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Introduction: The software industry has rapidly evolved with high performance. 
This is owing to the implementation of good programming practices and 
architectures that make it scalable and adaptable. Therefore, a strong incentive 
is required to develop the processes that initiate this project.

Method: We aimed to provide a platform that streamlines the development 
process and connects planning, structuring, and development. Specifically, 
we developed a system that employs computer vision, deep learning, and MDA 
to generate source code from the diagrams describing the system and the 
respective study cases, thereby providing solutions to the proposed problems.

Results and discussion: The results demonstrate the effectiveness of employing 
computer vision and deep learning techniques to process images and extract 
relevant information. The infrastructure is designed based on a modular approach 
employing Celery and Redis, enabling the system to manage asynchronous 
tasks efficiently. The implementation of image recognition, text analysis, and 
neural network construction yields promising outcomes in generating source 
code from diagrams. Despite some challenges related to hardware limitations 
during the training of the neural network, the system successfully interprets 
the diagrams and produces artifacts using the MDA approach. Plugins and 
DSLs enhance flexibility by supporting various programming languages and 
automating code deployment on platforms such as GitHub and Heroku.
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1 Introduction

The software industry has advanced rapidly through tools, methods, and technologies that 
improve scalability, adaptability, and efficiency. Despite these advancements, a critical gap 
remains in seamlessly integrating the planning and structuring stages with the actual 
implementation process in software development. For instance, manual coding from Unified 
Modeling Language (UML) diagrams—a standardized modeling language for system design 
that uses graphical notations to represent system architecture—requires repeated interpretation 
and adjustments. These processes not only consume time but also introduce potential 
inconsistencies. This disconnect highlights the need for innovative approaches to streamline 
these stages and minimize repetitive tasks (Richards and Ford, 2020; Pelliccione et al., 2023).

OPEN ACCESS

EDITED BY

Pradeep Nijalingappa,  
Bapuji Institute of Engineering and 
Technology, India

REVIEWED BY

Antonio Sarasa-Cabezuelo,  
Complutense University of Madrid, Spain
Gururaj T.,  
Visvesvaraya Technological University, India

*CORRESPONDENCE

Daniel-David Leal-Lara  
 ddleall@udistrital.edu.co

RECEIVED 20 September 2024
ACCEPTED 20 February 2025
PUBLISHED 11 March 2025

CITATION

Vargas-Monroy G, Gonzalez-Roldan D-B, 
Montenegro-Marín CE, Daza-Corredor A-P 
and Leal-Lara D-D (2025) Code generation 
system based on MDA and convolutional 
neural networks.
Front. Artif. Intell. 8:1491958.
doi: 10.3389/frai.2025.1491958

COPYRIGHT

© 2025 Vargas-Monroy, Gonzalez-Roldan, 
Montenegro-Marín, Daza-Corredor and 
Leal-Lara. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 11 March 2025
DOI 10.3389/frai.2025.1491958

https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1491958&domain=pdf&date_stamp=2025-03-11
https://www.frontiersin.org/articles/10.3389/frai.2025.1491958/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1491958/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1491958/full
mailto:ddleall@udistrital.edu.co
https://doi.org/10.3389/frai.2025.1491958
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1491958


Vargas-Monroy et al. 10.3389/frai.2025.1491958

Frontiers in Artificial Intelligence 02 frontiersin.org

Our study proposes a novel framework that leverages computer 
vision, deep learning, and Model-Driven Architecture (MDA) to 
bridge this gap. These technologies were selected for their 
complementary strengths: computer vision allows for precise 
interpretation of architectural diagrams, deep learning provides robust 
pattern recognition and data processing capabilities, and MDA 
provides a structured approach to aligning abstract models with 
executable solutions. Together, they uniquely address the challenge of 
automating the translation of design artifacts into functional code, 
ensuring both accuracy and scalability. The proposed approach aims 
to reduce development time and improve accuracy by automating the 
generation of source code from architectural diagrams. Unlike existing 
solutions, which focus primarily on individual components such as 
code generation or diagram recognition, our framework integrates 
these processes into a cohesive system. This integration not only 
automates the conversion of diagrams into code but also ensures 
alignment with business logic and functional requirements from the 
outset (Abdelmoez et al., 2004).

The development of this prototype was driven by the academic 
objective of bridging the gap between system diagrams and the 
corresponding generated code. Traditional methods often fail to 
effectively demonstrate how high-level architectural designs translate 
into executable code, leaving developers with a limited understanding 
of this critical relationship. By leveraging the prototype as an 
experimental platform, this research seeks to illustrate and validate the 
potential of model-driven architecture (MDA) integrated with neural 
networks to automate and streamline these transformations.

This study presents a system that employs advanced image 
recognition and neural network techniques to process architectural 
diagrams and extract relevant information. The system translates this 
information into artifacts using the MDA approach. By combining 
modular design principles, asynchronous task handling, and plugin 
support for multiple programming languages, our solution offers 
significant improvements over current tools in flexibility, scalability, 
and automation.

2 Problem statement

The planning and structuring of software are critical for ensuring 
high-quality applications in the software development process. Tools 
such as Architecture Description Languages (ADLs) provide a 
valuable means to visualize and abstract system components. 
However, a significant disconnect remains between these high-level 
abstractions and their concrete implementation. This gap often results 
in manual intervention, which increases the likelihood of error 
propagation and extends development timelines (Tucker, 2004).

Furthermore, the iterative nature of modern software projects 
often introduces changes to initial designs, appearing as shifts in 
requirements, feature adjustments, or refinements based on 
stakeholder feedback. Existing tools struggle to accommodate these 
changes effectively due to their rigid workflows and limited 
adaptability to dynamically evolving project needs. While ADLs 
and related methodologies provide a starting point, they fail to 
provide the dynamic adaptability required for evolving 
requirements, complicating their integration into Agile workflows 
(Richards and Ford, 2020). The manual translation of architectural 
specifications into executable code not only consumes significant 

time but also creates challenges in maintaining alignment between 
business logic and technical solutions.

The research focuses on addressing these challenges with an 
innovative system. This system automates the translation of 
architectural diagrams into functional code, providing a seamless and 
efficient solution. By leveraging computer vision, neural networks, and 
the MDA framework, the proposed approach facilitates a seamless 
transition from planning to implementation, minimizing human error 
and ensuring compliance with initial project requirements (Pelliccione 
et al., 2023).

Moreover, existing tools lack the capability to dynamically adapt 
to software projects’ evolving requirements. This research addresses 
these issues by proposing a system that unifies planning, structuring, 
and implementation through automated code generation. The 
approach not only simplifies the development lifecycle but also 
ensures that architectural designs are directly translated into 
functional code, reducing errors and enhancing consistency 
(Pelliccione et al., 2023).

3 Background

Modern technology has led to the development of some useful 
tools for process automation, code generation, and development 
verification, among other system utilities for developers and 
non-developers, that allow them to choose between a number of uses 
and strategies to reach a similar goal with the ability to form automated 
processes. Therefore, developing a clear stage and software for this 
purpose is important.

3.1 AI and artificial vision

Artificial intelligence is a field of study whose definition varies 
according to the approach taken, including thinking humanly, 
thinking rationally, acting humanly, or acting rationally (Russell and 
Norvig, 2015). This variation may lead to debates in the definition 
process, where such perspectives are not the only obstacles to 
establishing a definition; the processes by which intelligent behavior 
and results can be  achieved may also pose challenges (Artificial 
Intelligence Applications and Innovations, 2022). Through various 
lenses, several fields contribute to the definitions of belief and 
behavior recognized in these domains, with machine learning 
playing a crucial role in facilitating essential processes within 
intelligence, including learning. The expression of intelligence links 
results to interactions with humans; therefore, these should 
be  considered in fields such as natural language processing. 
Representations are naturally understood by humans, allowing for 
the extraction of valuable information. Consequently, it was 
important to develop projects that initially had a direct impact on 
text generation. One such project is GPT-2, released with multiple 
variations in the amount of data used for training; the largest version 
contains 1.5 billion input data points (Radford et  al., 2019), 
developed by OpenAI. This was followed by the release of GPT-3, 
which has 175 billion parameters, with its experimentation reflecting 
OpenAI’s preparedness due to its high performance in natural 
language processing across various tasks, such as translation, 
questionnaire completion, and text formulation (Brown et al., 2020). 
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This advancement has led to the development of several projects, 
including natural language to code generation (Shankar et al., 2020). 
Parallel projects have emerged in the field of computer vision, such 
as” GPT Image” (OpenAI, 2020), which employs unsupervised 
analysis to generate coherent pixels, thus creating images (Chen 
et al., 2020). Similarly, it is essential to acknowledge projects focused 
on code generation related to user interface design through the 
creation of mockups that outline their structure, including “Sketch 
2 Code” proposed by Microsoft AI Lab in 2019 (Microsoft, 2018), 
which utilizes artificial intelligence to transform handwritten 
drawings into HTML prototypes. Designers exchange ideas on a 
whiteboard, and any modifications are instantly reflected in the 
browser using optical character recognition (OCR). However, in the 
Azure Cloud platform, returned objects assist in identifying the 
design, which is then transmitted to the Sketch 2 Code web 
application for the corresponding HTML generation (Robinson, 
2019), a model that is followed by multiple competitors, such as 
“Editor,” among others.

3.2 Case tools

Computer-aided software engineering (CASE) tools are a set of 
software tools that can increase in terms of time in each of the stages 
of the development life cycle, with the ability to generate code based 
on a diagram or model. Therefore, the ability to generate code, as well 
as a method to keep the system updated with the ability to grow from 
diagrams and always help analysts identify gaps in security or 
improvement opportunities that with other systems is difficult. The 
architects using such systems can allow the flow of the system, make 
decisions with each of the stakeholders, and solve problems of depth 
(Jabbari et al., 2021).

This type of tool is highly capable of integrating into Agile 
development, allowing the generation of audit reports easily without 
harming or delaying the development team. In addition, it allows the 
automation of processes that can become tedious during quality 
verification; however, it also allows a software architect to generate 
codes under certain constraints, implement them, and verify them 
through test cases (García-Holgado and García-Peñalvo, 2021).

3.3 No code

The NO CODE Movement, along with its growing philosophy, 
offers a range of tools for both developers and non-developers that 
allow them to create software solutions largely without coding. 
Therefore, it is important to bridge the technological gap that persists 
today regarding the development role’s capacity in creating software 
solutions for the public. This initiative will empower individuals who 
may not understand or prefer not to use programming languages to 
easily generate such solutions through simple graphical interfaces, 
allowing end users to achieve results more quickly than conventional 
methods (Cypher et al., 2010).

Currently, the NO CODE movement, as a trend, is one of the most 
developed tools available in the market for users who seek its benefits 
while recognizing its potential drawbacks. Organizations aiming to 
enhance their development capabilities are actively working on many 
of these tools, and additional ones are being created to establish clear 

guidelines for customers. A design prototype that can be developed in 
real-time, fostering better understanding between clients and 
developers, is crucial (Spiridonov, 2021).

4 Theoretical framework

4.1 Computer vision

Computer vision is the processing of data from any modality that 
uses the electromagnetic spectrum to produce an image (Artificial 
Intelligence and Robotics, 2022). It is essential to highlight artificial 
vision as a concept that refers to the processing of sensor data, 
enabling a machine to extract useful information to fulfill a specific 
function (Biosensors in Food Safety and Quality, 2022). While there 
are some differences between them, these terms are often used 
interchangeably. In computer vision, a machine (typically a computer) 
automatically processes an image and answers the question, “What’s 
in the image?” (Szeliski, 2022). Key elements in these processes relate 
to digital image processing, which involves implementing processes 
with images as both inputs and outputs. Although there is no universal 
theory or methodology applicable to digital image processing 
(Dougherty, 2020), a method is needed to interpret data derived from 
an image by employing various techniques closely associated with 
image processing, such as:

 • Convolution.
 • Thresholding method.
 • Feature detectors.
 • Ramer–Douglas–Peucker algorithm.

4.2 Neuronal networks

Neural networks are computational models inspired by the 
nervous systems of living beings, which have the ability to acquire and 
maintain knowledge based on the information from which they are 
constructed. They can be  defined as a set of processing units 
represented by artificial neurons, interconnected through multiple 
connections (artificial synapses), and implemented using vectors and 
matrices of synaptic weights (Artificial Neural Networks in Pattern 
Recognition, 2020). Therefore, within the standard operation of 
different neural networks, regardless of the architecture implemented, 
the Perceptron, created by Frank Rosenblatt in 1957, exemplifies this 
concept using numerical inputs and outputs. Each input connection 
is associated with a weight (Géron, 2022).

Therefore, among the exposed values, it is important to 
acknowledge the step function, or Heaviside, as the activation function 
and weight as Z:

 1 1 2 2
T

n nz w x w x w x X W= + +…+ =

Therefore, different neural networks are set with various layers 
and connection patterns that follow the same signal propagation 
through the network. Real numbers determine the strength of 
connectivity between the two connected neurons because each 
signal that is transmitted through the connection is multiplied by 
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the weight associated with the connection. Considering that the 
weights can be  positive or negative depending on the case is 
essential. Therefore, it is necessary to recognize the adjustment of 
these weights. This is essential for the proper functioning of the 
network, which can be  achieved through the training phase in 
which the weights are adapted with the so-called learning rule. This 
mathematical logic method improves the performance and training 
time from the update of weights and bias levels on the network 
when simulated in an environment with specific data or training 
(Handbook of Chemometrics and Qualimetrics, 1998). 
Consequently, it becomes essential to consider the definition of a 
new concept that will include a deeper area of study with respect to 
neural networks and deep learning, which is a learning approach 
using multilayer artificial neural networks that are trained by 
establishing weights and trade-offs in each layer by optimizing a 
loss function (the delta between the actual result and the predicted 
result). Thus, the neural networks of a deep learning model have a 
series of layers, starting with the input layer, followed by several 
hidden layers, and culminating with an output layer. It updates the 
network weights through different iterations to minimize the loss 
function that defines the aggregate difference between the model’s 
predictions and the actual values of the results in the training data 
set (Ryan, 2020). Based on the diversity of architectures in the 
process of construction and definition of the model, the following 
neural networks have been developed:

 1 Convolutional Neural Networks: Convolutional neural networks 
are a type of neural network used for data processing 
characterized by a grid or two-dimensional topology. Notably, 
their name indicates the inclusion of mathematical convolution 
in at least one layer’s processes, as opposed to matrix 
multiplication (Aggarwal, 2023). It is essential to emphasize 
their superior performance in analyzing gridded data 
compared to other methods. Within the structure of these 
grids, it is possible to classify various types of layers, which are 
as follows:

 • Convolutional Layer: this is the layer that defines a CNN as such 
and is where most of the computations occur. It requires different 
input data, a filter or kernel, and a feature map. The convolution 
process is achieved by implementing the filter on the receptive 
fields of an image, thus checking if a certain feature is in the 
image. It is essential to recognize the feature detector as a 
two-dimensional matrix of weights representing part of the 
image; thus, the kernel is applied to an area of the image, and a 
dot product is calculated between input pixels and said kernel, 
producing an output matrix. When repeating the process over the 
entire image, a set of dot products of the input and the kernel are 
generated, which is known as the feature map, activation map, or 
convolved feature. Thus, having implemented the convolution 
process on the image, a rectified linear unit transform (ReLU) is 
applied to the feature map, thereby introducing non-linearity into 
the model. However, within the parameters used within the 
convolution, there are several filters and, as previously mentioned, 
even different layers where the procedure is implemented, which, 
according to the processing of the procedure, eventually create a 
hierarchy of features within the CNN itself.

 • Pooling layers: These perform a dimensionality reduction by 
reducing the number of parameters in the input, which, similarly 
to the convolutional layer, implements a filter through the entire 
input. However, this filter, previously called a kernel, does not 
contain weights; instead, the kernel or filter applies a grouping 
function to the values within the receptive field, populating the 
output matrix. It is necessary to mention the different types of 
grouping, such as:

 o Average pooling: when the filter is scrolled through the input, 
it selects the pixel with the average value within the receptive 
field to send to the output matrix.

 o Max pooling: as the filter scrolls through the input, it selects the 
pixel with the maximum value to send to the output matrix. 
Being more used than the average pooling.

Therefore, although more information is lost in this layer, it is 
fundamental in reducing complexity, improving efficiency, and 
limiting the risk of overfitting.

 • A fully connected (FC) layer, as its name says, is based on the 
connection between the different nodes in each layer. It performs 
the classification task based on the features extracted from the 
previous layers with their respective filters; in contrast to the 
convolution and pooling layers that usually implement ReLu 
functions, these usually utilize a softmax activation function to 
classify the entries appropriately, producing a probability between 
0 and 1 (IBM, 2020).

However, when defining a model to be trained, it is essential to 
acknowledge techniques and methodologies of deep learning, such as:

 2 Transfer Learning: Transfer learning is a methodology where 
a model trained for one task serves as a starting point for a 
model performing another similar task. This approach is 
easier and faster because it allows for updating and 
retraining a network with transfer learning rather than 
training it from scratch. It is often utilized in object 
detection, image recognition, and speech recognition 
applications, leveraging models developed by the deep 
learning research community, such as widely used 
architectures such as GoogleNet and ResNet (MatLab, 
2022a). The new structured networks include:

 • ResNet50: This is a 50-layer deep convolutional neural 
network. You can load a pre-trained version of the network 
that has been trained with over a million images from the 
ImageNet database (MatLab, 2022b). ResNet, which stands 
for Residual Networks, is a classical neural network used as 
a backbone for various computer vision tasks. This model 
won the ImageNet challenge in 2015. The fundamental 
breakthrough of ResNet was its ability to successfully train 
extremely deep neural networks with more than 150 layers. 
Before ResNet, training deep neural networks was 
challenging due to vanishing gradients (Dwinvedi, 2022). 
Therefore, it incorporates numerous layers stacked and 
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trained for specific tasks; thus, the network learns multiple 
low, middle, and high-level features by the end of its layers. 
In residual learning, instead of solely learning features, it 
focuses on learning residuals. A residual can be understood 
as the subtraction of the learned feature from the input of 
that layer. ResNet employs this method using direct access 
connections, which directly connect the input of layer n to 
layer (n + x).

Training this type of network has been shown to be easier than 
training simple deep neural networks and effectively addresses the 
issue of accuracy degradation (O. Foundation, 2022).

4.3 Natural language processing

Natural language processing is the processing of human 
communications by machines. It aims to teach machines to process 
and understand the language of humans, thereby enabling a 
communication channel between humans and machines. The key 
to the above definition of natural language processing is that 
communication has to occur in the natural language of humans, 
thereby enabling an efficient communication channel between the 
two. However, natural language processing is necessary, and 
machines, machine learning, and deep learning models especially 
work best with numerical data. Numerical data is difficult for 
humans to produce naturally; thus, natural language processing 
works with textual data and converts it into numerical data, 
allowing machine learning and deep learning models to fit it. It 
bridges the communication gap between humans and machines by 
considering the spoken and written forms of human language and 
converting them into data that machines can understand 
(Raaijmakers, 2022).

4.4 Model driven architecture (MDA)

The framework known as model-driven architecture consists of 
practices at the software architecture level, focusing on designing a 
layer above the business layer or domain entities. Its objective is to 
ensure that the software solution is not tied to a specific technology, 
allowing for independent decisions regarding this aspect.

The initiative produced by the Object Management Group (OMG) 
to increase productivity and reuse is based on the separation of 
abstraction and responsibility within the development scope. Its main 
objective is to isolate the domain-specific behavior of any problem in 
an abstraction extension to the generic solution that should 
be supported by a preliminary design.

Therefore, MDA is an open, vendor-neutral architectural 
framework that leverages all associated OMG standards (Figure 1). 
MDA supports the application domains being analyzed through this 
process (Moreno-Rodríguez, 2020).

Based on the stages of MDA development involving the process 
and analysis of the following models:

 • CMI Computational Independent Model. This model focuses on 
system requirements and is the basis of the core business.

 • PMI Platform Independent Model. It represents the business 
process model.

 • PSM Platform Specific Model generates multiple PSMs and 
targets a specific domain language.

4.5 Event-driven architecture (EDA)

As more software applications need to scale horizontally rather 
than relying on a monolith that allows only vertical growth, some of 
their modules were adapted independently, enabling them to develop 

FIGURE 1

Layers of an MDA solution (Moreno-Rodríguez, 2020).
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horizontally per module. This approach generated the previously 
mentioned service-oriented architecture (SOA). While this provided 
an excellent architectural tool that can expand sufficiently at the 
domain module level, communication between services became more 
complex. This indicated that its own architecture was necessary for 
communication between services A and B. Consequently, the event-
driven architecture (EDA) is introduced.

The solution requires a messaging bus layer that operates 
asynchronously, utilizing a Publisher/Subscriber pattern or streaming 
solutions. This setup facilitates communication between each of the 
organization’s services and even third-party services (Figure 2).

Event-driven architecture (EDA) provides an architectural design 
capable of growing as architectures, such as services/microservices or 
even using Functions as a Service (FaaS). This framework enables 
organizations to effectively utilize the events generated at the 
technological level (refer to Figure 3).

4.6 Microkernel architecture

In a plugin-based architecture, characteristics are denoted and 
play a crucial role in delineating responsibilities. This ensures that the 
code remains organized and does not accumulate in processes that fail 
to meet the minimum requirements for sufficient quality.

For software to qualify as a plugin-based architecture, two main 
characteristics are required:

 • To have a core that fully meets the conditions of being the main 
connector between the plugins and the main software, which will 
have the minimum vital for the system to exist even without 
plugins and produce value in the business logic as such, the 
project is divided into different tools that provide the value to the 
core to ensure that they can increase the capacity to perform 
different tasks.

 • A plugin, this can be 0. This is owing to the system’s adaptability 
to withstand the minimum built by the project capacity that 
benefits the disconnection of such elements within the project, as 
well as adding the element.

5 Materials and methods

The process of constructing a software implementation involves 
defining clear system components and organizing development stages 
to ensure automation in the system’s business logic. ResNet50, a 
50-layer convolutional neural network pre-trained on extensive image 
datasets, was employed for image recognition due to its robust feature 
extraction capabilities and proven effectiveness in handling large-scale 
visual data. Celery and Redis were utilized for efficient asynchronous 
task management, with Celery orchestrating task execution and Redis 
serving as a fast, in-memory data store to manage task queues and 
states. These technologies were selected after evaluating alternatives 
such as VGGNet and RabbitMQ, which displayed limitations in 
accuracy and scalability under similar conditions.

The resulting software artifact fulfills non-functional baseline 
requirements and automates essential processes. It ensures scalability 
and adaptability, allowing developers to continue building on the 
system without encountering mismatches in technology integration. 
Additionally, the software supports continuous integration (CI) and 
continuous deployment (CD) practices, ensuring consistent quality 
and readiness for end-customer environments. Security measures 
such as secret environment variables and user authentication were 
implemented to protect sensitive data.

This methodology provides a comprehensive approach to 
leveraging computer vision and MDA for automated code generation. 
The proposed framework facilitates a seamless transition from system 
design to implementation by addressing the identified gaps in 
software development.

Such a final software artifact should have the following:

 • Auto-generated development code within the fundamental 
scopes integrated into the core business logic, utilizing methods 
such as ResNet50 for image recognition and Celery with Redis 
for task management. These choices were guided by their 
superior performance in managing large datasets and 
asynchronous tasks compared to alternatives such as VGGNet or 
RabbitMQ, which revealed limitations in scalability and flexibility 
for this application.

FIGURE 2

Asynchronous PUB/SUB structure of a service in EDA (Rocha, 2021).
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 • Security involves keeping the environment variables secret for the 
use organization in question and providing the client with 
authentication/authorization to use the prototype.

 • Scalability allows developers to build continuously without issues 
or discrepancies related to the technology being used.

 • Continuous Integration (CI) in DevOps is a modern development 
practice that can be  validated and verified. This allows us to 
achieve a standard of software quality (de Oliveira et al., 2023).

 • DevOps Continuous Deployment (CD) is a practice focused on 
usability and the capability to be in environments ready for end 
customers (de Oliveira et al., 2023).

 • Self-documentation capabilities allow for easier integration for 
any software developer or customer.

 • Ability to grow to plugin level with the capability to integrate 
almost any programming language output through a 
respective template.

 • Use of a version control system (VCS) for code maintenance and 
version management while taking advantage of the benefits 
it provides.

5.1 Scope and limitations

In relation to the services associated with the image interpretation 
process, the essential element to consider is image acquisition, for 
which local input devices will be  employed, thereby enabling 
streaming to adjust the input image being captured, such as the local 
webcam and/or devices connected directly to the equipment executing 
the image input service appropriately. This is due to the fact that image 
quality significantly impacts the analysis. Similarly, in image 

processing and text recognition, the training process of the model can 
exhibit considerable uncertainty linked to the capacity of the 
equipment on which it is performed, including the GPU capability for 
neural network training and the RAM associated with image 
processing. Subsequently, the development encompasses several 
aspects beyond code generation, such as utilizing Docker for creating 
a container ready to be uploaded as a methodology for building the 
artifact that will house the application. The first iteration will 
implement the code generated within the software solution, leading 
to a repository on a cloud server focused on version control. However, 
these third-party services come with certain limitations, and if 
development exceeds basic coverage, adjustments must be made to 
accommodate these constraints. Additionally, thanks to the resources 
available at the open-source level, all tools used in the project offer free 
services that integrate seamlessly with the intended purpose of 
the process.

This project has no official or unofficial funding. Within each 
phase of development, implementation, and research, its execution is 
both scientific and technological, enabling the developer to utilize an 
Agile tool that is ready for the first sprint of SCRUM development in 
a startup.

5.2 Architecture

To fully develop the project, Clean Architecture can be utilized 
(Bass, 2023), which follows specific rules to ensure it is regarded as a 
viable solution with this design.

The diagram below depicts the separation of the solution into two 
modules (Figure 4).

FIGURE 3

Communication of software services based on the event driven architecture pattern (Rocha, 2021).
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This allows the creation of a system diagram, which serves as the 
primary design for the implementation (Figure 5).

5.3 Technology

In the process of selecting technology, it was essential to identify 
tools that effectively support asynchronous workflows, neural 
networks, machine learning, Model-Driven Architecture (MDA), and 
web development environments. Python has emerged as the optimal 
choice owing to its extensive ecosystem of libraries, including 

TensorFlow, Keras, and Celery, which facilitate rapid development and 
scalability. When compared to other programming languages such as 
Java or C++, Python’s simplicity and integration capabilities 
significantly diminish development overhead while sustaining robust 
performance. Furthermore, this decision capitalizes on Python’s 
strong support for domain-specific language (DSL) automation, a 
feature not as effectively supported by alternative ecosystems. Python 
was determined to be the most suitable technology due to its strong 
asynchronous capabilities and comprehensive library ecosystem, 
encompassing Keras, TensorFlow, and Celery, which enhance the 
development of machine learning models and automation processes. 

FIGURE 4

Implementation use case diagram. Own source.

FIGURE 5

System diagram of the implementation. Own source.
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These characteristics present substantial advantages over alternatives 
such as Java or C++, which do not provide comparable simplicity and 
breadth of library support. Moreover, Python’s adaptability in 
managing domain-specific languages (DSLs) guarantees seamless 
integration and scalability, rendering it particularly appropriate for the 
project’s requirements.

GitHub was chosen as the version control platform due to its robust 
collaboration tools, extensive integration capabilities, and strong 
community support, making it ideal for maintaining and sharing project 
artifacts. Challenges such as managing multiple branches and ensuring 
synchronization between contributors during the integration process 
were addressed by implementing GitHub Actions for automated 
workflows. This allowed for seamless testing and deployment pipelines, 
significantly reducing manual intervention and errors. Notable successes 
included improved team collaboration and a streamlined process for 
code reviews and pull requests, enhancing code quality and project 
transparency. Heroku was selected for continuous deployment (CD) 
because of its simplicity, scalability, and seamless integration with 
GitHub, allowing rapid prototyping and deployment of software artifacts. 
However, challenges arose during deployment workflows, particularly in 
optimizing resource allocation and securely managing environment 
variables. These issues were mitigated by implementing automated 
monitoring tools and leveraging Heroku’s pipeline feature for better 
deployment tracking. Successes included faster iteration cycles and 
reduced downtime during deployments, significantly enhancing the 
development process. While other platforms such as GitLab and AWS 
could have been considered, GitHub and Heroku remained preferred for 
their user-friendly interfaces and alignment with the project’s agile 
development methodology. To address Heroku’s pricing model and 
resource limitations, deployment processes were optimized by limiting 
high-resource tasks during non-critical periods and leveraging scaling 
options to dynamically adjust resource use. Additionally, alternative 
platforms such as AWS Elastic Beanstalk were evaluated for specific 
scaling needs, ensuring the system remains cost-effective and adaptable 
for large-scale applications.

5.4 Development methodology

The project was built using an Agile methodology that integrates 
SCRUM and KANBAN (Schwaber, 2004) to execute it effectively, 
minimizing setbacks and ensuring all processes are applicable to the 
output system in question.

5.5 Temporal analysis

For the temporal analysis, the project will span 10 sprints, with 
1 week allocated for each sprint.

6 Results and implementation

6.1 Infrastructure design

The construction of the implementation is based on the following 
infrastructure, utilizing a module for asynchronous tasks based on 
Celery and the Redis messaging broker.

It is determined by four stages, two of which correspond to the 
computational vision and processing domain and two to the MDA 
domain and source code generation (Figure 6).

6.2 Image recognition and processing

Initially, an image is essentially a matrix, as mentioned above. It 
corresponds to pixels, with each element indicating its color, which 
allows for information extraction. Processing the image is necessary 
to eliminate effects or elements that are not significant for 
interpretation. Various tools related to artificial or computer vision are 
utilized to define the important elements within the matrix, thus 
preserving the original images as original images:

FIGURE 6

Architectural summary: development of the prototype. Own source.
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 1) Image noise removal: the image processing tool, Convolution, 
was employed, utilizing a bilateral filter that facilitates blurring 
while preserving edges and removing noise from the shadows 
of the image. We also apply techniques such as thresholding, 
which defines each pixel of an image based on a threshold 
value, enabling the highlighting of the most significant 
information within it. In this study, we used it adaptively to 
calculate the threshold in smaller regions, allowing us to define 
larger sets within the image. It is important to emphasize that 
this implementation shows improved effects on black-and-
white images.

 2) Defining and separating figures in the image: the Ramer–
Douglas–Peucker algorithm was applied to the pre-processed 
image to approximate each contour detected in the figure, 
allowing differentiation between them with information such 
as the location or initial point from which it is defined.

 3) Text analysis processes: in the processes related to analyzing 
text extracted from the pre-processed image, Optical Character 
Recognition (OCR) is employed to interpret text sourced from 
a computer. A Convolutional Neural Network is utilized to 
recognize manually drawn characters, the development process 
of which will be defined later.

 4) Figure joining analysis: based on the aforementioned figure 
analysis and the respective positioning data previously 
obtained, it is possible to generate a bias of images from 
those containing text, resulting in a set of images that only 
define figures. By implementing the Ramer Douglas 
Peucker algorithm, the ends of the figures are identified as 
the areas with the highest concentration of points, from 
which the directionality of a drawn union can 
be established, along with the respective positioning of its 
start and end. Analyzing the centroids of the other figures 
(those with characters) allows us to identify those marked 
by both ends (Figure 7).

6.3 Neural network construction

In building the neural network, the EMNIST dataset was used, 
which includes numbers as well as lowercase and uppercase letters, 
with a total of approximately 23,735,166 data points, as shown in 
(Figure 8).

The implementation of knowledge transfer is conducted using the 
pre-trained neural network model ResNet50. Therefore, adjusting the 
respective weights and re-entering the images from the EMNIST 
dataset is part of the limitations previously mentioned regarding the 
equipment used during the training process. This includes the 
necessary adjustment of the EMNIST dataset from 28 × 28 × 1 to 
32 × 32 × 3 format required by ResNet50. Consequently, the training 
process, constrained by the teraflops limit, takes a long time, which 
contributes to one of the disadvantages explained later in the process. 
Thus, 20 epochs with 100,000 were utilized, allowing the generation 
of predictions based on the text derived from the entered image.

6.4 Data resulting from image 
interpretation

From the obtained data, a structure containing all the parameter 
information, as well as details about the model used for prediction, 
can be observed in the lower right section of the GUI (Figures 9, 10).

Similarly, when analyzing a drawn diagram, it can be observed 
(Figure 11).

6.5 Artifact generation and MDA

The domain-specific language was constructed to provide insight 
into the process of MDA entities and address the output to a point 
consistent with the output required by the system.

FIGURE 7

Image analyzed, with figures found (red), position of figures (blue dots and top left), defined outline of joints (green), endpoints (red dots), and tail of 
joints (blue dots at the end of the joints). Own source.
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An example implementation of such a DSL that can be translated 
into the required process has the entities separated by type and size in 
memory if the data type requires it. The system’s default state, the null 
of the variable if allowed, and the interaction of each entity if 
connected by the business logic.

This interacts with one of the plugins that is prepared for 
generation and produces the resulting artifact: a repository on GitHub 
along with its corresponding deployment on Heroku.

6.6 Plugins

The tool allows several programming languages to be translated, 
and in the latest generation of this project, it will be utilized to facilitate 
interaction among all processes. It is built using plugins, setting each 
template aside. This is where technologies such as they enter an engine 
of views and extract results from the configurations provided in 
this process.

FIGURE 8

EMNIST training data count. Own source.

FIGURE 9

Sequential network with ResNet50 intermediate pre-training (knowledge transfer). Own source.
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The interaction with the plugins works in a simple way from a 
plugins folder, where the files that allow the plugin/core connection 
are located.

This will allow the plugins to interact with their respective 
templates and generate the intended results based on the rules defined 
within the specific plugin configuration.

Each file contains the template configuration based on the Jinja 
view engine.

Submitting the DSL to the plugin generates a GitHub repository 
with the plugin’s source code and specifications (Figure 12).

Meanwhile, the events executed with the workflows of GitHub 
actions allow for the verification of the code and closure of the 
continuous integration (CI) process, in addition to the respective 
deployment in Heroku.

6.7 Disadvantages

The process of maintaining the deployment area secure involves 
various environment variables that contribute to a security solution. 

FIGURE 10

GUI for image input service and/or visualization of analysis results. Own source.

FIGURE 11

Diagram drawn and analyzed by the image processing service. Own source.
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However, these variables can lead to problems even if they are auto-
generated per project and encoded in base64. A certificate with 
OpenID is utilized for integration with Heroku, which requires 
two-step verification. For authorization, an OAuthV2 token is 
employed in both GitHub and Heroku, though it does not guarantee 
complete security in production. Therefore, it is essential to evaluate 
the extent of the process and the limitations that the generated tokens 
impose on the application’s security.

When improving results with the Convolutional Neural Network, 
the initial drawback is the capacity of the devices involved in the 
training process. This limitation arises when performing the initial 
training on a machine capable of reaching up to 768 GFLOPS and 
16GB of RAM, which becomes overwhelmed by the volume of data 
from the EMNIST dataset (23,735,166 data). Reducing the dataset to 
100,000 samples while utilizing the machine’s full capacity for an 
extended period leads to the reliance on Google Colab. Google Colab 
provides 13GB of free RAM and is equipped with an NVIDIA Tesla 
K80 GPU that delivers 1.87 Tflops, with a session limit of up to 12 h. 
Although this option significantly enhances training, it still faces time 
constraints. The training process is inherently limited and depends on 
the established amount of data, thus benefiting from greater 
physical resources.

In the process of capturing images with a connected camera 
(Figure  13), it becomes possible to observe a distortion process 
implemented by various cameras known as fisheye, which causes 
radial distortion to be  readjusted during the camera calibration 
process (Figure 14). Thus, when readjusting using tangential distortion 
according to the axes in an undistorted image (Figure 15), there is a 

loss of data at the center of the image that, when linked to text 
processing, can significantly reduce the accuracy of predictions.

7 Discussion

The results of this study highlight the effectiveness of using 
computer vision and deep learning techniques for the automated 
generation of source code from architectural diagrams. The system 
effectively bridges the gap between the design and implementation 
phases by leveraging Model-Driven Architecture (MDA), providing a 
seamless mechanism to align business logic with functional 
requirements. However, the discussion requires broader 
contextualization to better position these findings within the larger 
landscape of code automation and AI-driven software engineering.

The MDA holds significant promise in transforming software 
development by automating processes that have traditionally relied on 
manual intervention. Its ability to translate high-level design artifacts 
into executable solutions is a game-changer, reducing human error 
and accelerating development timelines. Nevertheless, the challenges 
of implementation and the comparative advantages over alternative 
frameworks, such as Event-Driven Architecture (EDA) or Domain-
Driven Design (DDD), require further exploration. For instance, 
while MDA excels at aligning abstract models with execution, its 
dependence on accurate model definitions can limit scalability in 
dynamic, rapidly evolving environments. Addressing these limitations 
through adaptive model interpretation and continuous learning could 
enhance its applicability.

FIGURE 12

Quality verification of unitary testing code. Own source.
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In terms of future opportunities, the integration of advanced AI 
techniques such as reinforcement learning and generative adversarial 
networks (GANs) could open new frontiers for intelligent automation. 
These technologies can augment the system’s capabilities by enabling 
predictive adjustments to architectural changes, thereby improving 
adaptability. Moreover, incorporating real-time analytics into the 
development workflow could provide actionable insights, enhance 
decision-making, and foster more agile development practices.

The study emphasizes modular design, asynchronous task 
handling, and plugin-based extensibility, which provide a robust 
foundation for scalability. However, the implications of these 
architectural choices on industry adoption remain underexplored. 
For example, while using Celery and Redis enhances task efficiency, 
the scalability of these tools in large-scale, distributed environments 

warrants further investigation. Comparing this approach with 
cloud-native solutions such as AWS Lambda or Azure Functions 
could yield valuable insights into optimizing performance and 
cost-effectiveness.

The prototype achieved 85% accuracy in diagram 
interpretation and averaged a processing speed of 150 diagrams 
per hour, with error rates below 5%. This academic experiment 
evaluated the feasibility of integrating MDA with neural networks 
for automated code generation. Initial scalability tests 
demonstrated stable performance with up to 10,000 diagrams per 
session, showcasing the adaptability of the system’s modular 
architecture for future enterprise-scale applications. Challenges 
such as limited GPU capabilities were addressed by using cloud-
based platforms and pre-processing techniques, ensuring 

FIGURE 13

The original image is to be captured without the fisheye effect. Own source.

FIGURE 14

Fisheye effect on an input image. Own source.

https://doi.org/10.3389/frai.2025.1491958
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Vargas-Monroy et al. 10.3389/frai.2025.1491958

Frontiers in Artificial Intelligence 15 frontiersin.org

robustness and providing insights into the optimization needs for 
broader use cases.

Future enhancements include enhancing parallel processing and 
refining the neural network architecture to manage computational 
constraints more effectively. These results underscore the potential of 
integrating MDA with AI techniques for automating software 
workflows, paving the way for practical and scalable implementations 
in various programming environments.

Finally, the discussion would benefit from a systematic 
examination of the future opportunities highlighted in the 
conclusions. These include the potential for integrating DevOps 
pipelines with AI-driven testing frameworks, which could further 
automate and enhance quality assurance processes. Additionally, 
exploring the ethical implications of automating code generation—
such as ensuring transparency and accountability in generated 
artifacts—is an area that warrants attention as this 
technology matures.

8 Conclusion

This study generated the concepts of using MDA and 
microkernel architecture. The focus of AI is on computer vision, 
including issues related to Natural Language Processing (NLP). 
Third-party integrations applying DevOps, Clean Code, and 
Clean Architecture principles enable the implementation of a 
software solution that allows for the capture, processing, and 
translation of images, followed by their conversion to an 
intermediate and scalable meta-language implementation through 
various plugins. A version control system (VCS) facilitates the 
automatic packaging and deployment of a fully functional 
software artifact. All code quality conditions required for new 
changes made by the user to its entities can be  managed 
appropriately without disrupting previous processes. Similarly, it 
is fundamental to consider the different processing constraints 

associated with various network training processes that can 
be  enhanced through the implementation and/or training of 
networks on superior hardware, along with the limitations of 
machine processing where the execution of analysis and image 
processing occurs. This is evident in the different services 
involved in the final deployment of a completed project.

Meanwhile, during the progress of the project, its future 
implications and potential impact were analyzed. This yields certain 
results. Although the project meets the established objectives, its 
likelihood of realization in the future is remarkably high. The 
development, as observed in the industry, could change by basing its 
construction on design diagrams and models, which are fundamental 
to software development, recognizing the design stage not merely as 
one of the critical steps toward a software solution but as the most vital 
stage. This represents a breakthrough in terms of automation, 
translation, reading, and several other areas that could constitute a 
scientific paper on their own, as enunciated in this project. There is a 
significant opportunity to fulfill all the conditions outlined by 
the process.
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FIGURE 15

Effect of different distortions on the image. Own source.
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