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Making sense of transformer
success

Nicola Angius, Pietro Perconti, Alessio Plebe and

Alessandro Acciai*

Department of Cognitive Science, University of Messina, Messina, Italy

This article provides an epistemological analysis of current attempts of explaining

how the relatively simple algorithmic components of neural language models

(NLMs) provide them with genuine linguistic competence. After introducing

the Transformer architecture, at the basis of most of current NLMs, the paper

firstly emphasizes how the central question in the philosophy of AI has been

shifted from “can machines think?”, as originally put by Alan Turing, to “how

can machines think?”, pointing to an explanatory gap for NLMs. Subsequently,

existing explanatory strategies for the functioning of NLMs are analyzed to argue

that they, however debated, do not di�er from the explanatory strategies used

in cognitive science to explain intelligent behaviors of humans. In particular,

available experimental studies turned to test the theory of mind, discourse

entity tracking, and property induction in NLMs are examined under the light

of the functional analysis in the philosophy of cognitive science; the so-called

copying algorithm and the induction head phenomenon of a Transformer are

shown to provide amechanist explanation of in-context learning; finally, current

pioneering attempts to use NLMs to predict brain activation patterns when

processing language are here shown to involve what we call a co-simulation,

in which a NLM and the brain are used to simulate and understand each other.

KEYWORDS

philosophy of AI, philosophy of cognitive science, neural language models, deep

learning, functional explanations, mechanistic explanations, simulative AI

1 Introduction

Roughly speaking, two main paths can be identified along which the rise of artificial

intelligence has unfolded in the last ten years, driven by the new Artificial Neural Networks

(ANN) andmarked by Deep Learning (DL) (LeCun et al., 2015; Goodfellow et al., 2016). In

the first five years, the most successful path was vision, leading for the first time to artificial

systems with a visual recognition ability similar to that of humans (Krizhevsky et al., 2012;

Simonyan and Zisserman, 2015; Szegedy et al., 2015) arousing surprise and interest in the

science of vision (Gauthier and Tarr, 2016; VanRullen, 2017; Grill-Spector et al., 2018).

Five years later, it was the turn of language, a path opened by the Transformer model

(Vaswani et al., 2017), quickly followed by various evolutions and variants (Devlin et al.,

2019; Brown et al., 2020; Ouyang et al., 2022; Touvron et al., 2023), generically called here

Neural Language Models (NLMs). In this case too, the sudden and unexpected availability

of artificial systems with linguistic performances not so far from human ones has deeply

shaken the scientific community of language scholars (Alishahi et al., 2019; Baroni, 2019;

Boleda, 2020; Green and Michel, 2022; Pavlick, 2023). But the stakes are much higher

along the path of language than in that of vision. Even though seeing is a fundamental

ability of human beings, it is marginally linked to the common account of intelligence.

Understanding, and being able to express oneself correctly in a language, on the other
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hand, goes hand in hand with being–at least to some extent–

intelligent, being able to think and reason.

Understandably, the appearance of the NLMs has revived the

ancient debate about whether or not a machine can think, be

intelligent (Bender and Koller, 2020; Rees, 2022; Søgaard, 2022;

Agüera y Arcas, 2022; Floridi, 2023; Perconti and Plebe, 2023;

Søgaard, 2023). This article starts by arguing that the question of

whether machines can think (Turing, 1950), is not to be taken any

more as the central one in the philosophy of Artificial Intelligence

(AI). The crucial philosophical issue has become that of providing

explanations for this ability. This does not imply that the matter

has been settled, at least not in the sense that all philosophical

doubts concerning the very possibility of artificial semantics have

been dispelled. Nevertheless, the fact that some NLM performances

now appear genuinely intelligent suggests that we should also

examine how this phenomenon may have arisen. It should be

emphasized that the explanatory request under focus here does

not concern the algorithmic components of Transformer–based

models, on which there is plenty of technical descriptions. The

question addressed in this article is rather how the relatively simple

algorithmic components of the Transformer provide it with the

ability to produce linguistically adequate outputs and to reason at a

level comparable to humans. It’s worth noting that while linguistics

has generated highly sophisticated and detailed descriptions of

language, how it is understood and generated by a brain remains

essentially a mystery, much like in NLMs. One of the ambitions of

AI has been to explain aspects of natural cognition by designing

their equivalents. However, the presupposition was that these

artificial equivalents would be understandable, which is not the case

with NLMs. It’s challenging to determine whether shedding light on

how NLMs function can contribute to understanding language in

the brain.

The almost total absence of explanations for the linguistic

abilities of the NLMs contrasts with the relative simplicity of their

computational architecture and their way of learning. Again, there

is a vast technical literature that computationally illustrates the

implementations of the various NLMs (Tingiris, 2022; Rothman,

2022), but there is a huge gap from here to identifying what

in these implementations gives language faculty. One of the best

illustrative texts on Transformer architectures (Wolfram, 2023, p.

71) underscores the issue well: “It has to be emphasized again that

there’s no ultimate theoretical reason why anything like this should

work. And in fact, as we’ll discuss, I think we have to view this as

a—potentially surprising—scientific discovery: that somehow in a

neural net like ChatGPT’s it’s possible to capture the essence of what

human brains manage to do in generating language.”

The line of reasoning proposed here might open up to a

fundamental objection.1 To be legitimately allowed to shift the

discussion from can a machine think to how machines can think,

it would seem indispensable to have first ascertained that in a

philosophically proper sense machines can think. We call this

objection can comes first. It seems appropriate, given that the

question of whether the performances of NLM can qualify as

thinking is vigorously debated in philosophical terms. The can

1 We are very grateful to one reviewer for having raised this important

obiection.

comes first objection will be addressed in detail in §3, where

it is shown how it can be overcome by distinguishing between

possibilities in a metaphysical sense and in an empirical sense.

We pursue the latter, which legitimizes the transition to the new

problem of howmachines can think.

The explanatory request arising from NLMs is in this paper

addressed by providing an epistemological examination of the

current literature analysing the performance of NLMs in many

intelligent tasks. In order to do so, Section 2 firstly introduces

the Transformer architecture. Subsequently, Section 3 brings up

for NLMs the old question of whether machines can think,

addresses the can comes first objection, which directly leads to

the question that we currently consider more pressing, namely

how machines can think. Then, three sections epistemologically

analyse different directions taken by the early existing attempt

of explanations in terms of functional explanations (Section 4),

mechanistic explanations (Section 5), and simulative explanations

(Section 6). Finally, Section 7 concludes the paper by emphasizing,

one the one hand, how the explanatory strategies advanced to

explain NLMs do not differ from those used in the philosophy

of mind to explain the behaviors of natural cognitive systems; on

the other hand, how the explanatory gap for NLMs challenges the

simulative, or synthetic, method in cognitive science according to

which simulative systems are used to understand the mind.

2 Neural models and natural language

The first attempt to incorporate Artificial Neural Networks

(ANNs) into the field of natural language processing was

made by Rumelhart and McClelland (1986), with a focus on

inflectional morphology. Their model was successful, however,

they encountered a significant challenge in using artificial neural

models for language processing. Language is an ordered sequence

of symbols, while a neural layer is a real vector with a fixed

dimension. This makes it problematic to encode an arbitrary length

datum with a vector of fixed dimensions even for models confined

to the processing of single words.

A second difficulty is that representing words with neural

vectors worsens when transitioning from single-word morphology

to syntax. Feedforward ANNs are static, and establishing a

sense of ordering for multiple words in a sentence is far from

straightforward. Elman (1990) proposed an elegant solution by

supplementing the hidden layer of a feedforward network with a

so-called context layer, featuring recurrent connections between

the hidden layers. However, severe limitations arise as soon as

one moves from demonstrations on simple short sentences to

full language processing: recurrent networks struggle to maintain

relevance for words that are too distantly placed, yet syntactically

related. An additional difficulty for traditional ANN stems from

the very technique that had decreed its success in the ’90s:

backpropagation learning (Rumelhart et al., 1986). Its efficiency

comes at a price: supervision, where the correct outputs for input

samples are known. The ability to understand language, and even

more so to produce it, goes beyond tasks where the necessary inputs

and outputs for supervised training can be clearly identified.

The Transformer architecture, invented byVaswani et al. (2017)

at Google, combines several effective strategies that address all the
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three difficulties. First is the neural word embedding technique,

which learns from examples the optimal way to transform words

into vectors of neural activity. The first neural word embeddings

were introduced by Bengio et al. (2003), and recently significantly

improved by Mikolov et al. (2013). Their primary feature is

that the vectorial representations seem to carry information that

corresponds to meaningful distinctions for humans.

The numerical vectors can be manipulated, yielding results that

interestingly respect aspects of lexical semantics. Let Ew(·) be the

word embedding transformation, by computing:

Eq = Ew (king) − Ew (male) + Ew (female)

The resulting vector Eq is more similar to Ew (queen) than

to any other word embedded vector. The second strategy is the

attention mechanism (Bahdanau et al., 2016). This technique

dynamically identifies relevant information and relationships

among words in a sentence. The Transformer employs these

strategies innovatively. First of all, word embedding is learned

while the NLM captures contextual patterns, semantic relationships

and syntactic regularities from the corpora. Secondly, the attention

mechanism entirely replaces recursion. Now, all words, along with

their vectorial embedding, are simultaneously presented as input.

Furthermore, the Transformer adopts an elegant solution that

allows us to bypass supervised learning (Hinton and Zemel, 1994):

the concept of the autoencoder. This disarmingly simple idea is

that the task assigned to the ANN is to reproduce its own input.

The architecture that implements it is typically organized into

two components. The encoder is responsible for producing an

internal representation of the input, and the decoder reproduces

the output from this representation, which coincides with the

input. It should be emphasized that the learning strategy of an

autoencoder conceals what a NLM actually learns from the data

it is exposed to. In other DL systems, such as visual classifiers,

the loss through which synaptic weights are adjusted is explicitly

related to their task. Taking, for example, a DL vision system used

in a self-driving vehicle, its final layer will represent categories such

as cyclists and pedestrians. During training, the loss will be due to

misclassification, for example, mistaking a pedestrian for a cyclist.

This loss precisely clarifies what the system is expected to learn,

which is its anticipated task: to indicate that there’s a pedestrian in

the scene when it is indeed a pedestrian, and similarly for a cyclist.

In NLM, however, the error in predicting the next word in the

sentence is irrelevant compared to what the model captures of the

expressiveness of natural language from this simple loss. Chalmers

(2023) has emphasized the irrelevance of loss in relation to what the

models truly learn with this effective metaphor:

“in evolution by natural selection, maximizing fitness

during evolution can lead to wholly novel processes post-

evolution. A critic might say, all these systems are doing

is maximizing fitness. But it turns out that the best way

for organisms to maximize fitness is to have these amazing

capacities—like seeing and flying and even having world-

models.”

What kind of world-models have emerged in a NLM following

training is part of the endeavor to make sense of how the

FIGURE 1

A simplified scheme of the overall Transformer architecture. All

components are described in the text.

Transformer works. The unexpected remarkable efficiency of the

Transformer has triggered its substantial development, gradually

untethered from the original narrow aims of automatic translation,

toward dialogue and autonomous text generation (Devlin et al.,

2019; Brown et al., 2020; Ouyang et al., 2022). Herein, a simplified

description of the Transformer is provided, useful within the

scope of this article for the subsequent presentation of some

attempts at a mechanistic explanation of its capabilities, an

overall scheme is shown in Figure 1. The input text is made

by tokens ti, where each token is an integer index into the

vocabulary, made by words together with punctuation marks

and also parts of words. The size of the vocabulary N is

typically of several tens of thousands. A crucial operation on
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the input token is embedding, performed with the embedding

matrix WE ∈ R
D×N , with D the embedding dimension. For a

token ti in the input stream the embedded vector is computed

as follows:

Exi = W
(ti)
E + p(i) (1)

where W
(j)
E is the j-th column of WE and p(·) :N → R

d is a

function that encode the position of the token inside the stream

of text.

The model consists of a chain of L layers, in each layer an

attention block is followed by a feedforward neural network, each

block reads from and writes to the same residual stream. Figure 1

displays in detail only one layer and for one token only, all tokens

are processed in parallel. The output of the last layer is mapped back

to the vocabulary space by the unembedding matrix WU ∈ R
N×D

and then fed into a softmax layer. Each element in the output

vector Ezi represent the probability of a token to be the successor

of Eti.
A zoom into the attentionmechanism is provided in Figure 2. It

is based on linear algebra operations using the followingmatrices:

• WK ∈ R
A×D – the “key” matrix;

• WQ ∈ R
A×D – the “query” matrix;

• WV ∈ R
A×D – the “value” matrix;

• WO ∈ R
D×A – the “output” matrix.

A is the dimension of the vector used in the attention

computation, in most current NLMs is equal to D. The matrices

WK,Q,V map an embedded token into the vectors “query” Eq; “key”
Ek; and “value” Ev. The scalars si in Figure 2, called “score”, result

from the multiplication of the “query” and “key” vectors, and

modulate the amount of the “value” vectors. The terms “key”,

“query”, and “value” are remnants of the common jargon in

information retrieval (Salton and McGill, 1983) and associative

memory systems (Anderson and Bower, 1974), where “query”

expresses what one is searching for, “key” is the index that best

matches the “query”, pointing to a “value” which is the sought-after

content. However, it should be noted that in the Transformer, these

interpretations should not be taken too literally, just as “attention”

should not be taken as a synonym for the psychological mechanism

bearing the same name. Indeed, in the Transformer, there is no

predefined index to compare with an explicit query and retrieve

content. All these vectors are linear transformations of embedding

vectors through the WK,Q,V matrices. Just as it happens for the

weights of the feed-forward components, all elements of these

matrices are learned through the minimization of the same loss:

the prediction of upcoming tokens in sentences. It should also be

emphasized that the success of the attention mechanism depends

on the simultaneous learning of the WK,Q,V matrices, and the

word embeddings on which they operate. To the extent that the

embedding vectors manage to capture the meaning of words in

a large number of possible contexts, it is also possible to derive

realistic interrelationships between words in a text, through simple

linear transformations of these vectors. Here is the mathematical

expression of the operations carried out by the attention.

Eai = WOWV
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where T is the span of tokens preceeding the current token Exi.
It should be added that this description leaves out a small

additional complication: the entire token expressed as an embedded

vector is actually divided into H portions, called heads, and the

identical mechanism just described is applied separately to each

head, and only in the end are the various portions re-joined. The

idea is that an embedded vector combines different properties of a

word, and that certain categories–for example, the tense of verbs

or the gender and number of nouns and adjectives–always occupy

the same portions of the vector, and therefore it is convenient

to process separately the network of relationships between the

separate characteristics of the various words in the text. This

concise description of the Transformer clearly shows its relative

simplicity compared to other DLmodels, and its extreme simplicity

compared to the set of traditional NLP techniques required for the

simulation of a wide range of natural language abilities. Finally,

we must not forget that the Transformer, despite its innovative

components just described, incorporates the leap forward made

in transitioning from ANN to DL. The linchpin of this epochal

shift is the trainingmethod. Backpropagation was themathematical

finding that gave life to the ANN of the ’80s (Rumelhart et al.,

1986), but it proved ineffective as soon as the networks grew in

size. Already, the simple transition from a single hidden layer of

a ANN to two was challenging for backpropagation (de Villers

and Barnard, 1992). Limitations collapsed with DL and modern

learning techniques based on stochastic gradient descent (Bottou

and LeCun, 2004; Kingma and Ba, 2014). Once the limit of a single

hidden layer was broken, the models began a race to have more

and more layers, thus becoming “deep”. By using sophisticated

mathematical topology analyses, principle reasons were identified

for why “deep” networks are more efficient than “shallow” ones

(Bianchini and Scarselli, 2014b,a), and of course, the Transformer

greatly benefits from this. It soon emerged that a model’s scale,

in terms of the number of its parameters, was a crucial factor for

its performance, pushing to non-theoretical, but economic limits

for the cost of training. We will see the importance of the scale

factor in Sections 4, 6. As with all ANN, the number of model

parameters goes hand in hand with the number of samples for its

training, and the corpora in use for training NLMs have grown to

a significant portion of all the texts available in humanity. We have

moved from the 40GB of text employed for GPT-2 to 470GB for

GPT-3 (Zha et al., 2025) and 15T of tokens for Llama 3 (Grattafiori

et al., 2024). Even though it is not directly related to the research on

how the Transformer manages to function, it is good to highlight

how the quality of the data has a far from negligible effect on overall

performance. The impressive size of linguistic datasets necessitated

an automatic process for controlling and filtering texts. At the

same time, it was found that the subsequent refinement of NLM

through examples of human preferences had a significant effect on

performance (Ouyang et al., 2022). The prevalence of data care over

algorithmic coding care is a common phenomenon throughout DL
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FIGURE 2

Detail of the attention mechanism, for the current embedded token Ex1 with respect to the previous tokens Ex2 and Ex3. All elements are described in

the text.

and is considered a sort of paradigm shift in the development of AI

systems (Angius and Plebe, 2023; Zha et al., 2025).

3 How can neural models think?

The NLMs described in Section 2 have made a huge leap

forward in language processing over the last five years (Plebe and

Perconti, 2022; Min et al., 2023; Perconti and Plebe, 2025). In

the meantime, not much theoretical progress has been made from

the point of view of arguments challenging artificial semantics.

Indeed, it has been noted that most of the current positions against

the possibility of a computer acquiring meaning date back to the

early arguments from the 1980s and 1990s (Perconti and Plebe,

2023). In the meantime, every minute, millions of people around

the world converse with chatbots controlled by NLMs about all

sorts of topics. Turing’s imitation game no longer seems to be

a real obstacle. There are now books on detailed philosophical

conversations with a NLM (Leib, 2023). Srivastava et al. (2022)

called their giant benchmark setup for evaluating the capabilities

of NLMs Beyond the Imitation Game (BIG-bench) and assume

that this type of review will be far surpassed. A team at AI21

Labs has developed a type of social imitation game in which

most people are unable to distinguish whether their conversation

partner is a human or an NLM (Jannai et al., 2023). In the field

of research on NLMs, the main goal is to explore the intricate

mechanisms that determine their functioning and their potential

for cognitive inference. In the last five years or so, NLMs have

made remarkable progress in the field of language processing.

Nevertheless, that there is a significant lack of theoretical progress

in the ongoing debate on artificial semantics. This paper does

not take a definitive position on the fundamental question of

whether machines can really “think”, but it argues that this is no

longer the central question in the philosophy of AI. Rather, the

urgent need is to understand how NLMs have managed to achieve

a level of performance that approaches human cognition. This

perspective follows an epistemological approach that emphasizes

causal explanations that serve to connect the apparent simplicity

of NLM algorithms with their amazing cognitive capabilities.

The passing of Turing’s Imitation Game can now be considered

empirically established. The performance achieved by NLMs today

is so close to that of thinking human agents that it is urgent to ask

how this is possible. It may be worth distinguishing here between

two connotations of the term “possibility”—a priori (metaphysical)

and a posteriori (empirical). The a priori possibility is based on

the idea that there are essential properties in things and that

nothing can contradict their essential properties. If one tries to

imagine something that contradicts its own essential properties, she

realizes that one is actually thinking of something else. There are

no possible worlds in which something can have other essential

properties than the one it has. However, the concept of “essential

properties” is controversial. Do they really exist? If so, do they

only include primary properties (such as physical properties)? Or

also secondary properties, such as “hot” or “red”? Counterfactual

imagination is an essential capacity for exploring metaphysical

possibilities. What if water lost its chemical composition and yet

retained its phenomenal properties? What if some people were

behaving in such a way that they were not suspicious of their

inner life and were instead a mere automaton, lacking the ability

to experience the world? Ultimately, the question is whether the

possibility of something can be inferred from its conceivability.

Chalmers (1996) based his famous argument of philosophical

zombies on this idea. Unlike movie zombies, philosophical zombies

do not have a different appearance than usual. In fact, they are
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indistinguishable from their sentient counterparts. But unlike their

sentient counterparts, they feel nothing. If such creatures are

conceivable, perhaps they are also possible. But, if they are possible,

then physicalism is false. Physicalism is the view that every aspect

of the mind, including consciousness, can be entirely explained by

physical processes; the conceivable existence of zombies—beings

physically identical to us but lacking any subjective experience—

contradicts this claim. One might object that possibility can be

inferred from mere conceivability, and that the mere possibility of

something does not have the power to falsify a theory about the real

world. But that is not the point we are trying to make.

This paper rather considers a posteriori possibility, which

depends on whether something has actually happened. In a sense, it

is implicitly based on the famous dictum of medieval metaphysics:

Ab esse ad posse valet. Taking the a posteriori possibility into

account brackets the “can comes first objection”, on the grounds

that sufficient empirical evidence exists to justify questioning how

this phenomenon might have occurred or, at the very least, to

request that the interlocutor concede this point “for the sake of

argument.” The question of empirical possibility sounds something

like this: If certain things actually happened, how was it possible

for them to have happened? Empirical possibility, which is based

on a posteriori observations, is about unraveling the mechanism

by which certain events came about. For example, if we consider

the human achievement of powered flight, we might ask about

the empirical possibility of such an achievement. The answer

involves strategies such as mimicking the flight of animals, a deeper

understanding of the laws of physics, and the consideration of the

physical parameters that determine the “flight”, whether natural or

artificial. In this perspective, “flight” is no longer just something

that birds can do, but a function can be attributed to any object that

conforms to the “laws of flight”. In this broader sense, a bird, a bat,

a jet plane and a hang glider are all objects capable of flight, as they

follow the same rules and their behavior is based on the same laws.

Flight is therefore no longer understood as an exclusive function of

birds or certain mammals, but as a “mechanism” used by certain

animals in nature, selected in the course of evolution, and which

can even be relied upon to achieve an artificial version of flight.

It is similar with the mind. Intuitively, the mind is exactly what

characterizes humans, like flight for birds. Or at least a component

of it, such as self-consciousness, language, or creativity.

Cognitive science has contradicted this common sense

intuition. By investigating how a particular cognitive function, such

as vision, works, an increasing understanding of the underlying

cognitive mechanisms has been gradually uncovered. The cognitive

mechanisms of vision were then transformed into a computational

architecture, which eventually made artificial vision possible. By

extending this approach to the various cognitive abilities, the

dream of an “artificial intelligence” somehow became a reality.

Artificial systems were then used to discover new mechanisms

about natural cognitive systems: given a function, implemented

in an artificial system by a specified mechanism, an hypothesis is

advanced that the same, or similar, mechanism realizes the same

function in the natural system. Just as “flying ”is something that

occurs in both natural and artificial forms, “thinking” is something

that occurs in different ways, including artificial thinking. By

disciplining ethnocentrism and anthropocentrism, we may also

be more willing to be liberal toward artificial intelligence. If the

mind is a consistent set of computational architectures, then the

way humans have their minds and the way machines are endowed

with theirs are actually two variants of the same phenomenon.

Cognitive science has long hypothesized that thought is a form

of computation that occurs through meaningful representations

of the world. The idea that mental representations serve as tools

for people to navigate the social and physical world, and thus

guide their behavior, has persisted in the philosophy of mind for

centuries. These representations are endowed with intentionality,

which means that they refer to specific contents that relate to states

of affairs. Consequently, these representations convey meaning by

signaling the information they contain about various aspects of the

world. This way of reasoning holds if we restrict it to the human

mind or analogous animal species. However, when we consider

artificial intelligence, a profound change emerges.

In the course of its historical development, computationalism

has encountered challenges posed by alternative cognitive science

paradigms such as embodiment and enactivism. At the same time,

the computational theory of mind has become increasingly close

to the processes of the human brain, claiming that a computer

equipped with an appropriate program can think and process

meaningful representations. Turing (1950) originally introduced

this concept with the idea of engaging computers in ordinary

conversations to assess their cognitive abilities – a challenge that

was later taken up by researchers in the field of artificial intelligence.

The concept of thinking machines has led to considerable debate

and skepticism. Dreyfus (1972, 1992) and Searle (1980) in particular

found the notion of thinking machines unsettling. Even among the

proponents of the computational theory of mind, there were those

who harbored doubts about attributing meaning to computers

(Dretske, 1985). The quest for a semantics for computers and the

related field of artificial intelligence gave rise to lively debates in

the 1980s and 1990s (Haugeland, 1985; Dennett, 1985; Pylyshyn,

1987; Harnad, 1989, 1990; Dennett, 1998; French, 2000). The

philosophical discussion on the topic subsequently experienced a

general decline in interest, albeit with some exceptions (Preston

and Bishop, 2002; Chalmers, 2010; Plebe and Perconti, 2013). At

the beginning of the 21st century, however, disillusionment spread

in the ranks of AI proponents, as AI was unable to keep up with

human cognitive abilities in critical tasks. This led to fatigue and

division within the AI community and raised questions about the

future of the field. The question of whether machines can really

“think” remains unresolved, but it is evident that NLMs have

come remarkably close to mimicking human cognitive processes.

The present investigation takes an epistemological standpoint and

attempts to uncover the causal explanations for the exceptional

cognitive abilities of NLMs. This is done by analysing the current

literature on NLMs and their functioning under the light of the

problem of scientific explanations in cognitive science (Haugeland,

1991; Bechtel, 2008).

4 Functional analyses

One first kind of explanations of NLM behaviors can

be considered functional in that it tries to adapt the same
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methodologies used for human subjects in tracing the emergence

of a series of cognitive and linguistic phenomena. There is

indeed a growing body of research targeting specific cognitive and

psycholinguistic functions in NLMs, functions that support the

ability to think shown by the models. This trend is related with

the increasing prominence of NLMs in the field of experimental

psychology. The ease and flexibility of using NLMs align well

with the textual nature of many tests in this field. The alliance

between NLM and psychology has a dual perspective. NLMs are

potential tools that assist psychology in studying the human mind,

as discussed (Demszky et al., 2023). Alternatively, it is psychology,

with its own tools, that aids in the analysis of NLMs, a tendency

dubbed machine psychology (Hagendorff, 2023). It ecompasses

examples where NLMs are equated to human subjects in tasks and

tests, being used as social simulacra (Park et al., 2022) or silicon

samples (Argyle et al., 2023). Let us see three typical psychological

functions that has been searched using NLMs as if they were

humans, with one caveat: it is a quite debated topic whether

psychological tests developed for human subjects can be equally

applied to NLMs to assess whether the latter actually possess the

same psychological functions of the former. For instance, Löhn

et al. (2024) stress how assesment procedures for psychological tests

usually go through standard validation processes over the years;

similar standardization processes are lacking when evaluating

NLMs tests.2 However, this paper does not want to take part to

such a debate on the validity of current machine psychology, which

certainly needs improvements, but rather to highlight how one

tentative explanation of NLMs linguistic abilities can be put on a

par with functional explanations in cognitive science. Let us see.

Theory of Mind: in literature, the capacity to adopt other

person’s mental perspective and to anticipate their behavior is

discussed through various expressions, including Theory of Mind

(ToM), mentalization, mindreading, and social cognition (Apperly,

2010; Heyes and Frith, 2010). Although the term “mindreading”

may seem somewhat unusual, it is widely used as a neutral

expression encompassing the set of processes that allow us to

represent others’ mental states (Barlassina and Gordon, 2017).

This capacity forms the basis not only of linguistic abilities and

communication in general, but also of self-awareness, empathy, and

moral judgment (Zhang et al., 2012). The widespread use of the

term “theory of mind” is due to Premack and Woodruff (1978)

in cognitive ethology (Rosati et al., 2010), and later to Baron-

Cohen et al. (1985). In past decades, theory of mind was generally

conceived as a type of folk knowledge–specifically, knowledge

pertaining to the mind (folk psychology, like folk physics, folk

biology, etc.). The idea that the mentalistic interpretation of

behavior is based on the ability to model the mental states

of others has been challenged by simulation theory (Goldman,

2006), which offers an explanation grounded in the capacity to

internally and directly simulate the inner life of other individuals.

What is controversial is how people arrive at representing others’

mental states. On one side, proponents of the Theory-Theory of

mindreading (TT) hold that a tacit psychological theory underlies

the ability to represent and reason about others’ mental states,

2 We are very grateful to one reviewer for having pointed out this question.

arguing that mentalization is a theory-driven, information-rich

process. On the other side, proponents of Simulation Theory (ST)

argue that representing others’ mental states is an information-

poor process based on the ability to put oneself in others’ shoes

and ask what we would do in their place. TT holds that when

we represent other people’s mental states, we consult a tacit

but systematic set of propositions about how the mind works.

According to ST, however, no theory, not even an implicit one,

is needed, since the ability to represent others’ mental states

is simply a matter of directly adopting the other’s perspective

through simulation and by projecting ourselves into their situation.

In other words, to interpret others’ behavior we engage in a

process of mental simulation by imagining ourselves in their

situation and using our own cognitive mechanisms to anticipate

or explain their thoughts, emotions, and decisions (Iacoboni,

2014). As a result of the debate between Simulation Theory and

Theory-Theory, a hybrid version has emerged (Röska-Hardy, 2008;

Gallagher, 2015; Venter, 2024). The “hybrid account” suggests that

understanding others’ minds involves both simulation and the

application of a form of theory of mind that incorporates folk

psychology. In this sense, the term “theory of mind” has shed its

initial commitment to theory-theory and is equally parsimonious,

from an epistemological standpoint, as broader concepts such as

mindreading or social cognition. It should also be considered

that the “theory of mind,” as specified, consists of two main

components, namely low-level mindreading (emotional contagion,

gaze following, etc.) and high-level mindreading (counterfactual

reasoning, stream of consciousness, etc.) (Goldman, 2006). While

low-level mindreading is predominantly non-linguistic, high-level

mindreading is largely mediated by language. For example, silent

verbal reasoning is often used as an internal logical space for

behavioral prediction. These considerations lead us to appreciate

that, although linguistic competence and theory of mind are

not entirely overlapping–and indeed in some cases operate

independently–in general, investigating the linguistic mediators

of social cognition is a highly promising perspective. This is the

primary reason why ToM is included in our short list of functional

analysis of NLM.

Kosinski (2023) at Stanford developed a strategy for

administering the classical false-belief tasks, widely used to

test ToM in humans, to several versions of GPT. Let us recall

that the false-belief task amounts to introducing a story to test

the ability of the listener of understanding that the protagonist

may have a belief the listener knows to be false. The claim is that

whereas ToM is certainly not a function specified and implemented

in NLMs, it nonetheless emerges from the network while being

trained to process human language. This is in line with research

in evolutionary psychology and linguistics maintaining that ToM

emerged at a certain stage of language evolution as a biological

adaptation (Milligan et al., 2007). Indeed, ToM is an essential

feature to interpret sentences containing mental predicates (such

as think, believe, desire etc.) and, consequently, to generate new

related sentences. The experiments of Kosinski revealed a level

of ToM in line with 3-year-old children for GPT-3.5, and in line

with 7-year-old children for GPT-4. A particularly notable aspect

of Kosinski’s experiments is the relationship highlighted between

the scales of the Transformer and evidence of ToM. Models with
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less than 100B parameters do not possess any ToM, GPT-3.5 with

175B parameters has a level of ToM comparable to a 3-year-old

child, and GPT-4 with over 1 trillion parameters is comparable to a

7-year-old child. We will see that scale also plays a significant role

in the relationship between Transformer and the brain (Section 6).

A conclusion that is far from definitive, the topic of ToM in NLM

soon became the subject of lively discussion (Brunet-Gouet et al.,

2023; Holterman and van Deemter, 2023; Leer et al., 2023; Ma et al.,

2023; Marchetti et al., 2023; Trott et al., 2023). The focus here is

not on whether or not NLMs possess ToM. This case is exemplary,

for the economy of this article, as a functional methodology for

accounting for the linguistic abilities of NLMs.

Other mental functions which can contribute to explain NLMs

behaviors are quickly reported in the following.

Discourse entity tracking is another fundamental capacity

in humans for linguistic social communication. It encompasses

several abilities, including the recognition of new discourse entities

when introduced, coreference resolution, namely associating

different linguistic expressions with the same entity, and tracking

the state changes of the introduced entities. Kim and Schuster

(2023) setup a series of experimental tasks, where entities undergo

several changes during a discourse, to test GPT 3, GPT 3,5, and

FLAN T-5 against discourse entity tracking abilities. Models are

trained over datasets containing linguistic descriptions of boxes

and objects which can be loaded, taken, or moved from one box

to another one. The task consisted, given an initial description

of the state of affairs, and a set of operations on the objects in

the boxes, to correctly describe what objects a given box contains.

Models were prompted by defining the task, introducing two task

examples, describing the initial state of affairs, and providing a

sentence of the form Box N contains . . . to be completed to solve

the task. The authors have developed a completely new dataset for

these experiments, in order to prevent state transitions of entities

from following a pattern already present in the pretraining data

of the models. This is a necessary methodological precaution,

which, however, precludes the possibility of a direct comparison

with the tracking accuracy of human subjects. After all, this is

not the primary interest of the work, but rather to verify whether

this kind of competence – notoriously fundamental in human

language – could be found to some extent in the models. In the

first of the experiment described (Kim and Schuster, 2023), only

GPT-3.5 showed considerable discourse entity tracking abilities,

outperforming both GPT-3 and FLAN T-5. Prediction accuracy of

GPT-3.5 decreased as the number of operations on the objects in

the boxes increases, from more than 90% of answer accuracy after

one operation to more than 25% after seven operations.

Property induction is another, core, function displayed in

human inductive reasoning which has been found to be realized

also in NLMs. Property induction is the ability to extend a

property that is shared by some categories, to different categories,

when appropriate. Han et al. (2024) performed two kinds of

experiments in order to compare the results of property induction

tasks by humans and by GPT-3.5 and GPT-4 models, in three

category domains, namely mammals, birds, and vehicles. The

first experiment is about selecting which, between two inductive

arguments, is stronger; the second experiment involves rating the

strength of a single arguments. The authors have constructed the

tasks by reproducing a series of known psychological phenomena

that either strengthen or weaken property induction. One such

phenomenon is similarity. For instance, starting from the premise

that cats have sesamoid bones, when asked if lions also have

sesamoid bones, the responses are more positive compared to

asking if giraffes have this type of bone. The first argument is

stronger than the second because cats are more similar to lions

than giraffes. An example of a phenomenon that weakens property

induction is non-monotonicity, which occurs when an additional

premise involves a different entity from the category in question.

Non-monotonic reasoning is a major form of reasoning used by

humans that contrasts with standard deductive reasoning (Brewka

et al., 1997). For example, the premises that both cats and lions

have sesamoid bones would strongly suggest that all mammals

have them. But adding the information that crocodiles also have

sesamoid bones makes the argument weaker. Results shows that

while GPT-3.5 performs quite poorly, GPT-4 correctly evaluates

stronger arguments in a similar way humans do, except for non-

monotonicity, respect with which bot GPT-3.5 and GPT-4 fail in

identifying the stronger argument.

Again, what counts for the present analysis in not whether

NLMs outperform or not human linguistic behaviors, but rather

that NLMs are studied in terms of functions and the extent to

which they implement them. Explaining the behaviors of a system

in terms of the functions the system implements was the aim

of Nagel (1961)’s initial account of functional explanation. His

definition was behavioral: for a biological or social system to

possess a given functionmeans behaving in a certain way. Similarly,

for a NLM to possess psycholinguistic functions means, just to

consider the three provided study cases, being able to solve the

false belief task, to track discourse entities, or to induce object

properties. If Nagel’s aim was to reduce the functional explanations

one employs in life or social sciences to the nomological-deductive

ones used in physics, properly levering on the behavioral definition

of function, Cummins (1975, 1983) is more interested in explaining

the capacities of complex systems, such as cognitive systems. This is

done through what is known as the functional analysis: the general

capacity of a system is explained in terms of the components of such

a system and of the functions realized by those components. It is

essential to show how the functions of the components, together

with their causal organization, bring about the general system

capacity. For instance, the capacity of the circulatory system can

be explained in terms of some system components, such as arteries,

veins, and the heart. Each component has a function contributing

to the general function: the function of the heart is to pump blood

through the arteries.

Since each component has got a function, it can be examined

in terms of its sub-components and sub-functions as well. In

the case of the heart, those may be atria, ventricles, valves,

myocardium, and so forth, each with its proper subfunction. The

functional analysis can still proceed by analysing sub-components

and their sub-functions in terms of their components and related

functions. The functional analysis halts either when one reaches

a successful explanatory level or when one reaches the structural,

physical, level of components that can be explainedmechanistically,

without reference to functions and sub-components. The kind

of explanation of linguistic abilities of NLMs current research is
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trying to attain, certainly involves a general function being analyzed

into sub-functions. Linguistic capacities are being explained in

terms of sub-capacities such as possessing a ToM, or being able

of discourse entity tracking and property induction. And each of

this is analyzed in terms of functions allowing a model to possess

the given sub-capacity. For instance, having a ToM is analyzed in

terms of the ability to solve some different false belief tasks; and

solving a false belief task implies correctly answering to 16 prompts

covering 8 different scenarios.Clearly, a function analysis may fail:

a capacity may be wrongly decomposed into sub-components and

sub-functions; for instance, those arguing against the ascription

of a ToM to NLMs would agree that their linguistic capacities

are being wrongly analyzed in sub-functional terms (the ToM).

Again, we are not arguing in favor or against given psychological

functions for NLMs, but rather highlighting how these initial

attempts in machine psychology amount to a (successful or failing)

functional analysis.

However, Cummins is very clear in stating that performing

a functional analysis in terms of sub-functions and their sub-

sub-functions is not enough for the functional analysis to be

considered an explanation (Cummins, 1983). Each sub-function

must be associated to a system component, the causal role filler;

in other words, for each identified sub-function one is required

to identify the physical structure or mechanism implementing that

function. This can hardly be done with NLMs which, as any other

DL architecture, are highly opaque and uninterpretable (Lipton,

2016). What is not known are the data pattern a network isolates

to provide the resulting output and, especially, the components, i.e.

neuron networks, being activated to output the given result. The

search for internal mechanisms within Transformers that underpin

their linguistic successes undoubtedly benefits from techniques

that have been refined within the field of study known as XAI

(Explainable Artificial Intelligence) (Zednik, 2021; Langer et al.,

2021; Hassija et al., 2024). However, it’s important to highlight

the fundamental differences between XAI and the endeavor

advocated here. The XAI perspective is primarily pragmatic, and

the exemplary case studies of interest concern exceptions, whenever

an AI system makes mistakes, and there is interest in identifying

the causes of the failure. Our perspective is instead theoretical.

Understood, even the cases where an AI system fails can be

revealing about its overall functioning. However, the perspective

taken here primarily aims to make sense of how models manage

to work in ordinary cases, and to work so well. Let us see.

5 Thinking about mechanisms

The studies that, from our survey, appear to be engaged

in researching mechanisms capable of explaining aspects of the

Transformer, use a variety of tools, which can be classified

as follows:

• Circuit discovery, tools able to extract fromNLMs circuits with

distinct functionality, an example is the ACDC (Automatic

Circuit DisCovery) (Conmy et al., 2023);

• Localization, strategies for localizing neurons or group of

neurons in NLMs that are responsible for specific basic tasks,

like classifying the tense of a verb; an example is sparse probing

(Gurnee et al., 2023);

• Visualization, like AttentionViz (Yeh et al., 2023), that

generates colored 2D graphs of principal components of the

attention matrices for key and query of the same token; or

the graph representation, with colored edges, of the attention

values for a prompt (Katz and Belinkov, 2023);

• Conversion, between a human-readable programming

language for composing simple primitive language tasks,

and an equivalent Transformer model; examples are RASP

(Restricted Access Sequence Processing Language) (Weiss

et al., 2021; Lindner et al., 2023); and other way round, like

Transformer Programs, simplified Transformer models that

can be converted into a discrete, human-readable program

(Friedman et al., 2023).

Not all studies analyse NLMs as a whole, some focus on one part

of the model only: attention (Tenney et al., 2019; Clark et al., 2019;

Snell et al., 2021; Mittal et al., 2021; Katz and Belinkov, 2023; Yeh

et al., 2023); feed-forward layers (Geva et al., 2021, 2022; Merullo

et al., 2023; Huben et al., 2023); embedding (Hewitt and Manning,

2019; Mickus et al., 2022).

Another dimension along which the studies differentiate is

the phase at which the NLM is investigated. Prediction is the

phase on which most studies focus their attention; while some

analyse the training phase (Snell et al., 2021; Tian et al., 2023);

and others target in-context learning (ICL). Thanks to ICL, NLMs

can perform cognitive tasks that they previously could not, or only

to a limited extent, after seeing a few examples in the prompt.

This is a phenomenon that has recently converged a significant

number of works (Garg et al., 2022; Olsson et al., 2022; Abernethy

et al., 2023; Von Oswald et al., 2023; Wibisono and Wang, 2023;

Zhang et al., 2023), partly due to the fact that it is a well-defined

phenomenon that develops over a few interactions, unlike the

billions of steps during full training. Although these works often

claim to have the discovery of the mechanisms behind ICL as

their objective, the results are often configured as mathematical

descriptions rather than mechanisms in the proper sense. For

example, Abernethy et al. (2023) demonstrate that, under suitable

conditions, ICL in a Transformer corresponds mathematically to

the hypothesis of a tokenized sparse linear regression. Similarly,

Guo et al. (2023) demonstrates the equivalence between ICL in

the Transformer, under certain simplified conditions, with an

optimal ridge predictor; and the equivalence with Bayesian Model

Averaging (Zhang et al., 2023) .

As a whole, all the surveyed studies provide a scattered and

modest picture of potential mechanisms explaining how NLM can

work. Yet they are important as pioneering investigations in this

direction. Here we intend to focus only on one study, due to

Elhage et al. (2021), one of the first to venture in the direction of

mechanism research, and even today, one of themost profound and

revealing. His strategy is not dissimilar from that of other studies,

starting from the fewest possible components of a Transformer,

in its minimal implementation, looking for possible elementary

mechanisms, and the types of phenomena they are capable of

producing. The two models analyzed are a single layer with

attention only, and a stack of two layers, still with attention only
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without feedforward layers. Two basic independent components

have been identified: the OV (output value) circuit made by the

matrixWOWV , and the QK (query-key) circuit made by the matrix

WT
QWK , whosematrices are computed as follows, in according with

Equation 2:

WOV = WOWV (3)

WQK = W
⊤
QWK (4)

In the one layer model the most significant phenomenon is the

copying algorithm, that performs this simple mapping:

[

. . . , a, b, . . .
]

→ a (5)

in practice previous tokens are likely to be the next predicted. It is

the OV ciruits that predisposes things so that tokens, if attended

to by the head, become probably the next token. The QK circuit

attends back to all tokens which could plausibly be the next token.

Thus token, whenever their place is plausible, are copied. When

moving to a two-layer model, additional components come in

place, called K-, Q-, V-Compositions. These components account

for how much information query, key or value vectors of a second

layer attention read from a given first layer attention. They are

computed as follows:
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where ‖ · ‖F is the Frobenius norm, and the superscripts (1) and (1)

specify to which layer the matrix belongs.

The composition quantities ξK,Q,V allow the discovery of a a

novel phenomena that was not present in one-layer, and emerge in

the two-layer model:

[

. . . , a, b, . . . a
]

→ b (9)

where the present token is searched over the current context, and if

it is found, then the token that was next in the context is predicted.

This phenomenon is called induction head. It relies in part on the

copying phenomenon seen in one-layer models, but it also requires

an additional one called prefix matching, the capacity to compare

the current token with every preceding token and look for places

where they are similar. This is possible thanks to the K-composition

in the QK circuit of the second layer.

Let us now ask whether induction head can be considered a

discovered mechanism of some sort, and whether its description

amounts to themechanist explanation of some given phenomenon.

The issue of mechanists explanation, in its contemporary account,

traces back to Machamer et al. (2000) original paper wherein

a mechanism is defined as a set of “entities and activities

organized such that they are productive of regular changes from

start or set-up to finish or termination condition” (p. 3). In

the context of the explanation of biological and neurocognitive

phenomena, mechanisms are defined by a set of entities that, by

entertaining causal relations, bring about a given phenomenon,

i.e. the explanandum. For instance, neurotransmission can be

explained in terms of a set of entities, say axons, dendrites,

synapses, neurotransmitters, vesicles, receptors, and their causal

relations, such as the fusion of a vesicle to the axon membrane, the

release of the neurotransmitter in the synaptic cleft, and reception

by the dendrite receptors. Advancing a mechanist explanation

of a phenomenon amounts to describing a mechanism of this

sort that brings about the phenomenon. Mechanisms are usually

delimited by starting and finishing conditions; in the case of

neurotransmission those may be respectively identified with the

depolarization of the axon membrane and the deactivation of the

neurotransmitter in the postsynaptic neuron.

Induction head can be certainly understood as a mechanism

defined by a set of entities, namely neuron layers, embedded

tokens, the K-, Q-, V- vectors, circuits, matrices, and their causal

relations, i.e. the matrices operations on vectors. Those causal

operations bring about the main phenomenon at the basis of the

induction heads, that is, guessing a next token in a context, when

it satisfies the conditions of Equation 9. While the composition

quantities ξK,Q,V computed in Equations 6, 7, 8 allows the detection

of this phenomena, the group at Meta AI lead by Léon Bottou

went further and described in mechanistic way the conditions that

induce induction heads (Bietti et al., 2023). This was possible at

the price of drastic simplifications, in addition to those already

imposed by Elhage and co-workers. The query matrices were fixed

W
(1)
Q = W

(2)
Q = I so that the key matrices W

(1)
K and W

(2)
K play the

role of both key and query matrices, and the matrices W
(1)
V , W

(1)
O ,

and W
(2)
V did not change during training. It should be noted here

that the induction head actually corresponds to a kind ofmulti-level

mechanism, in that it results from the interaction of the copying

algorithm and prefix matching, which can be seen as phenomena

resulting from lower level mechanisms. This is in line with the

multi-level analysis of neurocognitive mechanisms (Craver, 2016),

according to which given a mechanism M conventionally ascribed

to level 0, an entity X of M can be analyzed at a lower mechanist

level −1 which entities and activities constitutes X at level 0,

and at an upper mechanist level +1 in terms of the contribution

given by X to the upper level mechanism. Whereas it is clear that

induction head as a mechanism can be analyzed as the composition

of lower levels mechanisms, namely the copying algorithm and

the prefix matching, one may wonder whether there are upper

level phenomena to which induction head contributes. It has been

speculated that induction head is the key mechanism for the higher

level phenomenon ICL, seen before. ICL is clearly at the basis of the

broad capacity of “thinking” onemay ascribe to NLMs. Olsson et al.

(2022) provided compelling arguments for linking induction head

to in-context learning. The main argument is the co-occurrence

of ICL and induction head during training of NLMs, an event

relatively easy to detect, because of a sudden and dramatic collapse
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of the loss for ICL during training. This event coincides with the

emergence of induction head in the second layer of the model. The

second argument put forth by the authors is interesting primarily

for reinforcing the result, but also for its explanatory strategy.

Indeed, it fully embodies a significant variant of mechanism known

in the philosophy of science as interventionism (Woodward, 2003).

This methodological approach preserves the mechanistic principle

of identifying parts within a system and their role in producing a

phenomenon, but it aims to discover causal relationships through

intervention on certain parts, and observing modifications of

aspects of the phenomenon which are exclusively due to the

intervention made. Olsson and her colleagues injected a small

modification into the Transformer, dubbed the smeared key, that

artificially facilitates the emergence of the induction head. The

model with this modification demonstrated a dramatic change in

the emergence of ICL, precisely coinciding with the anticipated

expression of the induction head.

One may ask whether ICL is actually the higher level

mechanisms to which induction head, as a mechanism, contribute.

ICL, as a phenomenon, refers to a system capacity, viz. the

capacity of predicting tokens later in a context. It has also been

stated that such capacity is deemed to be at the basis of the

general capacity of NLMs of performing human-like linguistic

behaviors. In other words, in-context learning seems to be one

sub-function of a NLM general function and to fall under the

functional analysis approach recalled examined in the previous

section. Nonetheless, ICL also refers to tokens, context, mappings

from tokens to tokens etc which are all component of the

mechanisms explaining the good performances of the network.

Mechanisms not specifying all causal role fillers, but also containing

unspecified functional roles (Machamer et al., 2000) mechanism

sketches. More specifically, Machamer distinguishes a mechanism,

as previously defined, from a mechanism schema which is “a

truncated abstract description of a mechanism that can be filled

with descriptions of known component parts and activities” (p.

15), and from a mechanism sketch, “an abstraction for which

bottom out entities and activities cannot (yet) be supplied or

which contains gaps in its stages” (p. 18). Piccinini and Craver

(2011) have it that mechanisms in neuroscience are organized in a

level hierarchy, where lower levels provide full-fledged, bottoming

out, mechanisms wherein all entities and activities have been

specified. As one goes up in the hierarchy, some of the entities

and activities are left unspecified, forming sketches of mechanisms.

The authors argue that providing mechanism sketches of this sort

is akin to a functional explanation wherein bottoming-out entities

and their causal relations are replaced by functional roles. This,

in turns, allows to understand how functional explanations one

finds in psychological theories can be reduced to the mechanist

explanations used in neuroscience. Indeed, functional explanations

are, according to this view, mechanism sketches which can be

reduced to full-fledged mechanisms by specifying the bottoming-

out causal role fillers for the functional roles.

We finally want to mention a strategy that lies halfway between

the mechanistic and the functional explanation, and draws distant

inspiration from the concept of sparse coding (Olshausen and Field,

2004), that is, the ability to encode, with a certain number of

neurons, a much higher number of features. In its proposition by

Huben et al. (2023), it is implemented through sparse autoencoders.

Ez = f
(

MEa+ Eb
)

(10)

Ea′ = M
⊤Ez (11)

where f (·) is a non linear squeezing function, typically ReLU, Ea′ is
the approximate reconstruction of Ea, and Eb ∈ R

RD, M ∈ R
RD×D,

are learned, with R the sparsity factor.

The inputs of the autoencoder are vectors Ea, like those in

Equation 2, while the latent vector Ez has a greater dimension, fixed

by the parameter R. By training the autoencoder on a wide set

of NLM activations, a feature dictionary is formed in matrix M,

each represented sparsely by the population of neurons used for

training. Sparse autoencoders are considered here to be halfway

between functional and mechanistic analysis as they aim to identify

a set of features in a holistic way, without resorting to detailed

interpretation of the model’s circuit mechanisms. However, the

features do not correspond to functions in a cognitive sense,

as they are nothing more than numerical vectors in themselves.

In fact, a crucial part of the method consists of reaching an

intelligible interpretation of these features (Bills et al., 2023), a

task that remains critical (Huang et al., 2023). The bridge with

the mechanistic interpretation is further corroborated by the ability

offered by the sparse autoencoders to exploit the feature dictionary

by tracking the possible causal effect of the activation of a specific

feature on others, and identifying the circuits along which causal

links of this kind occur (Bricken et al., 2023; Templeton et al.,

2024). The linguistic abilities of NLMs can be explained on the one

hand through a functional analysis that identifies their capacities,

as described in the previous section, by isolating sub-functions and

their relationships. On the other hand, they can be understood

by examining the inner mechanisms of NLMs, as exemplified in

this section, recognizing different layers of mechanisms and linking

them back to higher level sub-functions of the network, such as

in-context learning and few-shot learning.

It follows that the explanatory strategies one adopts to

understand the human-like linguistic abilities of NLMs can

be put on a par with the explanatory strategies used to

explain the human cognitive system, namely by advancing

functional, psychological, explanations on one side, and mechanist,

neuroscientific, explanations on the other side, and by trying to

reduce the former to the latter through a hierarchy of bottoming-

out mechanisms. The idea of looking at natural cognitive

systems to understand the artificial ones revers the traditional,

methodological, setting of simulative AI, wherein the artificial

system is used to understand the mind. This point is developed

in the next section, by examining a third kind of explanation

for NLMs.

6 Looking at the brain

A third kind of explanations, here called simulative, investigates

relationships between NLM structures and brain structures,

through Functional magnetic resonance imaging (fMRI), when

engaged in the same linguistic task. It is a surprising line of research,

unexpected even for its own protagonists. Apart from the generic
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inspiration from biological neurons for artificial neurons, there

is nothing specific in the transformer mechanisms that has been

designed with the brain language processing in mind. Despite the

fragile premises, this path has been able to benefit from a similar

line of research on the similarities between visual processes in

deep learning networks and in the cortex, now well-established

(Khaligh-Razavi and Kriegeskorte, 2014; Güçlü and van Gerven,

2015; Eickenberg et al., 2017). However, while the structure of deep

convolutional neural networks offered a hierarchical structure that

vaguely recalls the ventral visual pathway of the cortex, none of this

is found in Transformers. However, early results show surprising

correlations between activation patterns measured in the NLM and

in the brain, and some analogies in the hierarchical organizations

in NLM and cortex (Caucheteux and King, 2022; Caucheteux et al.,

2022, 2023).

Charlotte Caucheteux in collaboration with Meta AI, did

several experiments to examine correlations between NLMs

prompted with stories and brain activities of subjects listening to

the same stories. To measure how much Transformers and the

brain show similarities, a metric consolidated from experience with

the visual system, called the brain score, is used (Schrimpf et al.,

2020a,b). Using the nomenclature of these works, we call neuroid

either neural recordings or model activations. Given a certain input

stimulus, for each target neuroid, we have its actual response Ey, and
a Ey′ obtained with a linear transformation of the response of the

source neuroid. The brain score for each neuroid is obtained from

the Pearson correlation coefficient:

r =
∑

(Ey− Eµ)(Ey′ − Eµ′)
√

∑

(Ey− Eµ)(Ey′ − Eµ′)
(12)

where the summation is over a set of stimuli, and Eµ is the average

over all stimuli. The value r is then averaged for all neuroids of a

brain region, or a layer of the model.

It should be emphasized in Equation 12 the perfect symmetry

of the neuroids, and thus between brain data used as predictive of

the model, and vice versa, which leads us to qualify the kind of

epistemology at work here as co-simulation (Angius et al., 2024),

a concept that will be detailed further on.

In a recent study (Caucheteux and King, 2022) a dataset of

204 native Dutch speakers reading 400 distinct sentences was

used. In Caucheteux et al. (2022, 2023) the more recent and

complete Narratives dataset (Nastase et al., 2021) is used. It is

made of 345 subjects listening to short 27 narratives. The used

NLM is a 12-layer open GPT-2 provided by HuggingFace. The

main aim of Caucheteux is to evaluate the similarity in language

processing between NLM and humans (Caucheteux et al., 2022),

for this purpose among the 27 stories of the Narratives dataset

only the seven stories for which subjects were asked to answer

a comprehension questionnaire at the end are used. The highest

brain scores are found in the middle layers of GPT-2, correlating

with areas as the auditory cortex, the anterior temporal area, and

the superior temporal area. Most of all, the brain scores of GPT-

2 are highly correlated with the level of language processing in

the subjects. In another study (Caucheteux et al., 2023) the aim is

at explaining one main difference occurring between NLMs and

brain language processing, namely that while NLMs are trained

to guess the most probable next word, the brain is able to predict

sensibly longer-range words. In this case all the 27 stories in the

Narratives dataset, listened by 304 individuals, are used. In addition

to the localization of areas with the best brain scores, the authors

evaluated whether considering longer-range word predictions in

the Transformer produces higher brain scores. The result was

a positive answer for a range of up to 10 words, with a peak

for a 8 word-range. Even more intriguing are the results of the

relationship between levels in GPT-2 and the hierarchical scale in

the cerebral cortex. The associative cortices are best modeled by the

deeper layers, while the lower-level language areas, such as Heschl’s

gyri/sulc, are best predicted by the first layers of the NLM.

Similarly, Kumar et al. (2023) at Princeton Neuroscience

Institute investigated possible correlations between the individual

attention heads in the Transformer, and brain areas when listening

to stories. They used a simple model, BERT, with 12 layers and 12

attention heads, and applied Principle Component Analysis to the

144 model activations along the story, correlating them with brain

areas obtained through fMRI. In both studies, Transformer based

NLMs are used tomodel and predict activation patterns in the brain

observed through fMRI, in order to collect additional evidence on

the brain areas involved in specific linguistic tasks.

Both systems, the ANN and the human brain, are subjected

to the same task, which is to process acoustic signals (the listened

story) in order to process language understanding. The artificial

system is used to predict behaviors (brain activations) of the natural

one. This methodology is at the basis of the simulative method

in science (Winsberg, 2010; Durán, 2018), according to which a

target, natural, system is modeled by a mathematical model, which

is then implemented in a computational one, usually a simulative

program, the latter is executed and executions provide predictions

of the target system behaviors. In the realm of cognitive science, the

simulative method amounts to implementing an artificial system,

either a robot or a computer program, aimed at testing some

given cognitive hypotheses on a natural cognitive system (Datteri,

2017). Given a cognitive function and a hypothesis concerning the

identification of a mechanism able to implement that function,

the simulative or “synthetic”method in cognitive science aims

at constructing an artificial cognitive system implementing that

mechanism for the given function in order to compare the

behaviors of artificial and natural systems. In case the displayed

function of the simulative system matches with the behaviors of

the simulated system, the initial hypothesis concerning how the

function under interest is realized in terms of the implemented

mechanisms is corroborated. Once corroboration is achieved,

simulations on the artificial system are used to predict, and explain,

the future behaviors of the natural system. In order to explain past

or future behaviors of natural cognitive systems, one may advance

both functional and mechanist explanations based on capacities

and mechanisms in the artificial system reproducing that behavior.

The synthetic, simulative, method in cognitive science finds in

the Information Processing Psychology (Newell and Simon, 1972)

one important precursor. In the approach of Newell and Simon,

a human agent is given a problem solving task, typically a logic

exercise or the choice of moves in a chess game, asking him to

think aloud, thus obtaining a verbal account of hermental processes

while carrying out the task. Verbal reports are analyzed in order to

identify the solution strategies adopted by the agent and the specific
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operations performed while carrying out the task. The analyzed

verbal reports are then used to develop a program that simulates the

behavior of the human agent. Subsequently, new problem solving

tasks are given to both the program and the human agent, and

verbal reports of the latter are compared with the execution traces

of the simulative program to ascertain that the two systems use

the same solution strategies. Finally, the program execution traces

for new tasks are used for predicting the strategies and mental

operations that the human agent will perform when given the

same tasks.

Even though NLMs have been developed with engineering

purposes only, namely for developing language processing systems,

the early works of Caucheteux et al. (2023) and Kumar et al. (2023)

show how they are being fruitfully applied to simulative AI as well.3

However, the way NLMs are used to predict and explain brain

activations in the cortex puts significant methodological challenges

for the epistemology of computer simulations and simulative AI.

One first main difference between the synthetic method in AI

and the application of NLMs in neuroscience is that, as already

noted, NLMs are not developed as simulative models of the brain.

In other words, NLMs do not implement mechanisms that one

hypotheses realize some cognitive function or capacity in a natural

cognitive system. The aim of NLMs is not that of corroborating any

such kind of hypotheses, as it happens with the simulative meethod

in traditional AI. And nonetheless, NLMs are used to simulate the

brain, that is, to obtain predictions of cortex activations.

The second, crucial, difference concerns the kind of simulative

method that is being applied. The epistemology of computer

simulation (Winsberg, 2022) is careful to notice that, beyond

the simulation relation, two other central relations in the

simulative method are those of verification and validation. Whereas

verification is about ascertaining that the simulative computational

system be a correct implementation of the mathematical model,4

validation is about evaluating the extent to which the mathematical

model is a faithful representation of the target simulated system.

For instance, Primiero (2020) states that a computational model

and a target system can entertain a strong validation, when the

computational model represent all and only the behaviors of the

target system, a weak validation, when the computational model

represent all but not only the behaviors of the target system,

and an approximate validation when the computational model

represent just some of the behaviors of the target system. As

the studies of Caucheteux et al. (2022, 2023) clearly show, the

neuroanatomy of the cortex is used to obtain hypotheses about the

hierarchical layer organization of the Transformer. The hypotheses

are tested by looking for new correlations between the depth of the

3 It should be indeed recalled that AI has been historically characterized

by two main research traditions, an engineering one concerning the

development of artificial system showing intelligent behavior, and a

simulative one using artificial intelligent systems to study natural cognitive

systems (Russell and Norvig, 1995).

4 Verification is used here in the proper sense it has in computer

science: given a specification declaring the program requested functions,

a computational system is correct with respect to a specification in case it

fulfills the specification or, in other words, if it behaves as requested by the

specification (Turner, 2018).

Transformer layer activation and brain hierarchy level activations.

In other words, the cortext is used as a model of the NLM. Since

NLM are highly opaque, hypotheses about the inner organization

of the ANN are obtained by looking at the brain. Once those

hypotheses are tested, the NLM is used back to predict and explain

brain activations.

Thus, from one hand, NLMs are used to provide simulative

explanations of the brain in terms of model-based predictions

of cortex activations. On the other hand, and relatively to the

main aim of this paper, the brain itself is used to explain and

simulate the NLM in what can be considered a sort of reciprocal

or co-simulation (Angius et al., 2024). Both the brain language

processing and the Transfomer language processing are opaque

and poorly known processes and they are used to investigate

and advance hypotheses about each other. The epistemological

strategies herein collected as co-simulation can potentially reveal

structural similarities between Transformers and the human

brain, suggesting that this similarity may–at least in part–justify

the Transformer’s ability to handle natural language. Additional

support comes from the scaling factor effect of the models. The

number of model parameters still falls short of the estimated

1014 synapses in the neocortex, but it has emerged that structural

similarity with the brain improves as the scale of the models

increases. Antonello et al. (2023) found that structural similarity

between brain and Transformer scales logarithmically with model

size from 125M to 30B parameter models.

We add that co-simulation is currently the strategy pursued by

researchers in comparing Transformers and the brain, but it is not

the only option. An alternative could be interventionism, which we

have seen in action within the context of mechanistic explanations

(Section 5), and it is a fruitful methodology in neuroscientific

research (Woodward, 2018). However, to our knowledge, there are

no examples in the comparison between NLM and the brain.

7 Concluding remarks

In this article we have tried to answer the question: How is

it possible for NLMs to show significant performance suggesting

that they are intelligent and linguistically competent speakers? We

have assumed that NLMs somehow pass the Turing test and that

artificial semantics is not a mere chimera. However, we wonder

how all this was possible. What has caught our attention in the

argument is the empirical (a posteriori) possibility of artificial

semantics and not its metaphysical possibility (a priori). How was

it possible, given that it does work? It is worth noting that the

impressive results demonstrated by NLMs did not come about in

the expected way, namely by mimicking what the human body

actually does when it exhibits the same cognitive abilities naturally.

While there are interesting similarities between how NLMs work

and some neuroscientific findings about language processing (see

Section 6), overall the reason why remarkable results have been

achieved in the language domain over the last five years is not

inspired by the brain, as mentioned above. Rather, it is more

elegant mathematics that is able to accomplish tasks that used to

require equipment so complicated that they seemed overwhelming.

Although there is no mystery about what a Transformer does,

it must be admitted that there is a certain opacity in making
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sense of how Transformer produces individual cases of meaningful

sentences and relevant answers. This opacity, combined with the

generative mechanism that allows NLMs to produce new text each

time, makes for a surprising sense of linguistic unpredictability.

Sometimes we experience this feeling in the form of the Uncanny

Valley (Mori, 1970)—that is, a phenomenon whereby entities

that closely resemble humans yet exhibit subtle imperfections in

appearance or behavior elicit cognitive dissonance, resulting in a

unease or even discomfort—while at other times it seems as if we

are dealing with an interlocutor “like me”.

Moreover, the way NLMs work does not seem to require

the functional architectures that characterize cognitive science,

or at least it is not necessary for such architectures to be

represented in the way that has been common so far. Nevertheless,

NLMs are typical creatures of cognitive science. They are

computational constructs that generate the desired behavioral

patterns by processing quantitatively represented information. The

fact that this happens in sometimes unexpected ways has positive

implications for the ecology of the communicative relationship

between human interlocutors and NLMs. The feeling that we are

dealing with an automaton often fades, and instead it seems as if

we are dealing with a different kind of intelligence, as can be the

case with strange individuals or other animals. NLMs have proven

something we have basically always known: if we were to finally

create an artificial intelligence, it would be different from natural

intelligence. For example, since NLMs are trained on extremely vast

corpora, they exhibit a cognitive style that reflects their advantage in

information availability compared to a human. On the other hand,

the world is not lacking in natural intelligence, and the advantage of

artificial intelligence seems to lie precisely in its stylistic difference

from human intelligence. So we can take advantage of the linguistic

skills that NLMs perform effortlessly and that are tedious and

boring for us. NLMs are still halfway between a prosthesis for

humans and a real fellow. It is still uncertain where this adventure

will lead, but by examining how all this has been possible so far, we

can hope to gain useful information to discipline our imagination

as to the outcome of what is happening.
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