 3D 
area 745.46 cm2, 2D area 504.27 cm2. (E) Thigh; 3D area 302.61 cm2, 2D area 274.38 cm2. (F) Posterior trunk; 3D area 525.97 cm2, 2D area 363.3 cm2.
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4.2 3D photography

The advent of 3D measurement largely stems from advancements 
in 3D photography. Unlike traditional 2D images, 3D images capture 
RGB vectors in not just XY, but also a Z-coordinate system. Three 
common methods exist to acquire the Z-coordinate (depth map):

 1 Stereo vision uses two or more cameras with known disparity 
to calculate the relative depth of objects through a “disparity 
map.” Stereo vision is a passive technology and does not require 
artificial lighting (O’Riordan et al., 2018).

 2 Structured light projects laser light onto an object and measures 
the reflected light to determine shape and distance. This 
method can apply different wavelengths and phase shifts for 
greater detail and is an active technology (Geng, 2011).

 3 Time of flight (ToF) uses lasers and sensors to calculate the 
distance of objects from the camera, forming a depth map. The 
use of LiDAR is common in this method (Behroozpour 
et al., 2017).

4.3 3D segmentation

3D photography sets the foundation for achieving accurate 3D 
measurements. Studies have demonstrated that 3D methods are more 

accurate than 2D techniques. Shah et al. (2013) found that 3D scanners 
using structured light had an 11% deviation in volumetric 
measurements, compared to 75% with the ruler method, 41% with 
acetate grid tracing, and 52% with 2D planimetric methods. Bowling 
et al. (2011) demonstrated that 3D measurement systems with manual 
labeling had acceptable intra-rater (3.3%) and inter-rater (11.9%) 
variations.

Commercial devices, such as the MAVIS system, also showed 
reduced standard deviation compared to transparency tracings 
(Plassmann and Jones, 1998). While these systems proved the efficacy 
of 3D measurement, they required special equipment, limiting daily 
accessibility. To address this, we developed an app for automatic 3D 
measurement of pressure ulcers on popular mobile devices like the 
iPhone and iPad (Liu et al., 2023). Our app demonstrated comparable 
results to traditional planimetry, which is less suitable for burn wounds, 
prompting us to design a simulation study to further validate the 
app’s accuracy.

4.4 3D measurement

3D measurement for acute burn wounds has received less 
attention compared to chronic ulcers. Before the integration of 3D 
photography, digital planimetry was considered the gold standard for 
measuring burn wound surface areas. However, digital planimetry 

FIGURE 6

The XY plot of the 2D projection area and 3D surface area. These four locations show large 3D/2D ration. (A) Leg: 1.5009. (B) Hand: 1.5429. (C) Head & 
neck: 1.6418. (D) Foot: 1.9082.
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requires the placement of a transparent grid over the wound, limiting 
its use to small areas (Kee et al., 2015). Stockton et al. (2015) showed 
that 3D photography was as accurate as digital planimetry in 
measuring burn wounds, with the added benefit of not requiring 
contact with the wound. While manual labeling of wound borders 
still introduces variability, Rashaan et al. (2018) demonstrated that 

3D photography maintains good inter-rater reliability between 
different observers.

With the increasing availability of 3D scanners, commercial systems 
such as Intel RealSense have been applied to burn wound measurements. 
Bairagi et al. (2022) reported strong agreement between results from 
RealSense and other 3D wound measurement devices like LifeViz.

FIGURE 8

The XY plot of the 2D projection area and 3D surface area. These 
images of the burn wounds involve multiple anatomic locations.

FIGURE 9

The relationship of the burn wound size to the ratio of 3D/2D area.

FIGURE 7

The collages of images of burn wounds in multiple locations with the segmentation results by B.E.N. (A) Back, lateral chest wall, and right upper 
extremity, 3D area 3,660.17 cm2, 2D area 1,113.65 cm2. (B) Cheek, ear, neck, back, and chest wall, 3D area 1,149.81 cm2, 2D area 204.24 cm2. 
(C) Bilateral knees legs and right thigh, 3D area 473.26 cm2, 2D area 350.75 cm2. (D) Right forearm and arm shoulder and chest wall, 3D area 
890.90 cm2, 2D area 546.70 cm2.
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4.4.1 Steps toward 3D measurement
To achieve 3D measurement, the process typically involves 

several steps:

 1 3D photography: Devices like those using 
stereophotogrammetry or structured light capture both the 
RGB image and a depth map for each pixel.

 2 Conversion to 2D plan: Specialized software then converts the 
3D surface data into a 2D plan, similar to a Mercator projection.

 3 Manual labeling: Burn specialists label the borders of the 
wound on the 2D plan.

 4 3D measurement: Finally, the labeled areas are used to calculate 
the wound area with reference data.

Popular software tools for this process include Panasonic FZ-M1 
with WoundCare Lite (Farrar et al., 2017), LifeViz with DermaPix, 
RealSense with Wound Measure, and Artec MHT with Artec 
3D Studio.

Moreover, there are alternative methods that do not rely on 3D 
photography yet still achieve accurate results. BurnCase 3D, for 
instance, calculates 3D area measurements by mapping burn areas 
onto a corresponding 3D body model (Haller et  al., 2009; 
Dirnberger et al., 2004). These body models are constructed using 
data collected from a diverse population, encompassing various 
ages, genders, weights, and heights. This approach significantly 
reduces human error compared to relying solely on the Lund and 
Browder chart.

4.5 Our progress:3D auto measurement

Building on previous work, we developed an app for iPhones and 
iPads equipped with LiDAR sensors, eliminating the need for 
additional 3D scanners or annotation software specifically for wound 
measurement. Our app streamlines the process of capturing 2D/3D 
photographs, performing 2D/3D segmentation, and automatically 
measuring both 2D and 3D areas.

Trained on over 10,000 well-labeled images of acute burn wounds, 
the app achieves high accuracy in wound segmentation. It ensures 
consistent results for wound borders, reducing the inter-rater and 
intra-rater variability typically associated with manual labeling. The 
app provides segmentation results for both 3D surface area and 2D 
projection area, enabling direct comparison between the two. This also 
allows us to study the influence of limb and trunk curvature on the 
3D/2D area ratio.

DeeplabV3+ with ResNet101 demonstrated strong performance 
in both 2D and 3D segmentation tasks, achieving average scores of 
precision (0.9076), recall (0.9006), accuracy (0.9846), F1 score 
(0.8938), IoU (0.8288), and Dice loss (0.1063) on the test dataset. 
These results remained consistent across repeated evaluations, 
although performance slightly varied depending on the model 
configurations, encoders, and characteristics of the test datasets.

For straightforward cases, such as single burn wounds on 
extremities or the abdomen (e.g., scald burns), the model achieved 
precision and recall scores ranging from 0.95 to 0.98, surpassing 
human assessment as reported in our previous study (Chang et al., 
2021). Conversely, in more complex scenarios involving multiple 
burn wounds within a single image, such as in patients with major 

burns, precision and recall scores decreased to approximately 0.85 
to 0.89. These “challenging” images also posed significant difficulties 
for plastic surgeons during manual labeling, which is inter-
rater variability.

4.6 Limitations

There are several limitations related to the hardware, software, 
and study. According to Apple Inc.’s specifications, the LiDAR 
sensor on iPhones and iPads functions optimally within a five-
meter range. Its resolution of 192 × 256 may be  insufficient, 
potentially leading to mapping inaccuracies during the 2D-to-3D 
transformation. For very small wounds, wounds on flat surfaces, or 
images taken from a distance, the 3D segmentation results may 
be indistinguishable from 2D results. However, these distance and 
resolution limitations are expected to improve with future 
device generations.

Our deep learning model was trained on over 10,000 images 
captured under various hospital lighting conditions. Segmentation 
accuracy decreases in poor lighting or non-hospital environments, 
and performance is also less reliable for patients with lighter skin 
tones. The simulation experiment was conducted on 21 colleagues 
with normal BMI, and the real-world study included 1,426 images of 
acute burn wounds. However, further data is needed to determine 
whether limb and trunk curvature affect measurements similarly in 
obese or underweight patients.

To address these issues, we continually update the model using 
incremental learning to enhance its adaptability. Our ultimate goal is 
to develop a formula that defines the relationship between curvature, 
3D burn wound size, and 2D burn wound size.

5 Conclusion

To the best of our knowledge, this is the first study to compare 3D 
and 2D area measurements of acute burn wounds using the same 
device. We developed a deep learning-based application to automate 
burn wound segmentation, reducing the errors associated with 
manual labeling. Our app is designed for popular devices equipped 
with LiDAR sensors, such as the iPhone Pro and iPad Pro, allowing 
simultaneous capture of both 2D and 3D images. The app has been 
validated through both simulation studies and real patient applications 
for automated measurement.

Our study consists of two parts, following the approach of the 
pioneering study (Prieto et al., 2011). The first part employs “fake 
burns” in a simulation study to validate that our 3D segmentation 
results closely align with the gold standard, the “burn wound 
template.” This template serves as a substitute for the less tolerable 
method of applying transparent film directly to burn wounds. 
We demonstrated that flatter anatomical locations tend to exhibit 
smaller ratios of 3D to 2D wound areas. Although this observation is 
intuitive, our findings provide evidence to support it. For example, the 
back, with the smallest curvature (0.027 ± 0.004), showed the closest 
match between 2D and 3D measurements, with a ratio of 
1.005 ± 0.055.

In the second part, we used the app to capture 2D and 3D images of 
real patients for medical records, along with providing 2D and 3D area 
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measurements. The results showed that the smallest average 3D to 2D 
ratio was found in burn wounds on the anterior thigh, followed by the 
back and anterior trunk, where curvature is minimal. In contrast, wounds 
on the head and neck (ratio = 1.64), dorsal foot (ratio = 1.91), and those 
involving multiple locations (ratio = 1.65) exhibited larger ratios. These 
findings suggest that relying solely on 2D measurements may significantly 
underestimate the true size of burn wounds in these areas.
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