
Frontiers in Artificial Intelligence 01 frontiersin.org

Code generation system based
on MDA and convolutional neural
networks
Gabriel Vargas-Monroy 1, Daissi-Bibiana Gonzalez-Roldan 1,
Carlos Enrique Montenegro-Marín 1,
Alejandro-Paolo Daza-Corredor 1 and Daniel-David Leal-Lara 1,2*
1 Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia, 2 Ingeniería
de Sistemas, Facultad de Ingeniería, Fundación Universitaria Los Libertadores, Bogotá, Colombia

Introduction: The software industry has rapidly evolved with high performance.
This is owing to the implementation of good programming practices and
architectures that make it scalable and adaptable. Therefore, a strong incentive
is required to develop the processes that initiate this project.

Method: We aimed to provide a platform that streamlines the development
process and connects planning, structuring, and development. Specifically,
we developed a system that employs computer vision, deep learning, and MDA
to generate source code from the diagrams describing the system and the
respective study cases, thereby providing solutions to the proposed problems.

Results and discussion: The results demonstrate the effectiveness of employing
computer vision and deep learning techniques to process images and extract
relevant information. The infrastructure is designed based on a modular approach
employing Celery and Redis, enabling the system to manage asynchronous
tasks efficiently. The implementation of image recognition, text analysis, and
neural network construction yields promising outcomes in generating source
code from diagrams. Despite some challenges related to hardware limitations
during the training of the neural network, the system successfully interprets
the diagrams and produces artifacts using the MDA approach. Plugins and
DSLs enhance flexibility by supporting various programming languages and
automating code deployment on platforms such as GitHub and Heroku.

KEYWORDS

deep learning, MDA, computer vision, artificial vision, generative programming, clean
architecture

1 Introduction

The software industry has advanced rapidly through tools, methods, and technologies that
improve scalability, adaptability, and efficiency. Despite these advancements, a critical gap
remains in seamlessly integrating the planning and structuring stages with the actual
implementation process in software development. For instance, manual coding from Unified
Modeling Language (UML) diagrams—a standardized modeling language for system design
that uses graphical notations to represent system architecture—requires repeated interpretation
and adjustments. These processes not only consume time but also introduce potential
inconsistencies. This disconnect highlights the need for innovative approaches to streamline
these stages and minimize repetitive tasks (Richards and Ford, 2020; Pelliccione et al., 2023).

OPEN ACCESS

EDITED BY

Pradeep Nijalingappa,
Bapuji Institute of Engineering and
Technology, India

REVIEWED BY

Antonio Sarasa-Cabezuelo,
Complutense University of Madrid, Spain
Gururaj T.,
Visvesvaraya Technological University, India

*CORRESPONDENCE

Daniel-David Leal-Lara
 ddleall@udistrital.edu.co

RECEIVED 20 September 2024
ACCEPTED 20 February 2025
PUBLISHED 11 March 2025

CITATION

Vargas-Monroy G, Gonzalez-Roldan D-B,
Montenegro-Marín CE, Daza-Corredor A-P
and Leal-Lara D-D (2025) Code generation
system based on MDA and convolutional
neural networks.
Front. Artif. Intell. 8:1491958.
doi: 10.3389/frai.2025.1491958

COPYRIGHT

© 2025 Vargas-Monroy, Gonzalez-Roldan,
Montenegro-Marín, Daza-Corredor and
Leal-Lara. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research
PUBLISHED 11 March 2025
DOI 10.3389/frai.2025.1491958

https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1491958&domain=pdf&date_stamp=2025-03-11
https://www.frontiersin.org/articles/10.3389/frai.2025.1491958/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1491958/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1491958/full
mailto:ddleall@udistrital.edu.co
https://doi.org/10.3389/frai.2025.1491958
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1491958

Vargas-Monroy et al. 10.3389/frai.2025.1491958

Frontiers in Artificial Intelligence 02 frontiersin.org

Our study proposes a novel framework that leverages computer
vision, deep learning, and Model-Driven Architecture (MDA) to
bridge this gap. These technologies were selected for their
complementary strengths: computer vision allows for precise
interpretation of architectural diagrams, deep learning provides robust
pattern recognition and data processing capabilities, and MDA
provides a structured approach to aligning abstract models with
executable solutions. Together, they uniquely address the challenge of
automating the translation of design artifacts into functional code,
ensuring both accuracy and scalability. The proposed approach aims
to reduce development time and improve accuracy by automating the
generation of source code from architectural diagrams. Unlike existing
solutions, which focus primarily on individual components such as
code generation or diagram recognition, our framework integrates
these processes into a cohesive system. This integration not only
automates the conversion of diagrams into code but also ensures
alignment with business logic and functional requirements from the
outset (Abdelmoez et al., 2004).

The development of this prototype was driven by the academic
objective of bridging the gap between system diagrams and the
corresponding generated code. Traditional methods often fail to
effectively demonstrate how high-level architectural designs translate
into executable code, leaving developers with a limited understanding
of this critical relationship. By leveraging the prototype as an
experimental platform, this research seeks to illustrate and validate the
potential of model-driven architecture (MDA) integrated with neural
networks to automate and streamline these transformations.

This study presents a system that employs advanced image
recognition and neural network techniques to process architectural
diagrams and extract relevant information. The system translates this
information into artifacts using the MDA approach. By combining
modular design principles, asynchronous task handling, and plugin
support for multiple programming languages, our solution offers
significant improvements over current tools in flexibility, scalability,
and automation.

2 Problem statement

The planning and structuring of software are critical for ensuring
high-quality applications in the software development process. Tools
such as Architecture Description Languages (ADLs) provide a
valuable means to visualize and abstract system components.
However, a significant disconnect remains between these high-level
abstractions and their concrete implementation. This gap often results
in manual intervention, which increases the likelihood of error
propagation and extends development timelines (Tucker, 2004).

Furthermore, the iterative nature of modern software projects
often introduces changes to initial designs, appearing as shifts in
requirements, feature adjustments, or refinements based on
stakeholder feedback. Existing tools struggle to accommodate these
changes effectively due to their rigid workflows and limited
adaptability to dynamically evolving project needs. While ADLs
and related methodologies provide a starting point, they fail to
provide the dynamic adaptability required for evolving
requirements, complicating their integration into Agile workflows
(Richards and Ford, 2020). The manual translation of architectural
specifications into executable code not only consumes significant

time but also creates challenges in maintaining alignment between
business logic and technical solutions.

The research focuses on addressing these challenges with an
innovative system. This system automates the translation of
architectural diagrams into functional code, providing a seamless and
efficient solution. By leveraging computer vision, neural networks, and
the MDA framework, the proposed approach facilitates a seamless
transition from planning to implementation, minimizing human error
and ensuring compliance with initial project requirements (Pelliccione
et al., 2023).

Moreover, existing tools lack the capability to dynamically adapt
to software projects’ evolving requirements. This research addresses
these issues by proposing a system that unifies planning, structuring,
and implementation through automated code generation. The
approach not only simplifies the development lifecycle but also
ensures that architectural designs are directly translated into
functional code, reducing errors and enhancing consistency
(Pelliccione et al., 2023).

3 Background

Modern technology has led to the development of some useful
tools for process automation, code generation, and development
verification, among other system utilities for developers and
non-developers, that allow them to choose between a number of uses
and strategies to reach a similar goal with the ability to form automated
processes. Therefore, developing a clear stage and software for this
purpose is important.

3.1 AI and artificial vision

Artificial intelligence is a field of study whose definition varies
according to the approach taken, including thinking humanly,
thinking rationally, acting humanly, or acting rationally (Russell and
Norvig, 2015). This variation may lead to debates in the definition
process, where such perspectives are not the only obstacles to
establishing a definition; the processes by which intelligent behavior
and results can be achieved may also pose challenges (Artificial
Intelligence Applications and Innovations, 2022). Through various
lenses, several fields contribute to the definitions of belief and
behavior recognized in these domains, with machine learning
playing a crucial role in facilitating essential processes within
intelligence, including learning. The expression of intelligence links
results to interactions with humans; therefore, these should
be considered in fields such as natural language processing.
Representations are naturally understood by humans, allowing for
the extraction of valuable information. Consequently, it was
important to develop projects that initially had a direct impact on
text generation. One such project is GPT-2, released with multiple
variations in the amount of data used for training; the largest version
contains 1.5 billion input data points (Radford et al., 2019),
developed by OpenAI. This was followed by the release of GPT-3,
which has 175 billion parameters, with its experimentation reflecting
OpenAI’s preparedness due to its high performance in natural
language processing across various tasks, such as translation,
questionnaire completion, and text formulation (Brown et al., 2020).

https://doi.org/10.3389/frai.2025.1491958
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Vargas-Monroy et al. 10.3389/frai.2025.1491958

Frontiers in Artificial Intelligence 03 frontiersin.org

This advancement has led to the development of several projects,
including natural language to code generation (Shankar et al., 2020).
Parallel projects have emerged in the field of computer vision, such
as” GPT Image” (OpenAI, 2020), which employs unsupervised
analysis to generate coherent pixels, thus creating images (Chen
et al., 2020). Similarly, it is essential to acknowledge projects focused
on code generation related to user interface design through the
creation of mockups that outline their structure, including “Sketch
2 Code” proposed by Microsoft AI Lab in 2019 (Microsoft, 2018),
which utilizes artificial intelligence to transform handwritten
drawings into HTML prototypes. Designers exchange ideas on a
whiteboard, and any modifications are instantly reflected in the
browser using optical character recognition (OCR). However, in the
Azure Cloud platform, returned objects assist in identifying the
design, which is then transmitted to the Sketch 2 Code web
application for the corresponding HTML generation (Robinson,
2019), a model that is followed by multiple competitors, such as
“Editor,” among others.

3.2 Case tools

Computer-aided software engineering (CASE) tools are a set of
software tools that can increase in terms of time in each of the stages
of the development life cycle, with the ability to generate code based
on a diagram or model. Therefore, the ability to generate code, as well
as a method to keep the system updated with the ability to grow from
diagrams and always help analysts identify gaps in security or
improvement opportunities that with other systems is difficult. The
architects using such systems can allow the flow of the system, make
decisions with each of the stakeholders, and solve problems of depth
(Jabbari et al., 2021).

This type of tool is highly capable of integrating into Agile
development, allowing the generation of audit reports easily without
harming or delaying the development team. In addition, it allows the
automation of processes that can become tedious during quality
verification; however, it also allows a software architect to generate
codes under certain constraints, implement them, and verify them
through test cases (García-Holgado and García-Peñalvo, 2021).

3.3 No code

The NO CODE Movement, along with its growing philosophy,
offers a range of tools for both developers and non-developers that
allow them to create software solutions largely without coding.
Therefore, it is important to bridge the technological gap that persists
today regarding the development role’s capacity in creating software
solutions for the public. This initiative will empower individuals who
may not understand or prefer not to use programming languages to
easily generate such solutions through simple graphical interfaces,
allowing end users to achieve results more quickly than conventional
methods (Cypher et al., 2010).

Currently, the NO CODE movement, as a trend, is one of the most
developed tools available in the market for users who seek its benefits
while recognizing its potential drawbacks. Organizations aiming to
enhance their development capabilities are actively working on many
of these tools, and additional ones are being created to establish clear

guidelines for customers. A design prototype that can be developed in
real-time, fostering better understanding between clients and
developers, is crucial (Spiridonov, 2021).

4 Theoretical framework

4.1 Computer vision

Computer vision is the processing of data from any modality that
uses the electromagnetic spectrum to produce an image (Artificial
Intelligence and Robotics, 2022). It is essential to highlight artificial
vision as a concept that refers to the processing of sensor data,
enabling a machine to extract useful information to fulfill a specific
function (Biosensors in Food Safety and Quality, 2022). While there
are some differences between them, these terms are often used
interchangeably. In computer vision, a machine (typically a computer)
automatically processes an image and answers the question, “What’s
in the image?” (Szeliski, 2022). Key elements in these processes relate
to digital image processing, which involves implementing processes
with images as both inputs and outputs. Although there is no universal
theory or methodology applicable to digital image processing
(Dougherty, 2020), a method is needed to interpret data derived from
an image by employing various techniques closely associated with
image processing, such as:

 • Convolution.
 • Thresholding method.
 • Feature detectors.
 • Ramer–Douglas–Peucker algorithm.

4.2 Neuronal networks

Neural networks are computational models inspired by the
nervous systems of living beings, which have the ability to acquire and
maintain knowledge based on the information from which they are
constructed. They can be defined as a set of processing units
represented by artificial neurons, interconnected through multiple
connections (artificial synapses), and implemented using vectors and
matrices of synaptic weights (Artificial Neural Networks in Pattern
Recognition, 2020). Therefore, within the standard operation of
different neural networks, regardless of the architecture implemented,
the Perceptron, created by Frank Rosenblatt in 1957, exemplifies this
concept using numerical inputs and outputs. Each input connection
is associated with a weight (Géron, 2022).

Therefore, among the exposed values, it is important to
acknowledge the step function, or Heaviside, as the activation function
and weight as Z:

 1 1 2 2
T

n nz w x w x w x X W= + +…+ =

Therefore, different neural networks are set with various layers
and connection patterns that follow the same signal propagation
through the network. Real numbers determine the strength of
connectivity between the two connected neurons because each
signal that is transmitted through the connection is multiplied by

https://doi.org/10.3389/frai.2025.1491958
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Vargas-Monroy et al. 10.3389/frai.2025.1491958

Frontiers in Artificial Intelligence 04 frontiersin.org

the weight associated with the connection. Considering that the
weights can be positive or negative depending on the case is
essential. Therefore, it is necessary to recognize the adjustment of
these weights. This is essential for the proper functioning of the
network, which can be achieved through the training phase in
which the weights are adapted with the so-called learning rule. This
mathematical logic method improves the performance and training
time from the update of weights and bias levels on the network
when simulated in an environment with specific data or training
(Handbook of Chemometrics and Qualimetrics, 1998).
Consequently, it becomes essential to consider the definition of a
new concept that will include a deeper area of study with respect to
neural networks and deep learning, which is a learning approach
using multilayer artificial neural networks that are trained by
establishing weights and trade-offs in each layer by optimizing a
loss function (the delta between the actual result and the predicted
result). Thus, the neural networks of a deep learning model have a
series of layers, starting with the input layer, followed by several
hidden layers, and culminating with an output layer. It updates the
network weights through different iterations to minimize the loss
function that defines the aggregate difference between the model’s
predictions and the actual values of the results in the training data
set (Ryan, 2020). Based on the diversity of architectures in the
process of construction and definition of the model, the following
neural networks have been developed:

 1 Convolutional Neural Networks: Convolutional neural networks
are a type of neural network used for data processing
characterized by a grid or two-dimensional topology. Notably,
their name indicates the inclusion of mathematical convolution
in at least one layer’s processes, as opposed to matrix
multiplication (Aggarwal, 2023). It is essential to emphasize
their superior performance in analyzing gridded data
compared to other methods. Within the structure of these
grids, it is possible to classify various types of layers, which are
as follows:

 • Convolutional Layer: this is the layer that defines a CNN as such
and is where most of the computations occur. It requires different
input data, a filter or kernel, and a feature map. The convolution
process is achieved by implementing the filter on the receptive
fields of an image, thus checking if a certain feature is in the
image. It is essential to recognize the feature detector as a
two-dimensional matrix of weights representing part of the
image; thus, the kernel is applied to an area of the image, and a
dot product is calculated between input pixels and said kernel,
producing an output matrix. When repeating the process over the
entire image, a set of dot products of the input and the kernel are
generated, which is known as the feature map, activation map, or
convolved feature. Thus, having implemented the convolution
process on the image, a rectified linear unit transform (ReLU) is
applied to the feature map, thereby introducing non-linearity into
the model. However, within the parameters used within the
convolution, there are several filters and, as previously mentioned,
even different layers where the procedure is implemented, which,
according to the processing of the procedure, eventually create a
hierarchy of features within the CNN itself.

 • Pooling layers: These perform a dimensionality reduction by
reducing the number of parameters in the input, which, similarly
to the convolutional layer, implements a filter through the entire
input. However, this filter, previously called a kernel, does not
contain weights; instead, the kernel or filter applies a grouping
function to the values within the receptive field, populating the
output matrix. It is necessary to mention the different types of
grouping, such as:

 o Average pooling: when the filter is scrolled through the input,
it selects the pixel with the average value within the receptive
field to send to the output matrix.

 o Max pooling: as the filter scrolls through the input, it selects the
pixel with the maximum value to send to the output matrix.
Being more used than the average pooling.

Therefore, although more information is lost in this layer, it is
fundamental in reducing complexity, improving efficiency, and
limiting the risk of overfitting.

 • A fully connected (FC) layer, as its name says, is based on the
connection between the different nodes in each layer. It performs
the classification task based on the features extracted from the
previous layers with their respective filters; in contrast to the
convolution and pooling layers that usually implement ReLu
functions, these usually utilize a softmax activation function to
classify the entries appropriately, producing a probability between
0 and 1 (IBM, 2020).

However, when defining a model to be trained, it is essential to
acknowledge techniques and methodologies of deep learning, such as:

 2 Transfer Learning: Transfer learning is a methodology where
a model trained for one task serves as a starting point for a
model performing another similar task. This approach is
easier and faster because it allows for updating and
retraining a network with transfer learning rather than
training it from scratch. It is often utilized in object
detection, image recognition, and speech recognition
applications, leveraging models developed by the deep
learning research community, such as widely used
architectures such as GoogleNet and ResNet (MatLab,
2022a). The new structured networks include:

 • ResNet50: This is a 50-layer deep convolutional neural
network. You can load a pre-trained version of the network
that has been trained with over a million images from the
ImageNet database (MatLab, 2022b). ResNet, which stands
for Residual Networks, is a classical neural network used as
a backbone for various computer vision tasks. This model
won the ImageNet challenge in 2015. The fundamental
breakthrough of ResNet was its ability to successfully train
extremely deep neural networks with more than 150 layers.
Before ResNet, training deep neural networks was
challenging due to vanishing gradients (Dwinvedi, 2022).
Therefore, it incorporates numerous layers stacked and

https://doi.org/10.3389/frai.2025.1491958
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Vargas-Monroy et al. 10.3389/frai.2025.1491958

Frontiers in Artificial Intelligence 05 frontiersin.org

trained for specific tasks; thus, the network learns multiple
low, middle, and high-level features by the end of its layers.
In residual learning, instead of solely learning features, it
focuses on learning residuals. A residual can be understood
as the subtraction of the learned feature from the input of
that layer. ResNet employs this method using direct access
connections, which directly connect the input of layer n to
layer (n + x).

Training this type of network has been shown to be easier than
training simple deep neural networks and effectively addresses the
issue of accuracy degradation (O. Foundation, 2022).

4.3 Natural language processing

Natural language processing is the processing of human
communications by machines. It aims to teach machines to process
and understand the language of humans, thereby enabling a
communication channel between humans and machines. The key
to the above definition of natural language processing is that
communication has to occur in the natural language of humans,
thereby enabling an efficient communication channel between the
two. However, natural language processing is necessary, and
machines, machine learning, and deep learning models especially
work best with numerical data. Numerical data is difficult for
humans to produce naturally; thus, natural language processing
works with textual data and converts it into numerical data,
allowing machine learning and deep learning models to fit it. It
bridges the communication gap between humans and machines by
considering the spoken and written forms of human language and
converting them into data that machines can understand
(Raaijmakers, 2022).

4.4 Model driven architecture (MDA)

The framework known as model-driven architecture consists of
practices at the software architecture level, focusing on designing a
layer above the business layer or domain entities. Its objective is to
ensure that the software solution is not tied to a specific technology,
allowing for independent decisions regarding this aspect.

The initiative produced by the Object Management Group (OMG)
to increase productivity and reuse is based on the separation of
abstraction and responsibility within the development scope. Its main
objective is to isolate the domain-specific behavior of any problem in
an abstraction extension to the generic solution that should
be supported by a preliminary design.

Therefore, MDA is an open, vendor-neutral architectural
framework that leverages all associated OMG standards (Figure 1).
MDA supports the application domains being analyzed through this
process (Moreno-Rodríguez, 2020).

Based on the stages of MDA development involving the process
and analysis of the following models:

 • CMI Computational Independent Model. This model focuses on
system requirements and is the basis of the core business.

 • PMI Platform Independent Model. It represents the business
process model.

 • PSM Platform Specific Model generates multiple PSMs and
targets a specific domain language.

4.5 Event-driven architecture (EDA)

As more software applications need to scale horizontally rather
than relying on a monolith that allows only vertical growth, some of
their modules were adapted independently, enabling them to develop

FIGURE 1

Layers of an MDA solution (Moreno-Rodríguez, 2020).

https://doi.org/10.3389/frai.2025.1491958
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Vargas-Monroy et al. 10.3389/frai.2025.1491958

Frontiers in Artificial Intelligence 06 frontiersin.org

horizontally per module. This approach generated the previously
mentioned service-oriented architecture (SOA). While this provided
an excellent architectural tool that can expand sufficiently at the
domain module level, communication between services became more
complex. This indicated that its own architecture was necessary for
communication between services A and B. Consequently, the event-
driven architecture (EDA) is introduced.

The solution requires a messaging bus layer that operates
asynchronously, utilizing a Publisher/Subscriber pattern or streaming
solutions. This setup facilitates communication between each of the
organization’s services and even third-party services (Figure 2).

Event-driven architecture (EDA) provides an architectural design
capable of growing as architectures, such as services/microservices or
even using Functions as a Service (FaaS). This framework enables
organizations to effectively utilize the events generated at the
technological level (refer to Figure 3).

4.6 Microkernel architecture

In a plugin-based architecture, characteristics are denoted and
play a crucial role in delineating responsibilities. This ensures that the
code remains organized and does not accumulate in processes that fail
to meet the minimum requirements for sufficient quality.

For software to qualify as a plugin-based architecture, two main
characteristics are required:

 • To have a core that fully meets the conditions of being the main
connector between the plugins and the main software, which will
have the minimum vital for the system to exist even without
plugins and produce value in the business logic as such, the
project is divided into different tools that provide the value to the
core to ensure that they can increase the capacity to perform
different tasks.

 • A plugin, this can be 0. This is owing to the system’s adaptability
to withstand the minimum built by the project capacity that
benefits the disconnection of such elements within the project, as
well as adding the element.

5 Materials and methods

The process of constructing a software implementation involves
defining clear system components and organizing development stages
to ensure automation in the system’s business logic. ResNet50, a
50-layer convolutional neural network pre-trained on extensive image
datasets, was employed for image recognition due to its robust feature
extraction capabilities and proven effectiveness in handling large-scale
visual data. Celery and Redis were utilized for efficient asynchronous
task management, with Celery orchestrating task execution and Redis
serving as a fast, in-memory data store to manage task queues and
states. These technologies were selected after evaluating alternatives
such as VGGNet and RabbitMQ, which displayed limitations in
accuracy and scalability under similar conditions.

The resulting software artifact fulfills non-functional baseline
requirements and automates essential processes. It ensures scalability
and adaptability, allowing developers to continue building on the
system without encountering mismatches in technology integration.
Additionally, the software supports continuous integration (CI) and
continuous deployment (CD) practices, ensuring consistent quality
and readiness for end-customer environments. Security measures
such as secret environment variables and user authentication were
implemented to protect sensitive data.

This methodology provides a comprehensive approach to
leveraging computer vision and MDA for automated code generation.
The proposed framework facilitates a seamless transition from system
design to implementation by addressing the identified gaps in
software development.

Such a final software artifact should have the following:

 • Auto-generated development code within the fundamental
scopes integrated into the core business logic, utilizing methods
such as ResNet50 for image recognition and Celery with Redis
for task management. These choices were guided by their
superior performance in managing large datasets and
asynchronous tasks compared to alternatives such as VGGNet or
RabbitMQ, which revealed limitations in scalability and flexibility
for this application.

FIGURE 2

Asynchronous PUB/SUB structure of a service in EDA (Rocha, 2021).

https://doi.org/10.3389/frai.2025.1491958
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Vargas-Monroy et al. 10.3389/frai.2025.1491958

Frontiers in Artificial Intelligence 07 frontiersin.org

 • Security involves keeping the environment variables secret for the
use organization in question and providing the client with
authentication/authorization to use the prototype.

 • Scalability allows developers to build continuously without issues
or discrepancies related to the technology being used.

 • Continuous Integration (CI) in DevOps is a modern development
practice that can be validated and verified. This allows us to
achieve a standard of software quality (de Oliveira et al., 2023).

 • DevOps Continuous Deployment (CD) is a practice focused on
usability and the capability to be in environments ready for end
customers (de Oliveira et al., 2023).

 • Self-documentation capabilities allow for easier integration for
any software developer or customer.

 • Ability to grow to plugin level with the capability to integrate
almost any programming language output through a
respective template.

 • Use of a version control system (VCS) for code maintenance and
version management while taking advantage of the benefits
it provides.

5.1 Scope and limitations

In relation to the services associated with the image interpretation
process, the essential element to consider is image acquisition, for
which local input devices will be employed, thereby enabling
streaming to adjust the input image being captured, such as the local
webcam and/or devices connected directly to the equipment executing
the image input service appropriately. This is due to the fact that image
quality significantly impacts the analysis. Similarly, in image

processing and text recognition, the training process of the model can
exhibit considerable uncertainty linked to the capacity of the
equipment on which it is performed, including the GPU capability for
neural network training and the RAM associated with image
processing. Subsequently, the development encompasses several
aspects beyond code generation, such as utilizing Docker for creating
a container ready to be uploaded as a methodology for building the
artifact that will house the application. The first iteration will
implement the code generated within the software solution, leading
to a repository on a cloud server focused on version control. However,
these third-party services come with certain limitations, and if
development exceeds basic coverage, adjustments must be made to
accommodate these constraints. Additionally, thanks to the resources
available at the open-source level, all tools used in the project offer free
services that integrate seamlessly with the intended purpose of
the process.

This project has no official or unofficial funding. Within each
phase of development, implementation, and research, its execution is
both scientific and technological, enabling the developer to utilize an
Agile tool that is ready for the first sprint of SCRUM development in
a startup.

5.2 Architecture

To fully develop the project, Clean Architecture can be utilized
(Bass, 2023), which follows specific rules to ensure it is regarded as a
viable solution with this design.

The diagram below depicts the separation of the solution into two
modules (Figure 4).

FIGURE 3

Communication of software services based on the event driven architecture pattern (Rocha, 2021).

https://doi.org/10.3389/frai.2025.1491958
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Vargas-Monroy et al. 10.3389/frai.2025.1491958

Frontiers in Artificial Intelligence 08 frontiersin.org

This allows the creation of a system diagram, which serves as the
primary design for the implementation (Figure 5).

5.3 Technology

In the process of selecting technology, it was essential to identify
tools that effectively support asynchronous workflows, neural
networks, machine learning, Model-Driven Architecture (MDA), and
web development environments. Python has emerged as the optimal
choice owing to its extensive ecosystem of libraries, including

TensorFlow, Keras, and Celery, which facilitate rapid development and
scalability. When compared to other programming languages such as
Java or C++, Python’s simplicity and integration capabilities
significantly diminish development overhead while sustaining robust
performance. Furthermore, this decision capitalizes on Python’s
strong support for domain-specific language (DSL) automation, a
feature not as effectively supported by alternative ecosystems. Python
was determined to be the most suitable technology due to its strong
asynchronous capabilities and comprehensive library ecosystem,
encompassing Keras, TensorFlow, and Celery, which enhance the
development of machine learning models and automation processes.

FIGURE 4

Implementation use case diagram. Own source.

FIGURE 5

System diagram of the implementation. Own source.

https://doi.org/10.3389/frai.2025.1491958
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Vargas-Monroy et al. 10.3389/frai.2025.1491958

Frontiers in Artificial Intelligence 09 frontiersin.org

These characteristics present substantial advantages over alternatives
such as Java or C++, which do not provide comparable simplicity and
breadth of library support. Moreover, Python’s adaptability in
managing domain-specific languages (DSLs) guarantees seamless
integration and scalability, rendering it particularly appropriate for the
project’s requirements.

GitHub was chosen as the version control platform due to its robust
collaboration tools, extensive integration capabilities, and strong
community support, making it ideal for maintaining and sharing project
artifacts. Challenges such as managing multiple branches and ensuring
synchronization between contributors during the integration process
were addressed by implementing GitHub Actions for automated
workflows. This allowed for seamless testing and deployment pipelines,
significantly reducing manual intervention and errors. Notable successes
included improved team collaboration and a streamlined process for
code reviews and pull requests, enhancing code quality and project
transparency. Heroku was selected for continuous deployment (CD)
because of its simplicity, scalability, and seamless integration with
GitHub, allowing rapid prototyping and deployment of software artifacts.
However, challenges arose during deployment workflows, particularly in
optimizing resource allocation and securely managing environment
variables. These issues were mitigated by implementing automated
monitoring tools and leveraging Heroku’s pipeline feature for better
deployment tracking. Successes included faster iteration cycles and
reduced downtime during deployments, significantly enhancing the
development process. While other platforms such as GitLab and AWS
could have been considered, GitHub and Heroku remained preferred for
their user-friendly interfaces and alignment with the project’s agile
development methodology. To address Heroku’s pricing model and
resource limitations, deployment processes were optimized by limiting
high-resource tasks during non-critical periods and leveraging scaling
options to dynamically adjust resource use. Additionally, alternative
platforms such as AWS Elastic Beanstalk were evaluated for specific
scaling needs, ensuring the system remains cost-effective and adaptable
for large-scale applications.

5.4 Development methodology

The project was built using an Agile methodology that integrates
SCRUM and KANBAN (Schwaber, 2004) to execute it effectively,
minimizing setbacks and ensuring all processes are applicable to the
output system in question.

5.5 Temporal analysis

For the temporal analysis, the project will span 10 sprints, with
1 week allocated for each sprint.

6 Results and implementation

6.1 Infrastructure design

The construction of the implementation is based on the following
infrastructure, utilizing a module for asynchronous tasks based on
Celery and the Redis messaging broker.

It is determined by four stages, two of which correspond to the
computational vision and processing domain and two to the MDA
domain and source code generation (Figure 6).

6.2 Image recognition and processing

Initially, an image is essentially a matrix, as mentioned above. It
corresponds to pixels, with each element indicating its color, which
allows for information extraction. Processing the image is necessary
to eliminate effects or elements that are not significant for
interpretation. Various tools related to artificial or computer vision are
utilized to define the important elements within the matrix, thus
preserving the original images as original images:

FIGURE 6

Architectural summary: development of the prototype. Own source.

https://doi.org/10.3389/frai.2025.1491958
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Vargas-Monroy et al. 10.3389/frai.2025.1491958

Frontiers in Artificial Intelligence 10 frontiersin.org

 1) Image noise removal: the image processing tool, Convolution,
was employed, utilizing a bilateral filter that facilitates blurring
while preserving edges and removing noise from the shadows
of the image. We also apply techniques such as thresholding,
which defines each pixel of an image based on a threshold
value, enabling the highlighting of the most significant
information within it. In this study, we used it adaptively to
calculate the threshold in smaller regions, allowing us to define
larger sets within the image. It is important to emphasize that
this implementation shows improved effects on black-and-
white images.

 2) Defining and separating figures in the image: the Ramer–
Douglas–Peucker algorithm was applied to the pre-processed
image to approximate each contour detected in the figure,
allowing differentiation between them with information such
as the location or initial point from which it is defined.

 3) Text analysis processes: in the processes related to analyzing
text extracted from the pre-processed image, Optical Character
Recognition (OCR) is employed to interpret text sourced from
a computer. A Convolutional Neural Network is utilized to
recognize manually drawn characters, the development process
of which will be defined later.

 4) Figure joining analysis: based on the aforementioned figure
analysis and the respective positioning data previously
obtained, it is possible to generate a bias of images from
those containing text, resulting in a set of images that only
define figures. By implementing the Ramer Douglas
Peucker algorithm, the ends of the figures are identified as
the areas with the highest concentration of points, from
which the directionality of a drawn union can
be established, along with the respective positioning of its
start and end. Analyzing the centroids of the other figures
(those with characters) allows us to identify those marked
by both ends (Figure 7).

6.3 Neural network construction

In building the neural network, the EMNIST dataset was used,
which includes numbers as well as lowercase and uppercase letters,
with a total of approximately 23,735,166 data points, as shown in
(Figure 8).

The implementation of knowledge transfer is conducted using the
pre-trained neural network model ResNet50. Therefore, adjusting the
respective weights and re-entering the images from the EMNIST
dataset is part of the limitations previously mentioned regarding the
equipment used during the training process. This includes the
necessary adjustment of the EMNIST dataset from 28 × 28 × 1 to
32 × 32 × 3 format required by ResNet50. Consequently, the training
process, constrained by the teraflops limit, takes a long time, which
contributes to one of the disadvantages explained later in the process.
Thus, 20 epochs with 100,000 were utilized, allowing the generation
of predictions based on the text derived from the entered image.

6.4 Data resulting from image
interpretation

From the obtained data, a structure containing all the parameter
information, as well as details about the model used for prediction,
can be observed in the lower right section of the GUI (Figures 9, 10).

Similarly, when analyzing a drawn diagram, it can be observed
(Figure 11).

6.5 Artifact generation and MDA

The domain-specific language was constructed to provide insight
into the process of MDA entities and address the output to a point
consistent with the output required by the system.

FIGURE 7

Image analyzed, with figures found (red), position of figures (blue dots and top left), defined outline of joints (green), endpoints (red dots), and tail of
joints (blue dots at the end of the joints). Own source.

https://doi.org/10.3389/frai.2025.1491958
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Vargas-Monroy et al. 10.3389/frai.2025.1491958

Frontiers in Artificial Intelligence 11 frontiersin.org

An example implementation of such a DSL that can be translated
into the required process has the entities separated by type and size in
memory if the data type requires it. The system’s default state, the null
of the variable if allowed, and the interaction of each entity if
connected by the business logic.

This interacts with one of the plugins that is prepared for
generation and produces the resulting artifact: a repository on GitHub
along with its corresponding deployment on Heroku.

6.6 Plugins

The tool allows several programming languages to be translated,
and in the latest generation of this project, it will be utilized to facilitate
interaction among all processes. It is built using plugins, setting each
template aside. This is where technologies such as they enter an engine
of views and extract results from the configurations provided in
this process.

FIGURE 8

EMNIST training data count. Own source.

FIGURE 9

Sequential network with ResNet50 intermediate pre-training (knowledge transfer). Own source.

https://doi.org/10.3389/frai.2025.1491958
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Vargas-Monroy et al. 10.3389/frai.2025.1491958

Frontiers in Artificial Intelligence 12 frontiersin.org

The interaction with the plugins works in a simple way from a
plugins folder, where the files that allow the plugin/core connection
are located.

This will allow the plugins to interact with their respective
templates and generate the intended results based on the rules defined
within the specific plugin configuration.

Each file contains the template configuration based on the Jinja
view engine.

Submitting the DSL to the plugin generates a GitHub repository
with the plugin’s source code and specifications (Figure 12).

Meanwhile, the events executed with the workflows of GitHub
actions allow for the verification of the code and closure of the
continuous integration (CI) process, in addition to the respective
deployment in Heroku.

6.7 Disadvantages

The process of maintaining the deployment area secure involves
various environment variables that contribute to a security solution.

FIGURE 10

GUI for image input service and/or visualization of analysis results. Own source.

FIGURE 11

Diagram drawn and analyzed by the image processing service. Own source.

https://doi.org/10.3389/frai.2025.1491958
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Vargas-Monroy et al. 10.3389/frai.2025.1491958

Frontiers in Artificial Intelligence 13 frontiersin.org

However, these variables can lead to problems even if they are auto-
generated per project and encoded in base64. A certificate with
OpenID is utilized for integration with Heroku, which requires
two-step verification. For authorization, an OAuthV2 token is
employed in both GitHub and Heroku, though it does not guarantee
complete security in production. Therefore, it is essential to evaluate
the extent of the process and the limitations that the generated tokens
impose on the application’s security.

When improving results with the Convolutional Neural Network,
the initial drawback is the capacity of the devices involved in the
training process. This limitation arises when performing the initial
training on a machine capable of reaching up to 768 GFLOPS and
16GB of RAM, which becomes overwhelmed by the volume of data
from the EMNIST dataset (23,735,166 data). Reducing the dataset to
100,000 samples while utilizing the machine’s full capacity for an
extended period leads to the reliance on Google Colab. Google Colab
provides 13GB of free RAM and is equipped with an NVIDIA Tesla
K80 GPU that delivers 1.87 Tflops, with a session limit of up to 12 h.
Although this option significantly enhances training, it still faces time
constraints. The training process is inherently limited and depends on
the established amount of data, thus benefiting from greater
physical resources.

In the process of capturing images with a connected camera
(Figure 13), it becomes possible to observe a distortion process
implemented by various cameras known as fisheye, which causes
radial distortion to be readjusted during the camera calibration
process (Figure 14). Thus, when readjusting using tangential distortion
according to the axes in an undistorted image (Figure 15), there is a

loss of data at the center of the image that, when linked to text
processing, can significantly reduce the accuracy of predictions.

7 Discussion

The results of this study highlight the effectiveness of using
computer vision and deep learning techniques for the automated
generation of source code from architectural diagrams. The system
effectively bridges the gap between the design and implementation
phases by leveraging Model-Driven Architecture (MDA), providing a
seamless mechanism to align business logic with functional
requirements. However, the discussion requires broader
contextualization to better position these findings within the larger
landscape of code automation and AI-driven software engineering.

The MDA holds significant promise in transforming software
development by automating processes that have traditionally relied on
manual intervention. Its ability to translate high-level design artifacts
into executable solutions is a game-changer, reducing human error
and accelerating development timelines. Nevertheless, the challenges
of implementation and the comparative advantages over alternative
frameworks, such as Event-Driven Architecture (EDA) or Domain-
Driven Design (DDD), require further exploration. For instance,
while MDA excels at aligning abstract models with execution, its
dependence on accurate model definitions can limit scalability in
dynamic, rapidly evolving environments. Addressing these limitations
through adaptive model interpretation and continuous learning could
enhance its applicability.

FIGURE 12

Quality verification of unitary testing code. Own source.

https://doi.org/10.3389/frai.2025.1491958
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Vargas-Monroy et al. 10.3389/frai.2025.1491958

Frontiers in Artificial Intelligence 14 frontiersin.org

In terms of future opportunities, the integration of advanced AI
techniques such as reinforcement learning and generative adversarial
networks (GANs) could open new frontiers for intelligent automation.
These technologies can augment the system’s capabilities by enabling
predictive adjustments to architectural changes, thereby improving
adaptability. Moreover, incorporating real-time analytics into the
development workflow could provide actionable insights, enhance
decision-making, and foster more agile development practices.

The study emphasizes modular design, asynchronous task
handling, and plugin-based extensibility, which provide a robust
foundation for scalability. However, the implications of these
architectural choices on industry adoption remain underexplored.
For example, while using Celery and Redis enhances task efficiency,
the scalability of these tools in large-scale, distributed environments

warrants further investigation. Comparing this approach with
cloud-native solutions such as AWS Lambda or Azure Functions
could yield valuable insights into optimizing performance and
cost-effectiveness.

The prototype achieved 85% accuracy in diagram
interpretation and averaged a processing speed of 150 diagrams
per hour, with error rates below 5%. This academic experiment
evaluated the feasibility of integrating MDA with neural networks
for automated code generation. Initial scalability tests
demonstrated stable performance with up to 10,000 diagrams per
session, showcasing the adaptability of the system’s modular
architecture for future enterprise-scale applications. Challenges
such as limited GPU capabilities were addressed by using cloud-
based platforms and pre-processing techniques, ensuring

FIGURE 13

The original image is to be captured without the fisheye effect. Own source.

FIGURE 14

Fisheye effect on an input image. Own source.

https://doi.org/10.3389/frai.2025.1491958
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Vargas-Monroy et al. 10.3389/frai.2025.1491958

Frontiers in Artificial Intelligence 15 frontiersin.org

robustness and providing insights into the optimization needs for
broader use cases.

Future enhancements include enhancing parallel processing and
refining the neural network architecture to manage computational
constraints more effectively. These results underscore the potential of
integrating MDA with AI techniques for automating software
workflows, paving the way for practical and scalable implementations
in various programming environments.

Finally, the discussion would benefit from a systematic
examination of the future opportunities highlighted in the
conclusions. These include the potential for integrating DevOps
pipelines with AI-driven testing frameworks, which could further
automate and enhance quality assurance processes. Additionally,
exploring the ethical implications of automating code generation—
such as ensuring transparency and accountability in generated
artifacts—is an area that warrants attention as this
technology matures.

8 Conclusion

This study generated the concepts of using MDA and
microkernel architecture. The focus of AI is on computer vision,
including issues related to Natural Language Processing (NLP).
Third-party integrations applying DevOps, Clean Code, and
Clean Architecture principles enable the implementation of a
software solution that allows for the capture, processing, and
translation of images, followed by their conversion to an
intermediate and scalable meta-language implementation through
various plugins. A version control system (VCS) facilitates the
automatic packaging and deployment of a fully functional
software artifact. All code quality conditions required for new
changes made by the user to its entities can be managed
appropriately without disrupting previous processes. Similarly, it
is fundamental to consider the different processing constraints

associated with various network training processes that can
be enhanced through the implementation and/or training of
networks on superior hardware, along with the limitations of
machine processing where the execution of analysis and image
processing occurs. This is evident in the different services
involved in the final deployment of a completed project.

Meanwhile, during the progress of the project, its future
implications and potential impact were analyzed. This yields certain
results. Although the project meets the established objectives, its
likelihood of realization in the future is remarkably high. The
development, as observed in the industry, could change by basing its
construction on design diagrams and models, which are fundamental
to software development, recognizing the design stage not merely as
one of the critical steps toward a software solution but as the most vital
stage. This represents a breakthrough in terms of automation,
translation, reading, and several other areas that could constitute a
scientific paper on their own, as enunciated in this project. There is a
significant opportunity to fulfill all the conditions outlined by
the process.

Data availability statement

Requests to access datasets should be directed to apdazac@
udistrital.edu.co.

Author contributions

GV-M: Conceptualization, Investigation, Methodology, Writing –
original draft. D-BG-R: Conceptualization, Investigation,
Methodology, Writing – original draft. CM-M: Supervision,
Validation, Writing – review & editing. A-PD-C: Supervision,
Validation, Writing – review & editing. D-DL-L: Supervision,
Writing – review & editing.

FIGURE 15

Effect of different distortions on the image. Own source.

https://doi.org/10.3389/frai.2025.1491958
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
mailto:apdazac@udistrital.edu.co
mailto:apdazac@udistrital.edu.co

Vargas-Monroy et al. 10.3389/frai.2025.1491958

Frontiers in Artificial Intelligence 16 frontiersin.org

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Acknowledgments

We express our sincere gratitude to the Engineering Faculty of the
Universidad Distrital for fostering an environment of intellectual
curiosity and providing us with the fundamental knowledge and
resources to carry out this research. We acknowledge the academic
and institutional support provided by the Universidad Distrital
Francisco José de Caldas and Fundación Universitaria Los
Libertadores, which facilitated the completion of this work.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References
Abdelmoez, W., Nassar, D. M., Shereshevsky, M., Gradetsky, N., Gunnalan, R.,

Ammar, H. H., et al. (2004). Error propagation in software architectures. In 10th
International Symposium on Software Metrics, 384–393.

Aggarwal, C. C. (2023). Neural networks and deep learning: a textbook. Alemania:
Springer International Publishing.

Artificial Intelligence and Robotics (2022). 7th International Symposium, ISAIR 2022,
Shanghai, China, October 21–23, 2022, Proceedings, part I. Alemania: Springer Nature
Singapore.

Artificial Intelligence Applications and Innovations (2022). 18th IFIP WG 12.5
International Conference, AIAI 2022, Hersonissos, Crete, Greece, June 17–20, 2022,
Proceedings, part II. Suiza: Springer International Publishing.

Artificial Neural Networks in Pattern Recognition (2020). 9th IAPR TC3 Workshop,
ANNPR 2020, Winterthur, Switzerland, September 2–4, 2020, Proceedings. Alemania:
Springer International Publishing.

Bass, J. M. (2023). Agile software engineering skills. Alemania: Springer International
Publishing.

Biosensors in Food Safety and Quality (2022). Fundamentals and applications.
Estados Unidos: CRC Press.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., et al. (2020).
Advances in neural information processing systems. 33, 1877–1901.

Chen, M., Radford, A., Wu, J., Jun, H., Dhariwal, P., Luan, D., et al. (2020). Generative
pretraining from pixels. Proceedings of the 37th International Conference on Machine
Learning, in Proceedings of Machine Learning Research, 119:1691–1703. Available at:
https://proceedings.mlr.press/v119/chen20s.html

Cypher, A., Dontcheva, M., Lau, T., and Nichols, J. (2010). No code required: Giving
Users Tools to Transform the Web. Morgan Kaufmann, Boston, MA, 486p.

de Oliveira, L. F., Rodrigues, C. L., and Bulcão-Neto, R. D. F. (2023). Characterizing
the software acceptance testing and the inclusion of people with disabilities by means of
a systematic mapping. IEEE Lat. Am. Trans. 21, 35–46. doi: 10.1109/TLA.2023.10015143

Dougherty, E. R. (2020). Digital image processing methods. Estados Unidos:
CRC Press.

Dwinvedi, P. (2022). Understanding and coding a ResNet in Keras. Available online
at: https://towardsdatascience.com/understanding-and-coding-a-resnet-in-
keras-446d7ff84d33 (Accessed May 12, 2022).

García-Holgado, A., and García-Peñalvo, F. J. (2021). Low-code as enabler of digital
transformation in manufacturing industry. Appl. Sci. 11:5914. doi: 10.3390/app11135914

Géron, A. (2022). Hands-on machine learning with Scikit-learn, Keras, and
TensorFlow. Suiza: O'Reilly Media.

Handbook of Chemometrics and Qualimetrics. (1998). Elsevier Science. Available
online at: https://books.google.com.co/books?id=lWpMrQ3WLv8C (Accessed June
30, 2022).

IBM. (2020). Convolutional neural networks. Available online at: https://www.ibm.
com/cloud/learn/convolutional-neural-networks (Accessed June 30, 2022).

Jabbari, M., Recker, J., and Green, P. (2021). How do individuals decide which
modeling scripts to use during systems analysis and design? Decis. Support. Syst.
147:113575. doi: 10.1016/j.dss.2021.113575

MatLab. (2022a). ResNet. Available online at: https://la.mathworks.com/help/
deeplearning/ref/resnet50.html (Accessed January 5, 2023).

MatLab. (2022b). Transfer learning para entrenar modelos de deep learning. Available
online at: https://la.mathworks.com/discovery/transfer-learning.html

Microsoft. (2018). Sketch2Code. Available online at: https://learn.microsoft.com/en-
us/shows/ai-show/sketch2code (Accessed June 30, 2022).

Moreno-Rodríguez, R. (2020). CASE jMDA de Arquitectura Dirigida por Modelos
para Sistemas de Información. Rev. Cubana Ciencias Informát. 14, 210–223.

O. Foundation. (2022). Residual network (ResNet). Available online at: https://
iq.opengenus.org/resnet/ (Accessed December 10, 2022).

OpenAI. (2020). OpenAI: GPT-3. Available online at: https://openai.com/api/
(Accessed June 30, 2022).

Pelliccione, P., Kazman, R., and Weber, I. (2023). Software architecture: research
roadmaps from the community. Alemania: Springer Nature Switzerland.

Raaijmakers, S. (2022). Deep learning for natural language processing. Reino Unido:
Manning.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language
models are unsupervised multitask learners. Open AI Technical Report.

Richards, M., and Ford, N. (2020). Fundamentals of software architecture: An
engineering approach. United States of America: O'Reilly Media.

Robinson, A. L. (2019). Sketch2Code: generating a website from a paper mockup.
[Epubh ahead of preprint]. doi: 10.48550/arXiv.1905.13750

Rocha, H. F. O. (2021). Practical microservices architecture. United States: Apress.

Russell, S., and Norvig, P. (2015). Artificial intelligence: a modern approach. Chennai,
India: Pearson India Education Services Pvt. Limited.

Ryan, M. (2020). Deep learning with structured data. Manning publications. Available
online at: https://books.google.com.co/books?id=QC4NEAAAQBAJ (Accessed June
30, 2022).

Schwaber, K. (2004). Agile Project Management with Scrum. Microsoft Press,
Redmond.

Shankar, S., Uyumazturk, B., Stein, D., Gulan, and Lavelle, M. (2020). GPT-3 sandbox:
Turn your ideas into demos in a matter of minutes. Available online at: https://github.
com/shreyashankar/gpt3-sandbox (Accessed June 30, 2022).

Spiridonov, R. E. (2021). Nested constructions in restricted move no-code smart
contracts descriptions. In 2021 IV International Conference on Control in Technical
Systems (CTS), 228–231.

Szeliski, R. (2022). Computer vision: Algorithms and applications. Suiza: Springer
International Publishing.

Tucker, A. (2004). Computer science handbook. United States of America: CRC Press.

https://doi.org/10.3389/frai.2025.1491958
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://proceedings.mlr.press/v119/chen20s.html
https://doi.org/10.1109/TLA.2023.10015143
https://towardsdatascience.com/understanding-and-coding-a-resnet-in-keras-446d7ff84d33
https://towardsdatascience.com/understanding-and-coding-a-resnet-in-keras-446d7ff84d33
https://doi.org/10.3390/app11135914
https://books.google.com.co/books?id=lWpMrQ3WLv8C
https://www.ibm.com/cloud/learn/convolutional-neural-networks
https://www.ibm.com/cloud/learn/convolutional-neural-networks
https://doi.org/10.1016/j.dss.2021.113575
https://la.mathworks.com/help/deeplearning/ref/resnet50.html
https://la.mathworks.com/help/deeplearning/ref/resnet50.html
https://la.mathworks.com/discovery/transfer-learning.html
https://learn.microsoft.com/en-us/shows/ai-show/sketch2code
https://learn.microsoft.com/en-us/shows/ai-show/sketch2code
https://iq.opengenus.org/resnet/
https://iq.opengenus.org/resnet/
https://openai.com/api/
https://doi.org/10.48550/arXiv.1905.13750
https://books.google.com.co/books?id=QC4NEAAAQBAJ
https://github.com/shreyashankar/gpt3-sandbox
https://github.com/shreyashankar/gpt3-sandbox

	Code generation system based on MDA and convolutional neural networks
	1 Introduction
	2 Problem statement
	3 Background
	3.1 AI and artificial vision
	3.2 Case tools
	3.3 No code

	4 Theoretical framework
	4.1 Computer vision
	4.2 Neuronal networks
	4.3 Natural language processing
	4.4 Model driven architecture (MDA)
	4.5 Event-driven architecture (EDA)
	4.6 Microkernel architecture

	5 Materials and methods
	5.1 Scope and limitations
	5.2 Architecture
	5.3 Technology
	5.4 Development methodology
	5.5 Temporal analysis

	6 Results and implementation
	6.1 Infrastructure design
	6.2 Image recognition and processing
	6.3 Neural network construction
	6.4 Data resulting from image interpretation
	6.5 Artifact generation and MDA
	6.6 Plugins
	6.7 Disadvantages

	7 Discussion
	8 Conclusion

	References

