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In marine security and surveillance, accurately identifying ships and ship ports

from satellite imagery remains a critical challenge due to the ine�ciencies

and inaccuracies of conventional approaches. The proposed method uses

an enhanced YOLO (You Only Look Once) model, a robust real-time object

detection method. The method involves training the YOLO model on an

extensive collection of annotated satellite images to detect ships and ship

ports accurately. The proposed system delivers a precision of 86% compared to

existing methods; this approach is designed to allow for real-time deployment

in the context of resource-constrained environments, especially with a Jetson

Nano edge device. This deployment will ensure scalability, e�cient processing,

and reduced reliance on central computing resources, making it especially

suitable for maritime settings in which real-time monitoring is vital. The findings

of this study, therefore, point out the practical implications of this improved

YOLO model for maritime surveillance: o�ering a scalable and e�cient solution

to strengthen maritime security.

KEYWORDS

ship detection, ship-port detection, YouOnly LookOnce (YOLO), edge computing, deep
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1 Introduction

Detection of ships and ship ports in satellite imagery is of high importance to numerous

domains such as maritime surveillance, environmental monitoring, and global security.

The accuracy and efficiency in the detection of maritime activities are of paramount

importance when dealing with challenges such as illegal fishing, smuggling, and piracy

as well as for the proper management of ports and navigation. However, such traditional

detection methods lack precision and cannot be scaled enough to monitor massive

maritime regions in diverse environmental conditions, therefore leaving gaps within

monitoring and responding capabilities.

The ability to break the limitations of existing detection models has been offered

through deep learning algorithms, specifically object detectionmodels. Currently, however,

techniques exist, and while these are effective up to a point, they present various problems

with changing environmental conditions, cluttered background scenes, and limited

computational resources. Thus, resolving these matters is crucial in making improvements

in maritime surveillance and maintaining maritime activities as safe and secure as possible.

Maritime operations are crucial for global trade, transportation, and security. It must be

monitored to prevent illegal activities and protect the marine ecosystem. Satellite images
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can be a powerful monitoring tool for large maritime areas. They

provide an overview of all ship movements and port activities,

but manual analysis of satellite imagery is labor-intensive and

time-consuming, highlighting the need for automated detection

systems to improve the efficiency and accuracy of maritime

surveillance efforts.

Edge computing is a transformative way of enabling real-

time insights on maritime monitoring. It reduces the latency,

optimizes bandwidth usage, and improves the systems’ reliability

by processing data as close to its source. This localized processing

ensures operational continuity while ensuring that data is

not exposed excessively, thus enhancing privacy and security.

Advanced detection systems deployed on edge devices such

as Jetson Nano could prove highly effective for fulfilling the

computational requirements of maritime surveillance without any

compromise on efficiency. The advantages of edge computing

have drawbacks like resource constraints on the available power,

memory, and storage capacity. Moreover, integration complexities

resulting from a large variety of devices and systems call for robust

interoperability solutions. Managing data synchronization between

systems and addressing security vulnerabilities such as the risk of

physical tampering, malware attacks, is needed to unleash the true

edge-computing power. For this research, by solving the associated

challenges, a dependable, secure and efficient solution will be

available for edge-based ship and port detection at the ship end; this

can be of immense importance for maritime security surveillance.

1.1 Objectives of the proposed study

The objectives of this research work are:

• To create a dataset with annotated images of ship and

ship ports.

• To automate the detection of ship ports from high-resolution

satellite imagery using an enhanced YOLO model.

• To evaluate the accuracy of the enhanced object detection

model to ensure its reliability for real-time applications.

• To deploy the detection model on a Jetson nano edge device in

order to decrease the power consumption.

1.2 Contributions

• Created a dataset consisting of satellite imagery for ship-ports

belonging to Australia and India.

• Developed an enhanced YOLO model with features such as

multi-scale object detection for ship port detection.

• Deployed themodel on an edge device for real-time processing

and found that it significantly reduced the latency from cloud

computing (10–100ms) to (1–10ms) on an edge device.

1.3 Organization

The paper is organized as follows: Section 2 reviews existing

ship and object detection research. Section 3 outlines the proposed

architecture and methodologies. Section 4 presents the evaluation

and results. Section 5 concludes with recommendations for

future work.

2 Literature review

This section presents existing techniques for ship and ship

port detection, identify their limitations, and propose a novel

approach utilizing deep learning algorithms, specifically enhanced

YOLO (Girshick et al., 2014), to address these challenges. The

suggested model’s performance is tested using real-world satellite

imagery datasets and demonstrates its potential for enhancing

maritime surveillance capabilities. This paper aims to contribute

to developing more effective and efficient methods for monitoring

maritime traffic and safeguarding our oceans.

For identifying ships in satellite photos (Patel et al., 2022a),

evaluated the YOLOv3, YOLOv4, and YOLOv5 algorithms.

Considering the Shipsnet and Airbus Ship Challenge datasets as the

basis for evaluation, it has been found that YOLOv5 has the highest

detection accuracy of 99%, in contrast to 98% and 97% for YOLOv4

and YOLOv3. YOLOv5 is a more accurate solution for ship

detection jobs even though it is slower than YOLOv3. The research

emphasizes the significance of choosing an appropriate algorithm

for precise ship detection and demonstrates the practical uses of

YOLO-based algorithms, particularly YOLOv5, in environmental

monitoring and maritime surveillance.

The optimum ship recognition algorithm for small and

gathering ships was developed by Zhang et al. (2019) using high-

resolution remote sensing data. Determine possible regions of

interest (ROIs) that contain ships by dividing areas with and

without water using a coarse-to-fine method. To increase the

recognition of small clustered ships, they developed the Faster-R-

CNN framework based on VGG16, and used the R-CNN method

to identify ships inside the ROIs. Higher recall and accuracy

were obtained with their enhanced Faster-R-CNN in comparison

to other methods. Future research on the topic should look

into traditional preprocessing methods including LBP, SML, PCA

classifier variants, and Gaussian local descriptors in order to

increase ROI recall.

To improve marine surveillance accuracy, Patel et al. (2022b)

described a ship detection method that integrates the Graph

Neural Network (GNN) and YOLOv7 deep learning frameworks.

The approach is to increase knowledge about ships’ presence in

harbor environments. After experimenting with hyperparameters

including learning rate, batch sizes, and optimization selection, it

has been discovered that Adam’s optimization outperforms earlier

YOLOv7 iterations with a success rate of 93.4%. The system

obtained over 90% ship classification accuracy using the High-

Resolution Satellite Image Dataset (HRSID), which is derived from

synthetic aperture radar.

Ngo et al. (2023) have addressed the urgent need for improved

methodology in maritime surveillance with their groundbreaking

study on deep variational information bottleneck approaches for

image-based ship detection. Their system attempts to increase the

robustness and accuracy of ship detection algorithms in satellite

data by combining deep learning with the concepts of variational

information bottlenecks. The described model emphasizes how
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crucial it is to use cutting-edge computational methods in order

to efficiently manage the enormous amounts of data coming from

contemporary satellite platforms. The authors prove the accuracy

of their approach in ship identification through empirical tests.

A deep learningmethod for automatic ship detection in satellite

imagery was presented by Stofa et al. (2020), who emphasized the

need for high-precision ship detection for national security. The

primary convolutional neural network classifier employed was the

DenseNet architecture and optimized the performance by adjusting

hyperparameters such as batch size, optimizer selection, and

learning rate. With the Adam optimizer, the experimental results

on the Kaggle Ships dataset showed an impressive success rate of

over 99.75% and a learning rate of 0.0001. The study highlights

the possibility for more improvement through the investigation of

different convolutional neural network structures, and the ability of

DenseNet to get a ship classification accuracy exceeding 90% when

the ideal hyperparameter values are found.

Shen et al. (2022) described a multi-class geospatial object

detection technique that is essential for applications like military

surveillance and urban planning and was created for large-

scale remote sensing data. By producing multi-volume YOLOv4

through CNN pruning, their method achieves a balance between

accuracy and efficiency. By integrating the Manhattan Distance

Intersection of Union (MIOU) loss function, they enhance

accuracy. Additionally, they recommend the use of shortened

Non-Maximum Suppression (NMS) to omit false positives from

shortened targets. Evaluations on the DOTA and DOTA v2 datasets

show superior performance; mAP and FPS exceed 77.3/35 and

61.0/74, respectively.

Qiu et al. (2017) described a novel approach to improve

occluded item detection in high-resolution remote sensing images:

automating the creation of per-pixel classification maps (PCMs).

The difficulty of effectively recognizing objects is addressed by

the suggested study, especially in intricate settings with frequent

occlusions. The goal of automating PCM production is to increase

the speed and accuracy of remote sensing picture processing

by accelerating the detection of occluded objects. The described

technology overcomes the drawbacks of human methods by

using sophisticated computational algorithms, enabling quick and

accurate detection of obscured objects in high-resolution pictures.

The method’s efficacy has been confirmed through empirical

validation, providing insightful information and a workable

approach to improve remote sensing picture interpretation jobs.

This work marks a substantial development in automated phase

change for occluded object detection, benefiting researchers and

practitioners in remote sensing and geoscience fields.

Deng et al. (2018) described a deep CNN-based method

for multi-class object classification in remote sensing images,

addressing problems with sparse annotations and scale variability.

Their methodology includes a redesigned feature extractor and

two sub-included networks: a Multi-scale Object Proposal Network

(MS-OPN) which generates object-like features and regions with

varying scales, and An Accurate Object Detection (AODN)

for fused feature maps for object recognition. Several datasets

have been evaluated, demonstrating superior performance in

recognizing items with scale variability and densely packed small-

size objects.

Yan et al. (2019) describe a novel approach to improve

multi-class item recognition in remote sensing images. By

employing an IoU-based weighted loss function during training

and introducing the Class Aspect Ratio Constrained Non-

Maximum Suppression (CARC-NMS) method for post-processing,

the presented methodology reduces false positives and increases

detection accuracy. The DOTA dataset was used for thorough

testing, and the system produced state-of-the-art object detection

results while outperforming baseline networks. The study offers

suggestions for future research topics, such as examining Scale

Normalization for Image Pyramids (SNIP) techniques to improve

network performance and addressing issues like oriented bounding

boxes. It also highlights the study’s versatility across different spatial

resolutions of remote sensing data.

Zhang et al. (2020) described a novel deep-learning network

that detects ships in synthetic aperture radar (SAR) data. The

purpose of HyperLi-Net design is to yield an accurate and

fast ship identification process. This research paper highlights

the importance of effective ship detection in SAR imaging for

numerous applications like navigation and maritime surveillance

among others. Instead, what the paper talks about is how

this network uses SAR data to resolve problems faced by

previous techniques thereby enhancing detection performance.

The authors conduct a thorough analysis of the functionality

of HyperLi-Net when it comes to ship detection tasks while

comparing its advantages with other techniques. It makes an

important contribution in the field of remote sensing technology

for detecting vessels more specifically within reconfiguring

SAR images.

2.1 Research gaps

• Limited discussion on addressing challenges posed by complex

shapes and backgrounds in ship port detection methods.

• A gap in understanding the proposed approach’s real-time

performance and accuracy compared to existing methods.

• Lack of clarity on evaluation metrics used to compare the

proposed ship port detection method with others.

• Potential for future research to optimize the proposed method

for real-time performance.

• Opportunity to enhance ship port detection systems by

integrating multimodal data sources for improved accuracy

and reliability.

3 Architecture and methods

The architecture of the model used the datasets, and the

procedure used to carry out all the tasks are shown in Figure 1.

Figure 2 defines the proposed YOLO architecture used for the

method. The enhanced YOLO architecture comprises 22 layers

and the efficient layers such as Bottleneck, Conv2d are designed

efficiently to detect objects in images. This study uses the unique

characteristics of each layer and tailors them for ship and port

detection tasks.
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FIGURE 1

Proposed model architecture.

Convolutional layers (Conv, Conv2d): Convolutional layers

serve as the backbone of feature extraction in the enhanced YOLO

architecture. These layers learn to identify low-level features such

as edges, lines, and corners, which are crucial for detecting ships

and ports. In this study, convolutional layers enable the model to

recognize specific shapes of ships, and container stacks in ports

forwarding to an accurate detection.

Bottleneck:This feature in YOLO ensures that themodel learns

the complex features from low-level features. When the data is

processed, the various layers in it with any number of filters ensure

that the model can identify the wide range of patterns specific to

the ships and ports. This feature allows the model to categorize

different types of ships, the containers, and other structures within

the ports with a higher accuracy.

BatchNorm2d: This is responsible for maintaining and

increasing the training process of the YOLO model. It promotes

toward a faster convergence and increase the models performance

on the unseen data.

MaxPool2d: These layers are applied to increase the

performance efficiency and to reduce the overfitting by lowering

the dimensionality of feature maps. This layer helps in focusing

on the important features in the input images and omitting the

background details.

Custom layer (C2f): The enhanced model is specifically fine-

tuned on anchor box prediction and feature transformation. This

optimizes the models detection in ship and ship ports. It advances

the models efficiency further in outlining required and specific

features that are essential for ship and ship port detection.

Anchor box width = image_width× ew (1)

Anchor box height = image_height × eh (2)

Furthermore the Up-sample layer helps in detecting small ships

by increasing the feature-map resolution by giving bounding boxes

around the predicted image. With the SPP layers identifying the

features at different scales, the detect layer learns all these features

to differentiate between ships, ports, containers and various other

elements. It generates bounding box proposals at last around the

predicted images and class probabilities based on the feature maps.

Bounding box prediction (Zheng et al., 2020):

xcenter = σ (tx) + cx (3)

ycenter = σ
(

ty
)

+ cy (4)

width = pw × etw (5)

height = ph × eth (6)

The overall architecture, as illustrated in Figure 3, showcases

the sequential flow of operations, from initial feature extraction to

final object classification and localization, culminating in precise

ship detection within input images. While employing this the

model used Selective Search which over-segments images using a

superpixel algorithm and merges them based on color, texture, size,

shape, andmeta-similarity measures. Specifically for ship detection,

R-CNN (Region-Based Convolutional Neural Network) is utilized

to effectively identify and localize ship structures within images.

The model’s architecture begins with convolutional layers, which

serve as the initial stage for feature extraction, capturing low-level

features like edges and textures that are relevant to ship structures.

This multi-stage approach utilizes Region Proposal Networks

which generates bounding box proposals over the regions which

enhances the accuracy of ship detection. Various relevant features

are extracted from these proposed regions using RoI pooling,

enhancing the precision and accuracy of ship detection. Onward

the RoI pooling stage, object classification and bounding box

regression are performed through FC (Fully Connected) layers.

These layers help in determining the class of the detected object

and adjusting the coordinates for precise localization of ships

within the images. Through this layer-by-layer feature extraction,

the proposed model achieves a high level of accuracy in efficiently

detecting ship structures, making it suitable for detecting ships

within complex images.

As shown in Table 1 hyper parameters have been adjusted

within the proposed model that suits to the application considered

in this work. For instance, the proposed model incorporated three

channels for the input image which is very crucial in the accurate

detection and it further differentiates between different objects of

interest in the input images. Opting for a stride of two in the

proposed model stands as a pivotal step in the faster processing
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FIGURE 2

Enhanced YOLO architecture.

of the input images which in turn gave a good balance between

feature extraction and computational efficiency.While maintaining

a standard size for the input kernel, the proposed model employed

64 initial filters to ensure that the model learns complex patterns

and features from the satellite images. Also, 22 layers are considered

in the bottleneck layer so as to detect the ship ports accurately.

Even though this is slightly higher than the existing that is used in

YOLOv7 and VGG models, this helped to detect small ship objects

in ship ports. Overall the proposed model extends the capability of

detecting ship and ship ports as well bymaking various adjustments

to the parameters.

3.1 Methodology

This section provides the specific design for the proposed

detection system using R-CNN and enhanced YOLO. First, the

description will go through the dataset used and then the

algorithms are introduced and evaluated.

3.1.1 Dataset
The dataset is manually curated by collecting the various ship

and port images from the SAS planet and Google Earth with a
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FIGURE 3

R-CNN model architecture.

TABLE 1 Comparison of proposed ensemble model w.r.t various

parameters used.

Parameters YOLOv7
model
(Patel et al.,
2022b)

VGG model
(Zhang
et al., 2019)

Proposed
enhanced
YOLO

Channels in the

input image

1 3 3

Form of the input

image

224× 224× 1 224× 224× 1 648× 648× 3

Strides 2 1 2

Size of the input

kernel

3× 3 3× 3 3× 3

Number of initial

filters

64 32 64

Pooling type Average Pooling Max Pooling Max Pooling

Dimensions of

pooling at each

layer

2× 2 2× 2 2× 2

No. of layers 18 20 22

Channels in the

resulting image

1 3 3

current resolution of 3m and some with a resolution of high-

definition (HD) (GeoJamal, 2024). These are specifically chosen

as they help with the satellite imagery analysis. These datasets

cover a diverse range of geographical locations globally, including

coastal areas, major ports, and shipping lanes. Additionally these

include various environmental conditions such as cloudy weather,

clear sky, and different lighting conditions like daytime and

nighttime. Figure 4 presents the satellite images of both ship and

a ship port.

3.1.2 Dataset size
The dataset initially consists of approximately 865 RGB images,

each with a measuring of 80 × 80 pixels. These are a combination

of both ship and ship ports. To standardize image representation

and ensure fair comparisons, the dataset underwent preprocessing

steps. As described in Cai et al. (2016) and Zhang et al. (2020) the

standard preprocessing steps were resizing, and color conversion.

This step includes resizing all the images to 48 × 48 pixels and the

normalizing step falls within the range of 0 to 1.

3.1.3 Data augmentation
To enhance the robustness and predictability of the model we

ensured that various augmentation techniques are performed on

the data such as Horizontal flipping, Vertical flipping, Rotation,

Scaling, Cropping etc. By integrating all these augmentation

techniques, the model was exposed to a wide range of scenarios

during training, which in turn facilitated in robust learning

and improved performance on unseen data. Specifically class

imbalance is addressed by ensuring sufficient representation of ship

ports, ships, and containers of different sizes, orientations, and

configurations. Data augmentation and resampling have increased

the number of underrepresented classes and helped in balancing

the class distribution throughout.
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FIGURE 4

Sample dataset images.

3.1.4 Annotation
Annotation of the satellite images is performed using the

ArcGIS tool to ensure precise interpretation of ship ports and ships

within the satellite images. For this, the bounding boxes are drawn

until the extent of ship ports and ships are detected accurately.

Various types of ships and vessels present within the port area are

annotated including cargo ships, container vessels, and oil tankers.

3.1.5 Data pre-processing
This step includes cleaning the annotated dataset to remove

artifacts, sensor noise, and irrelevant background elements. To

ensure consistency across the dataset the resolution is standardized

using MinMaxScaler.

x′i =
xi − xmin

xmax − xmin
(7)

Gabor (1946) Filter is employed to integrate texture analysis

on the images to load more insights from them. This helps

in extracting various hidden features from the ship and ship

port scenes.

3.1.6 Hyperparameter optimization
Enhanced YOLO is particularly designed to address various

challenges themodel may face during the detection process. During

Frontiers in Artificial Intelligence 07 frontiersin.org

https://doi.org/10.3389/frai.2025.1508664
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Sanikommu et al. 10.3389/frai.2025.1508664

the model training process key hyperparameters were carefully

optimized such as the learning rate was set to 0.001 and batch size

was fixed to 16 inorder to balance the memory usage. Furthermore

the IoU threshold was tuned to 0.5, to achieve an effective balance

between precision and recall. These optimization techniques helped

in improving the overall precision, recall and mAP metrics of the

model at the end.

3.1.7 Evaluation metrics
Various evaluation metrics were engaged in the process of

assessing the performance of the ship and ship port model to test

the effectiveness and accuracy of the algorithm.

• Precision: The proportion of number of accurate detections

to the number of detected ships and ports compared to total

model detections is precision. This effectively identifies how well

themodel is identifying true positives while reducing false positives.

Precision = TP / (TP + FP) (8)

• Recall: This proportion measures how well a model identifies

ships and ship ports in relation to all ships and ship ports in

the dataset.

Recall = TP/ (TP + FN) (9)

• F1 Score: The F1 score measures the harmonic average

between precision and recall, thus giving an equal evaluation of

performance on this model. It can be used to compare models with

different tradeoffs between precision and recall because it combines

both together into one metric.

F1 score =
(2× Precision× Recall)

(Precision+ Recall)
(10)

• Intersection over Union (IoU): IoU calculates the spatial

overlapping of the predicted bounding boxes with the ground

truth bounding boxes. This as a whole is evaluated as the ratio of

intersection area to the total union area of the two bounding boxes,

providing insights into the localization accuracy of the model.

IoU = (Area of Intersection)/(Area of Union) (11)

• Mean average precision (mAP): mAP measures the

precision-recall evaluation curve for each category and generates

the average precision, providing an overall assessment of the

model’s detection performance. It is calculated as the average

precision spanning over different objects and their categories.

This evaluates the precision and recall curve for each category of

images and computes the average precision, providing an overall

assessment of the model’s detection performance.

mAP =
1

n

∑n

i=1
APi (12)

TABLE 2 Model summary.

Parameters Value

Number of classes 2

Learning rate 0.001

Epochs 50

Training samples 4,200

Validation samples 1,200

Testing samples 600

Optimizer Adam

Accuracy (training) 0.9865

Accuracy (validation) 0.9917

4 Results and analysis

Various OpenCV libraries are employed to implement the

proposed algorithms. The method for finding regions of interest

(ROIs) was defined, with options for fast or quality detection.

Selective Search is applied to the loaded dataset consisting of

geospatial images to find the Region of Interests (ROIs). For

ship detection, this method utilized a modified R-CNN model

loaded from a saved file. This model is used to predict ROIs and

a non-maximum variable suppression was applied to filter out

overlapping predictions and employ their refinement. Bounding

boxes were outlined around the detected ships, and the resulting

images were displayed. Table 2 shows the model results for

detection using R-CNN. Also, the post-augmentation techniques

played a vital role in improving the model performance such

as flipping, rotation, and scaling helped in generalizing the

model across all scenarios, making it more comfortable even in

unseen data.

Themodel is trained on Adam optimizer, with a batch size of 16

across 50 epochs. The training set achieved an accuracy of 0.9865

along with a validation set accuracy of 0.9917. The precision value

for the “no-ship” class label was 0.99, and for that of the “ship” class

label was 1.00. The recall for the “no-ship” class label was 1.00, and

for the “ship” class label was 0.99.

The confusionmatrix revealed that 1% of the “no-ship” samples

were wrongly classified as “ship,” and 0.01% of the “ship” samples

were misclassified as “no-ship.” When assessed in relation to

the other models as in Table 3, the proposed method exhibits

competitive performance across various metrics. For instance, Patel

et al. (2022a) utilized YOLOv3, YOLOv4, and YOLOv5 models on

the Airbus Ship Dataset, achieving a precision of 99%. Similarly

Zhang et al. (2019) employed the Faster-R-CNN model on the

GaoFen-2 dataset, achieving an accuracy of 96%. Still, there is no

integration of port detection in any of the described approaches.

The model performed well in detecting ships in satellite imagery.

For the ship port detection, this method employed specifically

an enhanced YOLO algorithm due to its highly accurate object

detection. The same dataset is used for this and annotation,

training, and gathering are performed to train themodel effectively.

Table 4 provides an overview of evaluation metrics for port

detection, focusing on precision, recall, mAP50 (mean Average
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TABLE 3 Comparison with existing works.

Method Dataset Methodology Evaluation metrics Accuracy

Patel et al. (2022a) Airbus ship dataset YOLOv3, YOLOv4, YOLOv5 Precision 99%

Zhang et al. (2019) GaoFen-2 Faster-R-CNN Accuracy 96%

Patel et al. (2022b) High-resolution satellite images dataset

(HSRID)

YOLOv7 Adam optimizer 93%

Yu et al. (2016) Google earth service Hough forest F1 score 97%

He et al. (2018) TerraSAR-X SAR images Adaptive component selection-based

discriminative model (ACSDM)

Precision, recall 96.4%

Hwang et al. (2017) X-band Kompsat-5 SAR Artificial neural network (ANN) Recall, precision 93.9%

Zhang and Zhang

(2016)

High-resolution broad-area

remote-sensing images

Two-layer saliency model with SVM Precision 96%

Proposed model Satellite images Enhanced YOLO Precision, recall, mAP50 84.5%

TABLE 4 Results of the proposed system for port detection.

Class Images Instances Precision Recall mAP50 IOU

All 26 134 0.67 0.514 0.572 0.456

Port 26 30 0.832 0.633 0.702 0.609

Ship 26 104 0.509 0.394 0.443 0.302

FIGURE 5

Epochs vs. loss.

Precision at 50%), and IOU (Intersection over Union). Specifically,

in terms of precision, the proposed model achieved an impressive

score of 0.832 for port detection, surpassing many existing

approaches. This result showcased that the enhancedmodel gave an

accurate prediction of port regions within the images with minimal

false positive rate which is crucial in applications that require

precise outlining of port boundaries. Over the gradual increase

of epochs, the model is able to capture significant portions of

port instances with a commendable score of 0.633. This indicated

the model’s effectiveness in the accurate detection of ports across

various scales of regions and contexts. Furthermore, the mAP50

score of 0.702 highlights the model’s proficiency in accurately

varying spatial overlap degrees between ground truth and bounding

predicted boxes. In contrast to existing models, the proposed

approach stands out for its unique and accurate identification of

port areas amidst various maritime environments.

From Figure 5 it can be inferred that the proposed model

performed well on the training data and generalizing over unseen
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FIGURE 6

Accuracy vs. epochs.

FIGURE 7

Training and validation metrics.

data. This observed loss curve behavior depicted that the model

continued to improve over the increase of epochs. In Figure 6,

both training and validation metrics showed positive trends over

epochs. Although there is a minor decrease in training recall, the

model’s overall performance is encouraging, as indicated by the

increasing validation recall. Figure 7 further supported that the

positive trend showed a steady increase in accuracy as the number

of epochs increased.

Overall, the proposed approach offers a unique task in the

detection of ports providing a reliable and efficient solution

offering high precision, recall, mAP50, and IOU scores. All these

results These capabilities position our model as a robust tool for

maritime surveillance, port management, and related applications,

contributing to enhanced efficiency and effectiveness in monitoring

and safeguarding maritime infrastructure.

In evaluating the ship detection models, R-CNN and enhanced

YOLO showcased commendable performance not only in ship

detection but also in ship port detection which is the unique

identity of the proposed method. For R-CNN, precision and recall

values of 0.94 and 0.89 were achieved, respectively, along with an

accuracy of 92% on the validation set, affirming its proficiency in

ship classification including ship port areas. On the other hand,
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FIGURE 8

Result of ship port detection.

YOLO exhibited robustness with a precision of 0.908, recall of

0.888, mAP50 of 0.952, and mAP50–95 of 0.692, demonstrating

its efficacy in accurately detecting ships and their port areas.

These models ensure a balance between precise classification

and comprehensive coverage, encompassing both ships and their

surrounding port environments.

In the process of implementation, various box loss values were

calculated to assess the models performance such as training box

loss, class loss, etc. Additionally, various evaluation metrics such

as precision, recall, and mAP50 gave variable insights into the

models effectiveness not only in ship detection but also in ship

port detection.

Moreover, the models’ generalization capability and its effective

performance on the real-world data are evaluated on the

unseen data as in Figure 8. This included various post-processing

techniques such as thresholding for refined predictions and non-

maximum suppression on both ship and port areas. This effective

approach enabled a thorough analysis of the models effectiveness in

various marine environments.

4.1 Implementation of the proposed
approach on Jetson Nano

NVIDIA developed the JetsonNano computermodule, for edge

AI applications offering a cost-compact solution. With its GPU

architecture to that of other devices, it excels in executing deep
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TABLE 5 Inference in di�erent scenarios.

Power consumption Inference time

5W 36,298.4 ms

MaxN 16,434.2 ms

learning algorithms. Industries like robotics, drones, IoT devices,

and embedded systems commonly utilize it for AI processing

without relying on cloud services. It serves as a platform for

developers and enthusiasts to experiment develop and deploy AI

applications in a compact form factor.

Getting YOLO set up for object detection on the Jetson Nano

involves some steps. First, install required libraries like PyTorch

and download trained YOLO weights. Create an environment

to avoid any conflicts before running Python to load the model

and prepare the input image for analysis. The real magic

happens during inference when YOLO identifies objects. Finally

convert the model output into a format such as bounding

boxes overlaid on an image. For optimized performance, on the

Jetson Nanos resources consider using a version of the advanced

YOLOmodel or implementing quantization techniques for quicker

processing speed.

To create a more straightforward model that could be

installed on the Jetson Nano and tuned for object detection, the

proposed model used optimization techniques with TensorRT. The

YOLO model is first changed to a lighter version that is more

suited for the Jetson Nano’s limited resources using PyTorch’s

torch.onnx.export() function. As a result, TensorRT is compatible

with the model. After TensorRT is installed on the development

system, it optimizes the ONNX model for Jetson Nano GPU

inference. TensorRT performs improvements such as layer fusion,

accurate calibration, and kernel auto-tuning to improve efficiency.

Additionally, several quantization techniques are applied to reduce

the model’s size and expedite inference. Both dynamic range and

integer quantization are supported by TensorRT, which lowers the

model’s weights while guaranteeing faster processing with little

degradation of accuracy. Lastly, the Jetson Nano is used to assess

the performance of the optimized model.

After analyzing the data from Table 5, it concluded that the

system performs 2.2 times faster when operating in “MaxN” mode

compared to the 5W mode. This difference is likely due to the

system being able to draw power in “MaxN” mode leading to

performance. On the hand carrying out inference tasks takes longer

in low power settings, like the 5Wmode.

5 Conclusions and future work

The proposed approach demonstrates the effectiveness of the

enhanced YOLO in ship and port detection. It emphasized its

potential uses for real-world maritime security and surveillance.

The current approach uses the Jetson Nano’s CPU for object

detection with YOLO and achieves a reasonable inference speed,

there is still potential for improvement. Additional monitoring

is required for assessing the GPU utilization. Moving forward,

various techniques can be employed to further optimize the

proposed YOLO for faster inference speed on Jetson Nano.

Further improvements could explore smaller YOLOmodel variants

to optimize accuracy. Quantization approaches can minimize

model size while increasing processing speed on the Jetson

Nano hardware.

Fine-tuning the model can eliminate extraneous components

and use code profiling to identify the bottlenecks to further improve

the performance. Various libraries like TensorRT can be used for

inference optimization. Carrying out these methods and resource

monitoring can greatly reduce the inference time while ensuring

that the proposed model runs effectively on the Jetson Nano.
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